FOURIER SERIES OF AUTOMORPHIC FORMS OF NONNEGATIVE
DIMENSION!

BY
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l. Introduction

In [2] Rademacher introduced a method for recapturing the functional
equation J(—1/7) = J(r) directly from the Fourier series expansion for
J (1), the well-known modular invariant. In this paper we extend his method
to entire forms of positive even integral dimension for the modular group and
for the groups G(+/2), G(+/3), G(2), where G(~/l) is generated by
P =7+ = —=1/r (I =2, 3), and G(2) is the principal congruence
subgroup of level two, of the modular group. This group is generated by
P =r+2, 7 =71/C2r+1).

We start here with the FFourier series given by Rademacher and Zuckerman
[3], Raleigh [4], and Simons [6]. In[3] Fourier expansions are given for entire
modular forms (i.e., modular forms regular in the upper half plane) of positive
dimension. While every entire modular form of positive dimension has a
Fourier series of the type given in [3], the converse is not true. That is, not
every function defined by such a Fourier series is a modular form. However,
it is reasonable to expect ‘““‘decent’”” behavior under modular substitutions for
all such Fourier series. We show that this is indeed true in a certain special
case described below. Using these results it is a simple matter to construct
modular forms of positive even integral dimension by means of their Fourier
series.

Similar results will then be obtained for the groups G(+/2), G(+/3), and
G(2).

The result of Rademacher and Zuckerman [3] is as follows.

TuroreEM (1.01). Let F(r) be a modular form of dimension r > 0; that s,

(a) F((ar 4+ b)/(cr+ d)) = e(a, b, ¢, d)-(—i(cr+ d)) " -F(r), where
a, b, ¢, d are integers with ad — be = 1 and ¢ > 0, € does not depend on 7,
| ¢| = 1, and we choose | arg (—i(cr + d)) | < 7/2;

(b) F(r+1) = ¢(1,1,0,1)(—=3)"-F(r) = €™F(r), 0= a<1;

(¢) the Fourier expansion of exp (—2wiar)-F(r) contains only a finile
number of terms with negative exponents.
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AUTOMORPHIC FORMS OF NONNEGATIVE DIMENSION 19

Assume, in addition, that F(r) is analytic tn the upper half plane. Then the
Fourier expansion of exp ( —2wiar)-F(7) 1s of the form

exp (—2miar) -F(7) = 2 an exp (2mimr),

m=—p

u R y— g\
(1.02)  @n=2r D a, D kA, (m)- ( )
=1 =1 m + «a

v
L

'IH—I {il:]%‘r (V - a)l/Z(m + a)1/2} ) m

where I, 1s the modified Bessel function of the first kind and
’ —1
A (m) = D ¢ (h’, _l‘_h*i_l,k, —h)

0<h<k k
(hky=1

o [ T2 (6 = b+ (m )|,

with hh/ = —1 (mod k).

The modular group is the set of transformations ' = (ar + b)/(cr + d)
such that a, b, ¢, d are integers and ad — bc = 1. It is well known that the
full group is generated by 7 = 7 + 1 and 7/ = —1/7. It is easily verified
that in the definition of a modular form, conditions (a) and (b) can be re-
placed by

oy B TP =60 =1,1,0)-(=in) " F(n),
) B+ 1) = 61,10, D=0 T () = (), 0 S a <,

In this paper we shall treat only the case o = 0. In this case it can be shown
that in order to obtain modular forms, we must assume that r is a nonnegative
even integer, and that, in addition, (a, b, ¢, d) = (—1)"" for all transforma-
tions of the modular group. (For a proof see [3], pp. 443-445.) Under these
restrictions the conditions (1.03) for a modular form become

(a) F(=1/7) = v 'F(7),
(b) F(r+1) = F(r),

and the Fourier series expansion (1.02) reduces to

(1.04)

F(r) = 2. an exp (2mimr),

m=—p

" ©
am = (1) a_, kz—:l K Ay, (m) (v/m) 0L {% (mv)”2}

v=1

(1.05) .
= (—1)" 21 a_van(v), with

Ap,,(m) = Z' exp [_27” (vh' + mh):l, form = 0.

I®) k



20 MARVIN ISADORE KNOPP

In (1.05) we have written >’ in place of »_" . This practice will be fol-
) 0<h<k
(h,k)=1
lowed throughout the paper. Also we will write ¥ = a(b) in place of
k = a (modb).

