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I. Introduction

In [2] Rademacher introduced method for recapturing the functional
equation J(-1/r) J(r) directly from the Fourier series expansion for
J(), the well-known modular invariant. In this paper we extend his method
to entire forms of positive even integral dimension for the modular group and
for the groups G(x/2), G(x/3), G(2), where G(l) is generated by

’ r + /, ’ --1/ (1 2, 3), and G(2) is the principl congruence
subgroup of level two, of the modular group. This group is generated by
=+2 =/(2+).
We start here with the Fourier series given by Rademacher and Zuckerman

[3], Raleigh [4], and Simons [6]. In [3] Fourier expansions are given for entire
modular forms (i.e., modular forms regular in the upper half plane) of positive
dimension. While every entire modular form of positive dimension has a
Fourier series of the type given in [3], the converse is not true. That is, not
every function defined by such Fourier series is modular form. However,
it is reasonable to expect "decent" behavior under modular substitutions for
all such Fourier series. We show that this is indeed true in a certain special
case described below. Using these results it is a simple matter to construct
modular forms of positive even integral dimension by means of their Fourier
series.

Similar results will then be obtained for the groups G(2), G(3), and
G(2).
The result of Rademacher and Zuckerman [3] is as follows.

THEOREM (1.01). Let F(r) be a modular form of dimension r > 0; that is,
(a) F((ar + b)/(cr + d)) (a, b, c, d).(-i(cr + d))-r’F(r), where

a, b, c, d are integers with ad bc 1 and c > O, does not depend on ,
" l, and we choose arg (-i(cr + d)) < r/2;
(b) F( + ) (1, , 0, )(-i)-’.F() e"F(), 0 . < ;
(c) the Fourier expansion of exp 2iar). F(r) contains only a finite

number of terms with negative exponents.
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Assume, in addition, that F(-) is analytic in the upper half plane.
Fourier expansion of exp 2ria-). F(-) is of the form

exp (--2iar).F(r) am exp (2imr),
m--

(1.02) a 2 a_, -d,(m)

where I i he modified Besel fncion 4 the fir kind and

(
(h,)=

--2i
.exp

with hh’ -1 (mod k).

Then the

m>=O,

((, a)h’ q- (m -}- a)h)l,

(1.05)

and the Fourier series expansion (1.02) reduces to

F(--1/r) r-rF(r),

F(r-- 1) F(r),

(--1) r/2 a_va,,(v), with

Ak,(m)
h()’ exp 1-2i (h’ -- mh) 1’ for m _>_ 0.

()
(1.04)

()

In this paper we shall treat only the case a 0. In this case it can be shown
that in order to obtain modular forms, we must assume that r is a nonnegative
even integer, and that, in addition, v(a, b, c, d) (-1)r/2 for all transforma-
tions of the modular group. (For a proof see [3], pp. 443-445.) Under these
restrictions the conditions (1.03) for a modular form become

The modular group is the set of transformations ’ (ar -- b) / (cr -- d)
such that a, b, c, d are integers and ad bc 1. It is well known that the
full group is generated by r’ -- 1 and r’ -1/. It is easily verified
that in the definition of a modular form, conditions (a) and (b) can be re-
placed by

(a) F(--1/-) (0, --1,1, O).(--i-)-r-F(-),
(.0)

(b) F( -- 1) v(1, 1, 0, 1)(-i)-F(r) e2F(-),O <= o < 1.
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In (1.05) we have written E’ in place of ’’ This practice will be fo1-
h(k)

(h,k)=l

lowed throughout the paper. Also we will write k a(b) in place of
k a (mod b).
The basic result of this paper is the following theorem.

THEOREM (1.06). Let F(r) be defined by the Fourier series (1.05), with r a
nonnegative even integer. Then, in (r) > O, F(r) is regular and satisfies the

functional equation

(1.07) F( ’) -rF( l/r) p( r),

where p(r) is a polynomial in r of degree at most r.

Remark. If p(r) O, then by (1.04) and the fact that F(r + 1) F(r),
F(r) is a modular form of dimension r. We will later use Theorem (1.06) to
construct modular forms. This theorem will be proved in Section III, and
similar theorems for the groups G(v/2), G(x/3), G(2) will be proved in
Sections IV and V.

II. The Rademacher kemma

In a lemma in [2], Rademacher rearranges the terms of a certain condition-
ally convergent double series. In this section we shall state and prove the
several variations of Rademacher’s Lemma that we require in our applications
of the method of [2].

