THE POWER SERIES COEFFICIENTS OF FUNCTIONS DEFINED BY DIRICHLET SERIES

BY
W. E. Briggs and R. G. Buschman

If the Dirichlet series $f(s)=\sum_{n=1}^{\infty} h(n) n^{-s}$ has abscissa of convergence Re $s=a$ and a simple pole at $s=a$, then $f(s)$ has the Laurent expansion

$$
f(s)=\frac{C}{s-a}+\sum_{r=0}^{\infty} \frac{(-1)^{r} C_{r}}{r!}(s-a)^{r} .
$$

The purpose of this paper is to derive expressions for the C_{r} and to list the results for various number-theoretic functions $h(n)$, thus generalizing the special case of $h(n)=1$ found in [1]. It is assumed throughout that $f(s)$ is of the above form with $C, a, h(n)$, and C_{r} referring to this relation, and that $E(x)=\sum_{n \leqq x} h(n)-C a^{-1} x^{a}=O\left(x^{b}\right)$ where $0 \leqq b<a$.

Two lemmas are stated without proof.
Lemma 1. If $b_{1}, b_{2}, b_{3}, \cdots$ is a sequence of complex numbers and $v(x)$ has a continuous derivative for $x>1$, then

$$
\sum_{n \leqq x} b_{n} v(n)=\left(\sum_{n \leqq x} b_{n}\right) v(x)-\int_{1}^{x}\left(\sum_{n \leqq t} b_{n}\right) v^{\prime}(t) d t
$$

Lemma 2.

$$
f(s)=s \int_{1}^{\infty} x^{-s-1}\left[\sum_{n \leqq x} h(n)\right] d x
$$

$\operatorname{Re} s>a$
Lemma 3. If Re $s>b$, then

$$
f_{1}(s) \equiv s \int_{1}^{\infty} x^{-s-1} E(x) d x=-\frac{C}{a}+\sum_{r=0}^{\infty} \frac{(-1)^{r} C_{r}}{r!}(s-a)^{r} .
$$

Proof. The integral is an analytic function for Re $s>b$ and equals $f(s)-C / a-C /(s-a)$ for $\operatorname{Re} s>a$.

Theorem 1. If $u<-b$, then

$$
\sum_{n \leq x} n^{u} h(n) \log ^{r} n=C \int_{1}^{x} t^{u+a-1} \log ^{r} t d t+D_{r}+(-1)^{r} f_{1}^{(r)}(-u)+o(1)
$$

where $D_{r}=C / a$ if $r=0$ and $D_{r}=0$ otherwise.

Proof. From Lemma 1

$S=\sum_{n \leqq x} n^{u} h(n) \log ^{r} n=\sum_{n \leqq x} h(n) x^{u} \log ^{r} x-\int_{1}^{x}\left[\sum_{n \leqq t} h(n)\right] \frac{d}{d t}\left(t^{u} \log ^{r} t\right) d t$.
But $(d / d t)\left(t^{u} \log ^{r} t\right)=\left(d^{r} / d u^{r}\right)\left(u t^{u-1}\right)$. Hence

$$
\begin{aligned}
& S=C a^{-1} x^{u+a} \log ^{r} x+O\left(x^{u+b} \log ^{r} x\right) \\
& \quad+\frac{d^{r}}{d u^{r}}\left\{-u \int_{1}^{\infty} t^{u-1} E(t) d t-u \int_{1}^{x} C a^{-1} t^{u+a-1} d t+u \int_{x}^{\infty} t^{u-1} E(t) d t\right\}
\end{aligned}
$$

[^0]But by Lemma 3, $-u \int_{1}^{\infty} t^{u-1} E(t) d t=f_{1}(-u)$, and

$$
\begin{array}{rl}
x^{u+a} \log ^{r} & x-\frac{d^{r}}{d u^{r}} u \int_{1}^{x} t^{u+a-1} d t \\
& =\frac{d^{r}}{d u^{r}}\left[x^{u+a}-1-u \int_{1}^{x} t^{u+a-1} d t\right]+\frac{d^{r}}{d u^{r}} 1 \\
& =\frac{d^{r}}{d u^{r}}\left[a \int_{1}^{x} t^{u+a-1} d t\right]+\frac{d^{r}}{d u^{r}} 1=a \int_{1}^{x} t^{u+a-1} \log ^{r} t d t+\left\{\begin{array}{l}
0 \text { if } r>0 \\
1 \text { if } r=0 .
\end{array}\right.
\end{array}
$$

The $r^{\text {th }}$ derivative of the third integral appearing in S approaches zero as $x \rightarrow \infty$, which completes the proof.

Theorem 2.

$$
C_{r}=\lim _{x \rightarrow \infty}\left(\sum_{n \leq x} n^{-a} h(n) \log ^{r} n-\frac{C}{r+1} \log ^{r+1} x\right)
$$

Proof. Lemma 3 gives $f_{1}(a)=-C / a+C_{0}$ and $f_{1}^{(r)}(a)=(-1)^{r} C_{r}$ for $r>0$. The proof is completed by setting $u=-a$ in Theorem 1 and letting $x \rightarrow \infty$.

It should be noted that the same method can be used when a pole of second order appears. For instance if $\zeta(s)$ is the Riemann zeta function, then

$$
\zeta^{2}(s)=\frac{1}{(s-1)^{2}}+\frac{2 \gamma}{s-1}+\sum_{r=0}^{\infty} \frac{(-1)^{r} A_{r}}{r!}(s-1)^{r}
$$

and

$$
A_{r}=\lim _{x \rightarrow \infty}\left(\sum_{n \leqq x} n^{-1} d(n) \log ^{r} n-\frac{1}{r+2} \log ^{r+2} x-\frac{2 \gamma}{r+1} \log ^{r+1} x\right)
$$

The following table lists various cases to which Theorem 2 may be applied. The notation of [2] is used.

$h(n)$	$f(s)$	${ }^{\text {a }}$	C
1	$\zeta(s)$	1	1
$\chi_{k}(n)$, principal character modulo k	$L_{k}(s)$	1	$\phi(k) / k$
$\chi_{k}(n)$, nonprincipal character modulo k	$L_{k}(s)$	1	0
$\phi(n)$	$\zeta(s-1) / \zeta(s)$	2	$1 / \zeta(2)$
$\sigma_{k}(n), k>0$	$\zeta(s) \zeta(s-k)$	$1+k$	$\zeta(1+k)$
$q_{k}(n), k \geqq 2$ (integer)	$\zeta(s) / \zeta(k s)$	1	$1 / \zeta(k)$
$r(n)$	$4 L(s) \zeta(s)$	1	π

References

1. W. E. Briggs and S. Chowla, The power series coeffcients of $\zeta(s)$, Amer. Math. Monthly, vol. 62 (1955), pp. 323-325.
2. (.. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, 1960, particularly Chapter 17.

University of Colorado
Boulder, Colorado
Oregon State College
Corvallis, Oregon

[^0]: Received July 8, 1959; received in revised form August 30, 1960.