The basie result of this paper is the following theorem.

TuroreMm (1.06). Let F(7) be defined by the Fourier series (1.05), with r
nonnegative even integer. Then, in 9(7) > 0, F (1) is regular and satisfies the
Sfunctional equation

(1.07) F(r) — 7F(=1/7) = p(7),
where p(7) 1s a polynomial in 7 of degree at most r.

Remark. 1If p(v) = 0, then by (1.04) and the fact that F(+ 4+ 1) = F(7),
F(7) is a modular form of dimension ». We will later use Theorem (1.06) to
construct modular forms. This theorem will be proved in Section I1I, and
similar theorems for the groups G(+v2), G(~/3), G(2) will be proved in
Sections IV and V.

Il. The Rademacher Lemma

In a lemma in [2], Rademacher rearranges the terms of a certain condition-
ally convergent double series. In this section we shall state and prove the

several variations of Rademacher’s Lemma that we require in our applications
of the method of [2].

Lemma (2.01). Suppose 7 = 18 (8 > 0), r s a nonnegative real number,
and a, b, ¢, and v are positive integers. Then

i lim 3 exp (—2wim'v/k)

=1 Now m=zv K7kt — m)

2.02 k=a(b) (m,Ty=1 . w
( ) — lim ZK: D exp (—2mim/v/k)
K> k=1 |m|<K kH—T(kT —m) ’

k=a(b) (m,k)=1

Lemma (2.03). Let 7, 8, v, and r be as in (2.01). Let a and b be positive
integers such that (a, b) = 1. Then
= exp (—2mim'v/k)
X lmo 2 S —m)
k=a(b) (7:;100);)1
(2.04) — Jim i exp (—2mim'v/k)
Kow =1 mzx kKt(kr —m)

k=a(b) (m,k)=1
m=0(b)

Remarks. 1In the proofs of these lemmas, the estimate [5]
(2.05) Ay(m) = 0Kk, )",

where A;,(m) is defined as in (1.05), is used in a very strong way when
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r = 0. Actually by using (2.05), the results hold for any r > —3. If we
use the improved estimate, 4;,(m) = O(k"**), due to Weil, we can prove
the lemmas for any r > —3%. TForr > 0, the trivial estimate 4;,(m) = O(k),
is enough.

The proof of (2.01) is exactly as given by Rademacher in [2], for the case
r=20,a=b=c=v»=1,and will not be included here. We should mention
however, that Rademacher’s proof holds for 9(7) > 0, not merely for purely
imaginary 7. The proof of (2.03) requires some changes and is given below.

Proof of (2.03). We first show the convergence of the left-hand side of
(2.04).

ﬁ: exp (—2wim'v/k)
B —m)

(m,k)=1
m=0(b)
=k Y exp (=2mih/v/k) Y. (kr — uh — bkn)™,
o |uh+b7cnl§N
where u 1s an integer uniquely determined mod bk satisfying v = 1(k),

u = 0(b). Such a u can be found since k = a(b) and (a, b) = 1, and hence
(k, b) = 1. Now (u, k) = 1, and this, together with (h, k) = 1 yields
(uh + bkn, k) = 1. This justifies the replacement m = uh 4 bkn above.
Therefore,

N .
. exp (—2mim/v/k)
lm 3 = = m)

(m,k)=1
m=0(b)

= b7k Y. exp (=2aih'v/k) -lim D (3
N->

(k) o n b
| uk+bkn | SN

u
b
—1y —r—2 \/ - 1 T wh\) !
=0k exp (—2mih/v/k) - 2mi 5~ 1 —exp |27+ — 2mi—=
h(k)
) k 2wt ’ o,
= e d% I3 (3) -d— b %) exp (—2wih'v/k)
alx
- . fT u h
;0 exp [21rzp (l_) — 7" 70)]
) k 211 & )
= b—;cr,lTQ Z M <(_i) -d — bk7:+2 Z exp (2xipr/b)

p=0
- > exp [—21ri (h’v + %ph>/k:|.
wik) b

Now, since u/b is an integer, it follows from (2.05) that

}_:’ exp [—Zﬂ <h'y + U ph)/k] — 0(]02/3“),
h(k) b
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Consequently,