LEMMA (2.01). Suppose r i ( > 0), r is a nonnegative real number,
and a, b, c, and v are positive integers. Then

(2.02)

lim
exp (-2rim’v/k)

k=l N Iml<=N kl+r(kT m)
ka(b

lim
cK

k----1 lml<_K
k=_a(b) (m,k)=l

LEMMA (2.03). Let r, , v, and r be as in (2.01).
integers such that a, b) 1. Then

(2.04)

lim
exp (--2rim’/k)

k=l N- m_<N kl+r(kT m)
k=_a(b) (re,k)=1

mO

exp 2rim’/k)

Let a and b be positive

K

lim
exp (--2rim’v/k)

;1 I1=< ]cl+(k-- m)
k=_a(b)

m=_O(b)

Remarks. In the proofs of these lemmas, the estimate [5]

(2.05) A.(m) O(k2/+*(k,
where A.(m) is defined as in (1.05), is used in a very strong way when
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r 0. Actually by using (2.05), the results hold for any r > -1/2. If we
use the improved estimate, A_k.,(m) 0(kl/2+), due to Well, we can prove
the lemmas for any r > -1/2. For r > 0, the trivial estimate Ak.(m) O(k),
is enough.
The proof of (2.01) is exactly as given by Rademacher in [2], for the case

r 0, a b c 1, and will not be included here. We should mention
however, that Rademacher’s proof holds for 6(r) > 0, not merely for purely
imaginary r. The proof of (2.03) requires some changes and is given below.

Proof of (2.03). We first show the convergence of the left-hand side of
(2.04).
N

(m,k)=l
mO

exp 2rim’v/k)
]l+r(]T m)

]--l--r E eip (--2rih’/k)
h(k)

uh+bkn ]N

k" uh bkn)-,

b-+ d

dl

b--;-+ tt d

N

N--> m-----N
(m,k)=l
mO(b

exp 2vim’/k)
]I-Fr(]T m)

b-1]-r-2 E exp 2ih’/k) lim
h(k) N

b-lk-r-9" E’
h()

u+bn I<=N b lc
n

exp 2rih’,/k 2’i 1 exp 2ri
r u

2i , exp 2rih’,/k)
b]cr+2 h(k)

exp 2rip
=o b

2ri
bk+

exp (2ipr/b)
p-----O

’exp --2ri h’ +h(k)

Now, since u/b is an integer, it follows from (2.05) that. exp --2ri h’v + ph k O(
h()

where u is an integer uniquely determined mod bk satisfying u l(k),
u-- 0(b). Such a u can be found since k =- a(b) and (a,b) 1, and hence
(k, b) 1. Now (u, k) 1, and this, together with (h, lc) 1 yields
(uh + bkn, k) 1. This justifies the replacement m uh + bkn above.
Therefore,
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Consequently,

exp (2ripr/b) ’ exp 2ri h’, + : ph
p----0 h(k)

0 [/c2/3+{1 exp ()l-].
Therefore,

N

lim
N->o m=--N

(m,]c) =1
m=_O(b)

so that the left-hand side of (2.04) converges.
We can now state the lemma as follows"

K

(2.06) lim lim ’ exp (--2rim’,/tc)

ka(b) (m,k) =i
mO(b)

exp 2rim’,/]c) O[]f--4/3--r+e 1 exp 2r/b)/-11,
lc+rCkr m)

exp 2rim’,/k)

=0

]c+r(lcr/b m)

if (m, /c) l,

otherwise.

We can write g(m) = Bi,k exp (2rijm/k) with

B-. lc- exp [--2ri(m’& -t- jm)/k].
ml

Since (6, k) 1, we have from (2.05) that

(2.07) B. 0(-’/+).
For the ease j k,

Bi. exp (-2im’& ,/) lc- d lc- d.
ml

d]5 dl

Define g (m) by
g(m) cxp (--2riti m’,/]c)

K/b<lml<N/b
(m,/c) =1

T(K) lim T(K, N) lim E
-oo -- <lml=< /d+r(/Cr m)

(re,k) =1
m==O(b)

b- lim
exp [2ri(-bm)’/ic]

-. K/<l.l<__v/ k+(kr/b m)
(re,k) -l

Since (b,/c) 1, we can find an integer ti, uniquely determined mod/c such
that b.& ---- l(lc). Of course (/te, lc) 1. It follows that(bm)’ 5km’,
since (bm) m’ mm’ (to). Hence,

T(K, N) b- exp 2ri/t m’,/lc)
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Therefore, if we write [K/b] for the greatest integer _-< K/b,

and

(.o8)

Now

T(K, N) b- exp (2rijm/k)
:/<l.l<-_Vl = k+’(kr/b m)’

T(K) lim T(K, N)
N-->

1 k--1- bll.r E B,

k--11 exp (2rdjm/k)
bll+r

BJ,k E (kT/b m)m=[K/b]+l

exp 2-ijm/k)
=t/,l+ (kr/b -!- m)

2 /b--m=[KIb]+l

&+S,.+Sa.