> exp (2wipr/b) Y. exp [——21”' <h’u + ¥ ph) / k]
=0 k) b

—1
=0 l:km”{l — exp (—-———?fﬁ>} :I
Therefore,

. ul —2xim'v/k 43 rte —
lim 33 R LB _ gy — exp (~20/6)) 7,
(m,k)=1
m=0(db)

so that the left-hand side of (2.04) converges.
We can now state the lemma as follows:

(2.06) lim f_‘, fim > &R (=2mmiv/k)
. k> kk=(1b) N> K(<|;c,,)]§1V k1+r(k1, _ m) .
=a m.k) =1

m=0(b)

Let

L L exp (—2mim’v/k)
Tk(K) - ,31_32 Tk(K’ N) B z}llfg Kf%g{v k1+r(k1. - m)
me0(b)

1. 2w (—bm) v/ k]
=71 exp |
NLI: xpp<imizan kKt (kr/b — m)
(m,k)=1
Since (b, k) = 1, we can find an integer 8, , uniquely determined mod % such
that b-8, = 1(k). Of course (&, k) = 1. It follows that (bm)" = & m/,
since (bm)é, m' = mm’ = —1(k). Hence,

exp (—2mid,m/v/k)
K/b(<|7cn|§1v/b Ik (kr/b — m)
m,k)=1

T«(K,N) = b
Define g(m) by
g(m) = exp (—2mid, m'v/k) if (m, k) =1,
=0 otherwise.

We can write g(m) = D51 Bjiexp (2wijm/k) with
k

B, =k > exp [—2mi(m'6y + jm)/kl.

(m77k=)1=1
Since (8:, k) = 1, we have from (2.05) that
(2.07) Bix = O(k™**%),

For the case j = £k,

k
Biw = kD exp (—2mim/sv/k) = k™ D u (lc_) cd=k"D u (l_c) - d.
k

m=1 d|
dlvoy dlv
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Therefore, if we write [K/b] for the greatest integer < K/b,

k ..
( = ., exp Qmijm/k)
T(E,N) = b K/b<|{m|<N/b j=1 Bix k't (kr/b — m)’
and
1 5 > exp (2rigm/k)
) = }'1-{2 To(K, N) = blci+r Z__: ok m=[KZ/b]+1 “(kr/b — m)
15 2 exp (—2mijm/k)
(2.08) * bl JZ=1 P &1 (kr/b + m)
1 k 5 . .
+ e {35.; r (3) : d] SN (kT = m m)
\v
=81+ 8+ Ss.
Now

d

s k ) - 2iBk/b
= bk Z()df'mz B — mt

=[K/b]+1 —

o {Z <k) d} . m=l;/:b1+1 (iﬁk/ bl" m Bk/ b1+ m>
(
1
¥

Therefore, it K > 3b,

28 v f°° 2 do _ 3,8 -
85| < g bZkH" m=[K /6141 m: O b [K/8] T bkl"" K
Hence,
(2.09) Ss = 0(1/k'VK).

In order to handle S; , put

m

En= Y. exp (2rijp/k)

p=[K/bl+1

_ exp [2mij(m + §)/k] — exp [2x3j([K/b] + §)/k]
exp (wij/k) — exp (—wij/k) ’

Now

| B | 2 -1

lexp (wij/k) — exp (—wij/k)|  sin (mj/k)

1 k k kf1 1
= min 1257k, 20k — /K] max{21 "2(k — J)} =3 (3 = J')’

Therefore,

exp (2wijm/k) _ = (Ew — Ensr)
m=(k7814+1 (k7/b — m) m=(K61+1 KkiB/b — m

IIA

Z 1 1
= E,. |+ -
m=[;b]+l (lm‘}/b —m  kiB/b —m — 1>
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and

Z”: exp (2wiym/k)
m=(K751+1  KkiB/b — m

k 1 L 1
< (1 s
2 ( + k — .7) m=[KZ/b]+1 m?

k(1 1 -1
<5(5+ ity wn

It follows from this and (2.07) that

—1—r _ise K 1 -—1)
Sy 0(1 Zk 2( +IC_J>K ,
and therefore
k—l/3+e o
(2.10) Sy =0 ( = K™ log k) .