m

1 + 1
m=[K/b]+l

Therefore, if K > 3b,

v 23 < b2l+r E m--m=[K/b]+l

Hence,

(2.09) Sa O(1/l+rK).
In order to handle S1, put

Now

E.. exp (2rijp/k)
p=[K/b]+l

v f 25 dx 3v"5 K-< bki+; / x
< b/i+,

exp [2rrij m -+- 1/2)/k] exp [2rij [K/b] + 1/2)/k]
exp (rij/lc) exp (-rrij/k)

2 1
levi< exp (r/j/k) exp (-r/j/k) sin (rj/k)

__< 1 { k }<k( lj)minl2j/k, 2(k--j)/k}
max

’2(k--j) q-k--
Therefore,

exp (2-ijm/k)
m=[g/b]+l (tT/D m)

E. kiB/ rn ki/b m 1m=[K/b]+l
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and

exp (2rijm//c)
tci/b m

k 1
m" - -- /’-- m=[K/b]+l

It follows from this and (2.07) that

(
and therefore

(l-1+
_

)(2.0) S 0k log

A similar estimate holds for S.
Using (2.08), (2.09), nd (2.10) we get T(K) O(k-/-r+K- log k).

Hence

E Tk (I) 0 g-1 E (log
k=l k=l

ka(b) ka(b)

0{K-l(1 q- K2/3-r+e) log K} O(K-min(1/3+r+e’l) log K).

Therefore (2.06) follows, and the lemma is proved.

III. The modular group

In this section we prove Theorem (1.06). We begin with

PROPOSITION (3.01). (a) If an(v) isdefinedasin (1.05), thenasn-- +

an(v) pr/2+l/4 exp {4-(n)/2
2t/2nr/2+3/4

(b) If lz < 1 and r is a nonnegative integer, then

.=t =o \ k ]
p!(p+r+ 1)!

is absolutely convergent.

Proof. (a). -Using (2.05), we have

27rp(r+1)/2
a(v)

n(r+l)/2
lr+l{4’(m,) 1/}
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Using the fact that Ir+l(t) <-- sinh for r a nonnegative even integer, and
the fact that sinh <= (t/B) sinh B, for 0 =< _-< B, we have

()(rnul)/2

an(u) 2 7r Ir+l147r(nu) 1/2}

_<_ Cl(u/n)(r+)/. lc_l/3+(4r(nu)/2/k)r+l sinh
k=. 4(n)1//2

r+l]2

C: n exp {2(n)/}.

In [7, p. 203, formula (2)], it is shown that ]r+() et/(2t) /. Hence,

]r+l{4(n)/} exp {4(n)1/}/{22/(n)/4},
and the result follows.

() (4/)’/p ( + r + ) 2()1/ r+
p=0

2r f4(mp)l]2 2r
2(m)’

sigh [ ] < (m)/ ep {()//}.

The result follows.

2. Let r be a nonnegative even integer. Let Fj, be defined as follows"

(3.02) F(r) exp (-2riur) + (--1) ’./2 an(u) exp (2rinr),

where a, (u) is defined by (1.05).
Remark. It is clear that with F(r) defined by (1.05), F(r)
=1 a_u Fu(T) + constant. Thus we need only prove Theorem (1.06) for
F(r). From Proposition (3.01a) we have immediately that F(r) is regular
for 9 (r) > 0. We must derive (1.07) for F(r). In order to apply Lemma
(2.01) we first restrict r to be purely imaginary and derive (1.07) for such r

only. However, the result then follows directly for 9(r) > 0 by analytic
continuation, since we have already seen that F,(r) is regular in g(r) > 0.

Putting x exp (2ir), we have from (3.02)

() -,+ z
(-) 4(n)l/

x + 1)r/2+)/ k- ’ exp 2rih’/k)
k=l h(k)

(r.l)/2
1 ;4(np) 112}

where the interchange in the order of summation is easily justified by examin-
ing the proof of Proposition (3.01a). Now

(3.03) f’"(r) x -t- 2ru(r+l)/2

k=l
1 )r/2k--

h(’)’ exp 2riuh’/k)

"0k{ x exp 2rih/t)},
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where

(z)

The interchange is justified by Proposition (3.01b).
formula (see [1] ),

’]=i nv exp 2rtn)

(3.04) (/(2)/’)
--1/2 + (1/2r)lim_. }-.=-N (t + li)-

for N(t) > 0. Using this with z e-2t, we obtain

2(r + 1)!

(3.05)

Now by Lipschitz’

for p > 0,

for p 0,

(2.) r+l (r+1)/2 (2,.)r(r+l)/2 v

-4- lim (t A- li) -2(r -k- 1) k+1 v-, ]cr+l

v=o l2(t -}- li) /

2r) +’ (+’)/ kr-{-I N

+ lim (t %- li)
-4- 1)!kr+’

In (3.03) we need z x exp 2-ih/k) exp 2ri(r h/k). But in order
to apply (3.04) we have put z exp 2rt). Comparing these two equations
we find -i- -4- ih/k. Using this in (3.05), we obtain

(2)+, (r+l)/2

{x exp (--2rih/k)
2(r + 1)i/c+

U+’ u ( h )N l=--N

2 2{exp (k(_i + ih/ + li))- o ((--ir + ih/k + li))/p!}
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(2r)r+(r+)/ (--1) r/2
2(r + 1)]c+. + -,lim 2r(+) --() (kr m)

m--h kN

2i [ 2i(exp (kT m) p=o ,k(k : m))/ p!}
(2)%(+’ (- 1
2(r+ 1)k+ + lim (r-m)

(exp k(kr--m) =okk(g:m)
Therefore,
) ’ exp 2ih’/) 4 {z exp 2ih/)

l )r/Z(2)r+l--_,O(r . 1)[ ]gr+lY . () d

+ lim
k

exp 2im’/lc). (kr m)
M 2P(r+l)/2 ]m[M

(re,k) =1

exp
k(kr--m) ,=okk(k;:m)

Going back to (3.03) we obtain

F(r) exp(-2ir) +e +lim exp(-2im’/)(r--m)"
(re,k) =1

( xp ( 1(
where

c
2(r + 1). =

"d

If we expand the expression in braces in a, power series in terms of
2rriv/k(lcr m), we obtain

E lim E exp (--2rim’v/k) E (2riv)P
:= M-, I_-< p=+ p! lc(lr -m)-

(re,k) =1

(2iv)r+l
(3.06) lim exp 2rrim’v/k)

(r -}- 1) k+r(/r m)-k-----1 M--> lm IM
(m,k) =1

+ Y’. lim exp 2rrim’v/k) (2riv)
= -+ I1=< =+,. p!/c,(/c )-"

(re,k) =1
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Lemma (2.01), with a b c 1, yields

lim exp(--2rim’/k)
lim Y’.

1=1 i Iml<=M ]c+r(lc’r m) = =(re,k)1 m,k 1

exp 2rim’v/k)\
l+r(]CT m) f

Also, the triple sum in (3.06) is absolutely convergent and thus permits any
rearrangement of its terms. Therefore, (3.06) can be rewritten

K

Koo k=l [m[<=K
(re,k) =1

K

Cm,k) =1

Hence we can write

(3.07)

(2riv)
p=r+l p! icP(T )p--r

exp 2rim’/t) (lcr m)

exp/c(kr m) ,=0 \/c(/c = m)

Here we have separated out the term for m 0, l 1. Let now

( 2riv )S(r)
k=l I,I=1

(kr m) exp (--2rim’v/k) exp
lc(kr m)

(3.08)
Y’. 2 m)
k=l Iml=l

(m,k) =1

K K

E E
/=1 m=l

(re,k) =1

mm’ + 1 )/k
Icr-- m

Let -k’ (ram’ + 1)/lc. Then kk’ + mm’ + 1 0, so we also have
kk’ l m Then (3.08) becomes

lr--m
lar m exp {2riv

K K

k=l m=l

Hence

Icr + m exp 2riv
kr +

(m,k) -----I

+ E E (mr + ])r --m’ + k’r}exp 2riv S(r)
mr+to
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if we interchange the roles of m and k. Going back to (3.07) we see that

TrF, (--)-’-T exp (2i,) + CTr + exp (--2’iUT) 1,=o( i)

K k=l Iml=l
(m,k)--l

(’F/,T + ]g)r exp (--2rim’,/k)

Comparing this with (3.07) and using (3.09) we have

F.(r) -F c.(1

+ lim 2
(3.10) =x

(m,k)

Now the righ-hand side of (g.10) is a polynomial in r of degree ag most r.
Therefore, by he remark following (g.02), the proof of Theorem (1.06) is
complete.

3. If r 0, he right-hand side of (g.10) is identically ero. Thus if we
put F(r) a0 + = a-, F(r), with a0, a-, a-, any constants, F(r)
is a modular funegion, ha is, a modular form of dimension ero. We can in
faeg sgae he following sronger result.

To (g.ll). A fncion
modular fncion and onlg if here ezi conan a0, a-, a- uch ha
F(r) a0 + =a- F(r), here F(r) i defined bg (g.02) ih r 0.

The only if" par of the theorem follows from the fae ghat a modular
function which is bounded at musg be eonsgang.
From now on, r is a fixed positive even integer. Denote the polynomial oc-

curring in (3.10) by p(r). Let us now form

(a.) () a0 +
_

F() + + a_. ,().

I follows from (g.10)

(a.a) f() -./ 0( + :=_( (,

where p(r) is a polynomial in r of degree at mos r. Replacing r by -1/r
in (3. lg) we see

(a. p(-/ -p(.