A similar estimate holds for S, .
Using (2.08), (2.09), and (2.10) we get Tw(K) = Ok~ 7K log k).
Hence

K
> TW(K) = IK_I Z (log k) -k~ -re|
e () { e (5) j

= 0{K'(1 4+ K*7) log K} = O(K ™™D U og K).
Therefore (2.06) follows, and the lemma is proved.
lll. The modular group
1. In this section we prove Theorem (1.06). We begin with
Prorosirion (3.01). (a) Ifa.(v) s defined asin (1.05), then asn — + =

() ~ iz exp {41r(nv)”2}
Gnly QN2 ri2+3/4

(b) If|z| < 1 and ris a nonnegative integer, then

mz:: {(hmu) /p!(p+r+1)1}

18 absolutely convergent.
Proof. (a). Using (2.05), we have

LMS

21ry(7‘+1)/2 i,
an(V) - W . IT+1{4’7|'(7),1}) }
2 (r+1)/2 4 u e )

IIA

(r+1)/2 o0 12
O, (l’) N i A {411'(7“/) }
n =2 k
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Using the fact that I,,:(t) < ¢ sinh ¢ for r a nonnegative even integer, and
the fact that sinh ¢ < (¢/B) sinh B, for 0 < ¢ £ B, we have

v (r+1)/2
a(v) — 27 (ﬁ) . [r+1{47r(nv)1/2}

w0 . 172
o (r+1) /2 7 —1/3+¢ 12 ;3 1 Sinh (4 (nv) '*/2)
Ci(v/n) kz=:2 k (4w (nw) " /k) T ()22

IIA

Vr+l/2
1/2
é )2‘Wexp {27r(nV) ! }.

In [7, p. 203, formula (2)], it is shown that I,.,(¢) ~ e'/(2xt)"*. Hence,
Lafdr (n)'?} ~ exp {4m(nv) "} /{202 (nv) ",

and the result follows.

= r+1 1/2
(b) 2 A @n'my /i) /pt(p 4+ r 4+ 1)1} ={ - -Ir+1{M}

2k o [4w(m)'™) 2k s
< -
= 2x(mw)1? Smh{ ) < Sn(mpy P tm (m) "/}

The result follows.

2. Let r be a nonnegative even integer. Let F, be defined as follows:

0

(3.02)  F,(r) = exp (—=2mivr) + (—=1)" 2" a.(v) exp (2minr),

n=1
where a,(v) is defined by (1.05).

Remark. 1t is clear that with F(r) defined by (1.05), F(r) =
>k ia_, F,(r) + constant. Thus we need only prove Theorem (1.06) for
F.(7). From Proposition (3.01a) we have immediately that F,(7) is regular
for 9(v) > 0. We must derive (1.07) for F,(7). In order to apply Lemma
(2.01) we first restrict = to be purely imaginary and derive (1.07) for such 7
only. However, the result then follows directly for 9(7) > 0 by analytic
continuation, since we have already seen that F,(7) is regular in 9(7) > 0.

Putting x = exp (2wi7), we have from (3.02)

— 2 (=12 & (r+1))2 4r ()"
X +1;x W’;k Ak,v(n)V IT+1 ———-k———-——-j

I

FV(T)

g+ (=120 "2 5 > exp (—2wivk! k)
k=1

h(k)

o0 . N 1 4 1/2
7; {o exp (—2xih/k)} YD Ir+1{ W(’r]bcv) }’

where the interchange in the order of summation is easily justified by examin-
ing the proof of Proposition (3.01a). Now

Fo(r) = a7 + 2023 (=) Y exp (—2mivk! /k)
(3.03) =1 W(k)
-¢{x - exp (—2mwih/k)},
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where

& 1 47r(’nv)1/2 ”
¢k(z) = ’;_1 oy Ir+1{ T c 2
(r+1)/2 S
- Zz”Z{(‘*”””)/p!(pHH)!}

n=1 p=0
r+1 (r41)/2 o 1/2\ 2p 0
— (27'") r:l Z{<2WV ) /p! (p + r + 1)11 Z nﬂzn.
k p=0 k Jn::l

The interchange is justified by Proposition (3.01b). Now by Lipschitz’
formula (see [1]),

> n?exp (—2wtn)
(3.04) = (p/2m)"™™) - X (t + ) for p > 0,
= —1 4 (1/2r) limyow 2 pen (t + 1) for p =0,

—ort .
"' we obtain

2m o (7-+1)/QI (27”’”2’0—‘)%
(7;) S QT 1)'+1§p‘(p+r+1>'

- lim Z (t 4+ )™ ‘}

(2 )p'H N> l=—N

(2 )r (r+1)/2 N

+1 S ;_N (t + )™

= 21y
g(kﬂ(tw)) /@t
- (2_”>r+1v(r+l)/2 r+1

- 2(r 4+ 1)Lkt + Qap IR lm l;N (t+ W)

21y ~ 1 2wy P
' {e"p (m T lz‘)) ~ X (kﬂ(t ¥ h‘)) } '

In (3.03) we need z = x exp (—2wih/k) = exp 2wi(7 — h/k). But in order
to apply (3.04) we have put z = exp (—2«t). Comparing these two equations
we find ¢ = —ir 4+ th/k. Using this in (3.05), we obtain

(27r)r+1y(r+1)/2

for ®(¢) > 0. Using this with z = ¢

¢k(2)

Il

_ (211') r+lV(r+1)/2
= S+ DU

(3.05)

dulv exp (=2mib/1)} = ST

[ Z Y
-l—2 S 1 1m —’LT+1E+ )

0 l=—N

2wy . 2mv
' {e"p (k’?(—if T h/k + lz’)) B pz-_-o <k2(—z'r T ih/k + u‘))/ ”1}
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- (21r)r+ly(1'+l)/2 . (_1)?’/210 ,
T 20r+ DT ¥ }VI-I;I; 2myr+DI2 m%‘zh(k) (kr = m)
|m—h|<kN
) 2oy ¥ 2miy / l}
{e"p e —m) (k(kf - m)) &
- (2‘”)7+ly(r+1)/2 . (_ 1)"/2k ,
TO2(r 4 1)Lk + ]]ulir:o 2mp(rd/2 ms%(:k) (kr = m)
Im|ls=M

. {ex ( 27w )__ zr: l( 2y )p
P\kler = m)) ~ 52 pt \klhr —m)) | -
Therefore,

(—1)" ,%)’ exp (—2wivh’/k) ¢p{zx exp (—2mih/k)}
_ _ 1 riz 2 r+1 (r+1)/2
_ = (=D"m)" ; u (’C) - d

2(r + 1)1 k1 d

dik

. o . .
+ glzlw W |m|ZSM exp ("‘27r'lm,1//k)'(k7' - m)
(m,k)=1

o () - )

Going back to (3.03) we obtain

F.(r) = exp (—2mivr) + ¢, + Z lim D exp (—2xim/v/k)(kr — m)"
k=1 M->ow |m|<M
(m,k)=1

oo (22 5) - L) |

_ (= 1)7(2r) Y {Z . (g)d} .

© ]
20r + 1)1 ;WH%

where

v

Bl

If we expand the expression in braces in a power series in terms of
27iv/k(kTr — m), we obtain

00

> lim Y, exp(—2nim'v/k) i (2miy)”

k=1 Moo (Iy;n]lc)g___ﬁ{ p=r41 plkP(kr — m)P—
. . (2miv)™ ™
\ = 3] - ’
(3.06) éﬂ%%ﬁm(mmm@+mwwmmw
e, oy - (2mv)*
+ lc;l gr:lw Ing__;__M exp ( Zmim V/k) 1)=Z:T-|-2 pl kp(k _ m)p~T )

(m,k)=1
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Lemma (2.01), with a = b = ¢ = 1, yields
Z”: lim > exp (—2wim'v/k) — lim {i exp (—21rim’u/lc)}

=1 Mow |mizu KTk — m) Koo (k=1 ImI<K k'*r(kr — m)
(m,k)=1 )=

Also, the triple sum in (3.06) is absolutely convergent and thus permits any
rearrangement of its terms. Therefore, (3.06) can be rewritten

K .
. . hd (27iv)?
1 —_ 7
K.I.IE: ;1(17%_:%1(1 exp (—2mim's/k) p=2r+1 plke(kr — m)r—

= lim i > exp (—=2mim/v/k) - (kr — m)"

K> k=1 |m|[<K
2wy ~ 1 2miv P
{e"p k(ler — m) ?:0 p! (k(lcr - m)> } ‘
Hence we can write