If we can choose a0, a__, in such a way ha p(r) 0 for r/2 + 1 disine
points r, then by (g.14), p(r) 0. We mus assume, of course, ha he
se of r’s and he se of 1/r’s have no poin in common.
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We therefore write the system of linear equations

(3.15) p() a0(1 ) + -’=1 a_p() 0 (k 1, r/2 -4- 1),

where r are chosen as described above. This has a nontrivial solution as long
as => r//2 q- 1. In fact (3.15) has t, r/2 linearly independent solutions.
Hence we have the following result.

THEOREM (3.16). Let t* be an integer such that >-_ r/2 q- 1. If we define
F(-) as in (3.12) with (ao, a_ a_) chosen to satisfy (3.15), then F(-)
is a modularform of dimension r, with principal part

a_, exp (-2rigr) q- q-a_1 exp (-2rir).

Professor Bateman has made several interesting observations which are re-
stated in the following remarks.
The general linear combination (3.12) has t* + 1 parameters. The vector

space of modular forms of even integral dimension r and principal part at
of order no greater than t* has dimension (see [3], 8)

-+- 1 Jr q- 101 if r= 0,2,4,6,8 (mod12)
12- .-12 J

if r 10 (mod12).

Thus (3.12) gives a modular form under

10| r -= 0, 2, 4, 6, (mod 12)+ if 8
12 .j

-t- 10112
q- 1 if r 10 (rood12),

linear relations on ao, a_, .--, a_. Theorem (3.16) gives us modular
forms if we impose at least r/2 -4- 1 linear relations on a0, a_, a_,,
which is of course more than is actually needed. In particular, if r 2, 4,
6, 8, 12, only one linear relation is needed. In fact the single relation
a0 + =1 a_ p(0) 0 should suffice in these cases. However this seems
hard to prove by our approach.
The following partially explains the discrepancy between the actual number

of linear relations needed and the number we have to impose.
Remark. For special values of r the polynomial p(r) has certain fixed

roots which are independent of the choice of a0, a_, a_,. That is, no
matter how these constants are chosen, p(r) will have as roots the solutions
of

(r T -4- 1)(r -1- r -4- 1)("2 - 1) 0 if r 0 (mod 12),

-4- 1 0 if r 4,8 (rood 12),
(:- r + 1)( + -4- 1) 0 if r 6 (mod12).
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Therefore, in these cases, correspondingly fewer linear relations will suffice in
Theorem (3.16).
We now use Theorem (1.06) to construct modular forms of negative even

integral dimensions. First, we need the following result.

LEMMA (3.17). If " -- (a- L b) / (c" - d) is any transformation of the
modular group, and F is any complex function with sufficiently many derivatives,
then

dr+l f av + b (r+l) (aT )dr+
(cr + d).F k3]f (cr + d) -r-. kcr

for any integer r >__ O.

The proof is simple and proceeds by induction on r.
Applying this Lemma for a 0, b -1, c l, d 0 and using Theorem

(1.06), we obtain

THEOREM (3.18). Let F(r) be defined by the Fourier series (1.06), with r
a nonnegative even integer. Then

F(r+l)(,r) 7"-r-2F(r+l)( l/T) 0,

i.e., F(+I) (r) is a modular form of dimension r 2.

IV. The groups G(v/2) and G(v/3)
In this section we construct functions which behave under substitutions of

the groups G(v/2) and G(v/3) in the same way as the functions F(r), de-
fined by (3.02), behave under substitutions of the modular group. These
functions were given by Raleigh [4] for the case r 0. Here we let r be any
nonnegative even integer. Let v0 1.

1. The group G(2). Let F, be defined as follows

F,(r) cxp (-2ir/2/) + an() exp (2inr/2/),
nl

a() (--1)/2 A,(n)(/n)(’+)/I+ 2(n)/

(4.0)

+ v0(--1)r/e 2 1 Ae_ {(1 k)n

/n (r+i)12Ir+l {2(2n)1/2 }2k 1
a,() + a,().

Remark. A result analogous to Proposition (3.01a), modified to handle the
present situation, shows that F,(r) is regular for (r) > 0. As before, we
derive the transformation properties of F,(r) for r on the positive imaginary
axis, and then the result follows for 9 () > 0 by analytic continuation. The
same remark can be made in connection with F,(r) to be defined in (4.13).
Put

X exp (2iv/21/2), fl(x) =1 an,l()Xn.
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As before,
1 , exp (-- 2riuh’/k)fl(X) (--1)r]2"27t’p (rq’-l)]2" Ek=l - h(k)

(4.02)

lx exp 2rih/k)’} Irff-1

If we keep in mind that here x exp (-2rih/k) exp 2-i(-/21/2 h/]c)},
the argument of the previous section with the use of Lemma (2.01) for a 0,
b 2, c 1, yields