(m,k)=1
F,(r) = exp (—2mivr) + ¢ + 7 {exp (27:'7;1/) _ Z l (21ri1/)}

p=0 p' T
(3.07) + }}f}o ,CZ_: <""ZIL,_‘1 (kr — m)" exp (—2mim’v/k)

exp - 2wy _ i 1 ( iy )')
p k(kr — m) 7= p! \k(kr — m) '

Here we have separated out the term form = 0,k = 1. Let now

K K . ., 2w )
Sk(r) = é(l%ﬂl (kr — m)" exp (=2wim's/k) exp (m

(3.08)

k=1 |m|=1 kv — m
(m,k)=1

=5 3 Gy ep{om (I D/E T,

Let —% = (mm’ + 1)/k. Then kk’ + mm’ + 1 = 0, so we also have
kk' = —1(m). Then (3.08) becomes

Sk(r) = i Z (kr — m)" exp {27er —kl___—ny;?}

= - kr
(m,k)=1
! —k' + m'r

+ ,; ("%1 1 (kbr + m) exp{va e }

Hence ,

N ) Z Z (’C + mq-) exp —k'r + m}
’ '—k — mr

+ 33 (=k + mr)’ exp{me — k' — m\
(3.09) A

=3 > (mr — k) exp {21er :Zl }

+ 3% (mr + k) exp {2mv :@V}]IE_T} = Sk(7),
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if we interchange the roles of m and k. Going back to (3.07) we see that

r

TF, (—%) = 7 exp (27:_ ) + ¢, 7" + exp (—2mivr) — 2171 (—2mwv7r)”

p=0

-|—hm{7-SK< ) Z Z (mr 4+ k)" exp (—2xim/v/k)

K-> k=1 Iml 11
" 1 —2xwr \'
pz=o p! (k(mr + lc)) }

Comparing this with (3.07) and using (3.09) we have
Fv(T) — 7'F, (ﬂ—i—) - c,,(1 — TT) + Z _1_‘{(_27‘_7:1/7_)20 _ (ZW’LF)
+ Iim Z Z exp (—2 mim'v/k) {(mT + k)’ Z ( — 27yt )

(310) RO A \
. o1 2wy
— (kv — m) z;p(k’(_lér_——m‘))f

Now the right-hand side of (3.10) is a polynomial in 7 of degree at most r.
Therefore, by the remark following (3.02), the proof of Theorem (1.06) is
complete.

3. If r = 0, the right-hand side of (3.10) is identically zero. Thus if we
put F(7) = a0 + X toa_, F,(r), withay, a_y, -+ , a_, any constants, F(r)
is a modular function, that is, a modular form of dimension zero. We can in
fact state the following stronger result.

Tarorem (3.11). A function F(7) analytic in the upper half plane is a
modular function if and only if there exist constants ay, 6y, - -+, a_, such that
F(7) = ao + 2_boa_, F.(1), where F,(r) is defined by (3.02) with r = 0.

The “only if” part of the theorem follows from the fact that a modular
function which is bounded at « must be constant.

From now on, 7 is a fixed positive even integer. Denote the polynomial oc-
curring in (3.10) by p,(7). Let us now form
(3.12) F(r) =a0+ a Fi(r) + -+ + ap Fu(7).
It follows from (3.10) that

(3.13) F(r) —7F(—=1/7) =a(1 —7") + 2hanp(r) =p(r),

where p(7) is a polynomial in 7 of degree at most r. Replacing + by —1/7
in (3.13) we see that

(3.14) rp(—=1/7) = —p(r).

If we can choose ao, - - - , a_, in such a way that p(7;) = 0for r/2 + 1 distinct
points 74, then by (3.14), p(r) = 0. We must assume, of course, that the
set of 7,’s and the set of —1/7’s have no point in common.
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We therefore write the system of linear equations
(3.15) p(‘l’k) = (lo(l - T]:;) + Z¢=1 Ay pv('rlc) =0 (k = 19 Tt 7"'/2 + 1)7

where 7, are chosen as described above. This has a nontrivial solution as long
asp = r/2 + 1. In fact (3.15) has u — r/2 linearly independent solutions.
Hence we have the following result.

TueOREM (3.16). Let u be an integer such that u = r/2 + 1. If we define
F(7) asin (3.12) with (a0, a1, - -+, a_,) chosen to satisfy (3.15), then F(r)
18 a modular form of dimension r, with principal part

a—pexp (—2mipr) + -+ +a_yexp (—2mir).

Professor Bateman has made several interesting observations which are re-
stated in the following remarks.

The general linear combination (3.12) has u 4 1 parameters. The vector
space of modular forms of even integral dimension r and principal part at
of order no greater than u has dimension (see [3], §8)

b1 — [" *1“210] if r=0,24068 (mod12),
— [T —1-210] if =10 (mod 12).
Thus (3.12) gives a modular form under
[" Jlrzm] if r=02468 (modl2),
[T ‘Lm] 41 if r=10 (mod12),
linear relations on ag, a1, ---, a—,. Theorem (3.16) gives us modular
forms if we impose at least /2 4 1 linear relations on ay, ¢y, ---, a_,,

which is of course more than is actually needed. In particular, if r = 2, 4,
6, 8, 12, only one linear relation is needed. In fact the single relation
a0 + D 4 a_, p,(0) = 0 should suffice in these cases. However this seems
hard to prove by our approach.

The following partially explains the discrepancy between the actual number
of linear relations needed and the number we have to impose.

Remark. TFor special values of r the polynomial p(7) has certain fixed
roots which are independent of the choice of ap, a—y, ---, a—,. That is, no
matter how these constants are chosen, p(7) will have as roots the solutions
of

(=7 4+ D+ r4+ 1) +1)=0 if r=0 (mod 12),

24+1=0 if r=4,8 (mod 12),
(F—74+ D +7+1) =0 if r=6 (mod12).
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Therefore, in these cases, correspondingly fewer linear relations will suffice in
Theorem (3.16).

We now use Theorem (1.06) to construct modular forms of negative even
integral dimensions. Iirst, we need the following result.

Lemma (3.17). If + — (ar + b)/(cr + d) is any transformation of the
modular group, and F is any complex function with sufficiently many derivatives,

then
o . ar + b) _ —r—2_pet (0T + b)
dw+1\(07+d) 'F(0r+d = ler +d)7-F er +df’

for any integer r = 0.

The proof is simple and proceeds by induction on 7.
Applying this Lemma fora = 0,b = —1,¢ = 1, d = 0 and using Theorem
(1.06), we obtain

TuroreMm (3.18). Let F(r) be defined by the Fourier series (1.06), with r
a nonnegative even integer. Then
FO () — 72 pt /0y =,
i.e., F'™ (1) is a modular form of dimension —r — 2.
IV. The groups G(+/2) and G(+/3)

In this section we construct functions which behave under substitutions of
the groups G(+/2) and G(+/3) in the same way as the functions F,(7), de-
fined by (3.02), behave under substitutions of the modular group. These
funetions were given by Raleigh [4] for the case r = 0. Here we let r be any
nonnegative even integer. Let & = 1.

1. The group G(~/2). Let F, > be defined as follows

F,.(r) = exp (—-27riv7'/2”2) -+ Z a.(v) exp (27r1;n‘r/2”2),

n=1

= 12
an<1/) = (_1)7/221,;2—115Agk'y(n)(V/n)(r+1)/217+1{27r(nv) }

k
(4.01) or & .
+ 80("‘1)”2 Ql—q,rg ,; 2](;—_1 Azk—l,v{(l - k)n}
1/2°
o /n)uw/zml{%’gﬁ!ll_} = na(v) +F Gualv).

Remark. A result analogous to Proposition (3.01a), modified to handle the
present situation, shows that F,»(7) is regular for 9(7) > 0. As before, we
derive the transformation properties of ¥, :(7) for = on the positive imaginary
axis, and then the result follows for 9(7) > 0 by analytic continuation. The
same remark can be made in connection with F, ;(7) to be defined in (4.13).

Put

@ = exp (2mir/2"),  fu(x) = Dg_iani(v)a".
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As before,
filz) = (=1)"*-2m 02 3 %Z’ exp (—2mwivk’/k)
(4.02) oy P e
= . n 1 4
. ,LZ::I {x exp (—2xih/k)"} ST I,+1{i(—7;cy—)—} .