K K

f(x) c, + i (/ m) xp (-i’/)

4.03 0(e)

{exp( 2i 1 ( 2i
,=0 (k/2/

Since k 0(2), (m, k) 1, there are no terms with m 0.
Let f2(x) x q- =1 a,2()x. Then

o )r]2 27ru(r+)]a 1 , exp (--2-ih%/lc)f2(x) X q- - (--1 klE h(k)
k-1(2)(4.04)

Here,
(,= xexp --2ri

h(1 k)\.
2k

1 (2r(2n,) ’/2 }rt(+)/2 Ir+

Therefore applying the previous argument and using Lemm (2.03) with
a 1, b 2, we obtain

(4.05) q- eo lim 2-’./2

K

K K

k=l
kl(2) m0 (2)

(re,k) =1

exp 2rim’,/]c) (2/tc m)r

Here we have separated out the term for m 0,/ 1.
By (4.03) and (4.05), it follows that
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(4.06)

Now let

Let-U (ram’ -4- 1)/k.
Then (4.07) becomes

Then klc’ + mm’ + 1 0, and klc’ =-- -l (m).

Let

K K

k=l m=l
(2) (m,k) --1

]’ m’T/21/}(/Or/2/z m) exp 2riu
lCT/21/ m

K K

+E E
k=l ml
k0 (2)

(1-/2/ + m) exp 2-i,
]CT/21/2 + m )"

K K

2-r12 E E
kl(2) m0 (2)

(m,]c) =1

(2/2k m)rexp 2ri
21/kr m f

4.()9
K K

k--1 m-l
k_1(2) m-----0 (2)

(re,k) =1

]T m/21/) exp 2riu
2/1.

k -- 2112mt,r- 80 E E (]T - m/21/2) exp 27rip
21/2]T - m f"

Now
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K K

//21/2)r f k/r "4-oTrSK.I(--1/T) GO
lcl m=l (mr + exp 2i

_k/2 mr
k0 (2) (m,k)l __

m,/2+ eo E E (m /2/) exp 2i
_/2 + m,

eoE E (mr-- k/2/)exp 2i
2/mr_ k

Therefore, if we interchange the roles of m and k and notice that k 0(2),
(re, k) limpliesm l(2),wehave

(4.1o) .o cr.l( /) ,().

It follows directly that

(4.) ,0 r.(--1/) ,().

Going back to (4.06) we see that

ocrF,,(-/) o exp (2i/2’/:) + 0(c,, + c,,)

+ exp (-2i,/2/)

K

o x (-2.i’/) (, + /2)
ko(2) (m,)=l

( 2ivr PE E (,/2 + ) ex (-2.m’/)
kl (2) m0 (2)

(m,) =1

Comparing this with (4.06) nd using (4.10) nd (4.11) we have

.,() o F.,( /)

+ r[2iuP
(4.12) + lira exp (--2im’u/)

kO (2) (re,k) =1

) o o (/
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(4.12)

an,l(v) -}-an,2(v) + an,a().

Put x exp (2rir/31/2),f(x) En=l an,l()Zn. Applying the same argu-
ment used above, and using Lemma (2.01) with a 0, b 3, c 1, we
obtain

K K

fl(X) Cv,1 + lim E E
K-> k=l Iml=l

k----0 (3) (m,k)=l

(]cr/31/ m)r exp 2rim’/t)

exp
k(kr/3/ m) ,=o \k(kr/-:fi m)

Let f(x) En=l an,2(Y)Xn. Using once again the same argument, and
applying Lemma (2.03) with a 2, b 3, we obtain

(4.5)

K K

k2(3) m=0 (3)
(m,k)-l

(/r m/31/) exp 2rim’v/l)

{exp 2riv_ 1(./ 2rriv
/(31/213T JTt)) p=O - (31/2/T- m))P}
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Finally, we let fa(x) x + E=lan,3(P)Xn. Once more we apply the
above argument. We use Lemma (2.03) with a 1, b 3 and obtain

fa(x) exp (-2’ir/3/) + c,; + eor

{exp (2ri 1 (2i"
K K

(4.16) + a’0 lim 2 (lCT m/31/) exp 2im’/lc)
K k=l [ml=l

kl(3) m0 (3)
(m&) =1

Here we have separated out the term for m 0, k 1.
By (4.14), (4.15), and (4.16) it follows that

F,3(r) exp (-2rir/3/2) -F c,1 -F c.2 -F c,.

(4.17)

-- 0 exp
31/2T/ p----=O ) f

K K

-4-lim
K- k=l =1

k-----0 (3) (re,k)-----1

(]cr/3’/ m) exp( 2rim’/tc)

(exp (/c 2ri l(k 2ri,

p=0 (kr/3L/2

In this last infinite sum we have combined those ]c such that k 1 (3) and
lc 2(3), and made use of the fact that m 0(3), (m, /c) 1 implies
/c -= 1(3) or k --- 2(3).
Now let

SK,,(,) E E (]C’r/3’/2 m) exp m’
= I,,,1= lc levi3/’ m

k-----O(3)

k=2 ,,,=Y" (tcr/3’/- m)rexp 2ri
kr/3L/_ m. ’k0 (3)

where, as before, k’ (ram’ + l)/k. Let
K K

m/31/2 { 2ri(m 1s,()=,oE E (- exp
e=l I,l=l 3/kr m

m=_0(3)
(re,k)----1
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: : k’ 3/:m’rl
m0(3)
(m,k) =1

If we interchange the roles of m and k, it is easy to see that

(4.18) o rg,,(--1/) K,(r),

(4.) :o rs,(-- /)

Going back to (4.17), we see that

gorrg,,a(--1/T) goT exp (2iv/3/2T) + 80(C,1 + Cv,2 + Cv,a)r

+ exp (--2rivr/3/) 1
,=o

(-i/al’=)"

K K

-+-lim oTrK,2(--1/T) E E
m=_0(a)
(m,k) ==-1

exp -2rim’v/k) (k/3’/ -k mT)

1( --2rivr v
exp 2rrim’v/k) (lc q- mr

Comparing this with (4.17) and using (4.18) and (4.19) we have

TF a(r) 8orrFv,a(--I/T) (C,1 - c,2 - c, )(1 :0

,=o
(--2ivr/3’/) eo Tr 2iv/a’nr)

+ u E E (-’/) o(/3’/ + m,)rE ’
kO(3)

(4.20, (’cr/3’/e m)r -1’’c(kr/2iu m)
K K

q- lim E E
m0(3)
(re,k) =1

,=o IZk,r m)

3. We summarize the results of this section with the following theorem.

THEOREM (4.21). Let F( r) ao q- -’.=1 a_ F,( r), where E,( r)
(1 2, 3) is defined by (4.01) or (4.13). Then in d (r) > O, F r is regular
and satisfies
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(4.22) Ft( r) Co rrFl( ]/r) Pt( r),

wh,re pt(r) is a polynomial of degree at most r.

This follows by noting that the right-hand sides of (4.12) and (4.20) are
p()lynomials of degree at most r. If r 0 and e’0 + 1, the right-hand sides
of (4.12) and (4.20) are zero, and (4.22) becomes Ft(-l_/r) Ft(r). More
particularly, if t 1, a-i 1, a0 0, r 0, e’0 +1, (4.01) and (4.13)
reduce to the expansions for j(21/2 31/2r) and j( r) respectively as given by
Raleigh in [4], and (4.22) becomes j(/1/2; -l/r) j(ll/2; ), (1 2, 3). Thus
we have given another proof of the validity of Raleigh’s formulas.

It is now clear that results analogous to Theorems (3.16) and (3.1_8) are
true for the groups G(v2) and G(x/3). In particular the result analogous
to Theorem (3.16) enables us to construct automorphic forms of even integral
dimension r for the groups G(//), (1 2, 3). That is, we can construct
functions F (r) such that

(4.23) F( + ’/) F(), rrFt(--]/T) Ft(’r).

V. The group G(2)
In this section we construct functions which behave under substitutions of

G(2) in much the same way that the functions F(r), defined by (3.02), be-
have under modular substitutions. These functions were given by Simons
[6] for the case r 0.

Let X be defined as follows, with r again a nonnegative even integer.

h(r) a,(v) exp (inr),
n=l

a,(v) 1)"/2 r- lc-A.(n) (/n) (r+)/2Ir+l
k2(4)

The method of proof of Proposition (3.01a) yields the following result.

PROPOSITION (5.02). If a,(v) is defined as in (5.01), then as n -- --r]2q-114 exp (ri(v q- n) exp (2r(nv) /2)
a(v) v

32n/2+/4

As in the previous sections, Proposition (5.02) shows that M(r) is regular
in 9(r) > 0. Again we derive the transformation properties of M(r) for r

purely imaginary and extend the result to (r) > 0 by analytic continuation.
Put

x exp (rir), f(x) E=i a.(l*)n,
T nne

f(x) (--1) r/ ’ exp (-2rivh’/)
h(k)

{x exp (-2ih/k)l
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We can apply the previous argument, this time using Lemma (2.01) with
a 2, b 4, c 2, to obtain

(.o3)

1
limx() c +ig

2K K

(kr/2 m)r exp 2im’u/k)
k2(4)

We have made use of the fact that k -= 2(4) and (m,/) 1 together imply
that m 0 does not appear in the sum. Let

(5.o4)
{ -’ m’/2)=E I.,=IE (kr/2 m)rexp 2ri

/cr/2 m f
k2 (4) (re,k)1

Here again we have put -k’ (mm’ + 1)/lc. From (5.04) it follows that

-k/" q- m’/2\r(_/) (m + /2) ex, i _/e m

--lc’" m’/2+ E F_. (m. /) xv i,
_/ + m.

Now put k/2 and n 2m. We wish to find integers l’ and n’ such that
ll’ + nn’ -F I 0. Sincelc - 2(4) lc/2 is odd and m’ is odd. Thus
(k/2 -+- m’)/2 is an integer, and we put l’ 2/’ m and n’ (k/2 + m’)/2.
It is easy to see that, with this choice, nn’ + ll’ + 1 ram’ + kk’ + O.
Now (5.05) becomes

2K K

TUSK( l/T) E E (nv/2 1)"

2K K

2/_-----_2 (4) (n/,l)=t

2/1 n/2l
2/2(4) (n/2,21)-1

exp f2riu
(nr/2 + /)r exp

--n’ -k- 1/2 l’ + n/2 ).r/2\
nr/2

--n’ -k-1/2 + (l’ + n/2)-/2
,-/2 + "
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In (5.04) we have/c 2 (4), (m, It) 1.
satisfies n 2 (4), and (5.06) becomes

K 2K

/=1 n=l
n=2(4)
(n,/)=l

Hence m is odd. Therefore n 2m

(nr/2 /)rexp 2ri,
nr/2

K 2K

/-----1 =1
n2(4)
(n,/)-----I

(nr/2 + l) exp 2-i,
n-/2 + +

Comparing this with (5.04), we see that

(5.07) 7"rg( --1/ r)

Going back to (5.03) we obtain

2K K

k=2(4)

exp 2ri,m’/k)

Comparing this with (5.03) and using (5.07) we have

(5.o8)

a,() (-1)%%(-1/) c,(1 (-1_)%)
2K K1

lim exp(--2rim’/k)+:- =1 I
k2 (4) (m,/) =1

(]T/2- m)r 1 ( 2ri_ )P}m)

The right-hand side of (5.08) is a polynomial in T of degree at most r.
l,et r 0. Then (5.08) becomes X(r) (--1)X(--1/r) constant, and
in particular if is even, the right-hand side of (5.08) is zero, and we have
X(-1/r) X(r). Thus for even , ),v(r) is an invariant for the group
generated by r’ r + 2, r’ -1/r. This group contains G(2). If is
odd, we have ),(r) + (-1/r) constant. Since r//(2r 1)--
-1/(-2 i/r), (r/(2r + 1)) )(r),so that in any case)(r)isan
invariant for G(2). In the case r 0 and 1, (5.01) reduces to the Fourier
expansion of X(r) as given by Simons in [6]. Thus we have shown directly
from the Fourier series expansion that (r) is invariant with respect to G(2).

If r is a positive even integer, denote the right-hand side of (5.08) by
We can now state the following theorem.
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THEOREM (5.09). [f h,(T) is defined as in (5.01), then in (-)
is regular and satisfies
(5.10) h(r) (--1)7rh(--1/r) p(

where p(r) is a polynomial of degree at most r.

It is n immediate consequence of (5.10) that

() (2 + )%(/( + )) () + (-)((-2- )/),

which is again a polynomial of degree t most r. Thus we hve the followig
result.

COROLLARY (5.11). Let

(5.2) () a0 + = a_,,(),

with a0, a_l a_ constants and (7) as in (5.01). Then in 9(r) > O,
h(7) is regular and satisfies

(5.) () ( + )(/( + )) (),

where p(r) is a polynomial ofdegree at most r.

We now pply Corollary (5.11) to construct automorphic forms h(r) of
dimension r for G(2). That is, we choose u sufficiently lrge nd
a0, a_, a_, in such fashion that p() 0, exactly s we did in Section
III, where we constructed forms for the full modular group. Then,

(5.14) A(7 + 2) A(T), (27 + l)rA(7/(2 + 1)) A(),

and sice r’ + 2, 7’ /(2 + l) generate G(2), A(T) isan automorphic
form of dimension r for G(2). Now, in contrast to the functions F(r) and
F(), previously constructed, A(r) has no primipl prt at , and it is not
immediately clear that A(7) is no idetically zero. However, the following
result implies that. A (r) canot reduce to constnt, so that the forms we have
constructed re nontrivial.

PROPOSITION (5.15). Let b be the nth Fourier coecient of the .(unction
A(7) defined by (5.12). Then, as n +

/z+/4 exp (i(, + n)) exp (2(n,)
b, a-u’u 32nr/e+/4

Proof. It is immediate from (5.12) that b, = a_, a,(u), for n > 0,
where a,(u) is defined by (5.01). The result is now a trivial consequeme of
I’roposition (5.02).
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