If we keep in mind that here x exp (—2mih/k) = exp {2mi(7/2"* — h/k)},
the argument of the previous section with the use of Lemma (2.01) for a = 0,
b =2,¢=1,yields

K

filx) = ¢,n + lim Y i (kr/2'* — m)" exp (—2mim'v/k)

K->w k=1 |m|=1

(4.03) k=0(2) (m,k)=1

2w 1 21w p\
' {""‘p <k<icf/21/2 - m)) ~ %5 (k(kr/2*/2 - m)) N

Since k = 0(2), (m, k) = 1, there are no terms with m = 0.
Let fo(x) = 277 + Z:=1 an2(v)x". Then

folz) = 27 + ;1(;—2 (—=1)".2mr 02 %ZI exp (—2mih'v/k)
(408 \ Ek;_-(lz) ()
= (L —BY 1 27 (2nv) "
. ;{x exp (—2m 5 )} e Ir-l—l{ 3 .

Here,

x exp{-—27ri &2—;}6—)} = exp (2ri(r/2"" — h(1 — k) /2k)}.

Therefore applying the previous argument and using Lemma (2.03) with
a = 1,b = 2, we obtain

fo(z) = exp (—27r’iv7'/21/2) =+ ¢,2

” 2wty 1 27w\
+or o (577) - 555 |

K K
(4.05) + olim 277 Y Y exp (—2mim'v/k) (2 kr — m)”
e e égé@l

) {ex 2wy ) _ i l ( 27y )p
P\r@hr —m)) ~ S0 \b@%r — m)/) [
Here we have separated out the term for m = 0, k = 1.
By (4.03) and (4.05), it follows that
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Fy,2(7') = fl(x) + f2(-7f) = exp ("'27’51’7'/2”2) + o1t Coe

+ o1 {exp (21riv/21/27') — Z 1% (21r’i1//21/27')p}

p=0
K K
+lim >, D> (kr/2'* —m) exp (—2xim'v/k)
Koo 2ol dmbh
(4.06) { Qiy 1 2y )’"
EP\(kr /27 — m) ,,Zﬁ 21 \e(kr /272 — m)
K K .
+ elim 27 > > (2%kr — m)" exp (—2mim'v/k)
five T®) )

(m,k)=1

) {ex 2ty ) R 1 ( 2wy )p\l
P k(2% — m) = p \k(@Pkr — m)/) |-

Now let
K " _ ey {—my , 1
Swalr) = 2 ImZI:_ (kr/2 P\ \" T e =
(4‘07) k=0(2) (m,k)=1 ( 1/2
_ 1z » . mm’ + 1)/]0 - 'm"r/z
=3 > (kr/2 m)" exp \L21rzu ( /2 = m .
Let —k = (mm’ + 1)/k. Then kk' + mm’ + 1 = 0, and kk' = —1(m).

Then (4.07) becomes

Seal) = 3 3 /2 ) exp{ 2wy K mT/2
SR~ S i P s kr/2Y% — m
k=0(2) (m,k)=1

(4.08) K+ m'r /2
2 — K mrT
+ Z mz— (ICT/2 + m) eXp {27!'?/11 m} .
k—0(2) (m,k)=1
Let
K K ’ 12
_ a2 oy — ) , =K = 2"m'7|
Sk.2(r) = €2 k;l |r;=l 2"kt — m)" exp {21r’w DY —
k=1(2) m=0(2)
(m,k)=1
> Z k v b= 2
(4.09) = 2 (kr — m/27)" eXp{g’”” m“}

k=1(2) m:0(2)
(m,k)=

1 12,/
+ &0 oo > (kr + m/2") exp {2m’u M}

22k 4+ m
Now
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K

A 1 701/2
07 Ska(—1/7) = & Z Z (mr + k/21/2)r exp {21ri1/ %}

m=1
k_.0(2) (m,k)=1

—m 1/2
+ & > D (mr — k/2') exp {21er —-W_*_/—-Em—}

_SOZZ mT—‘C/ )eXp W@ij

4 2
+ &o Z Z (mT + 15/21/2) exp {27{"“} m—j .

Therefore, if we interchange the roles of m and & and notice that k = 0(2),
(m, k) = 1 implies m = 1(2), we have

(4.10) e 7' Ska(=1/7) = Ska(r).
It follows directly that
(4.11) e 7 Sk2(—1/7) = Ska(7).

Going back to (4.06) we see that
e Foa(—1/7) = g1 exp (2miv/2"%r) + eoleon + ¢o0)7

r

+ exp (—2mivr/2'"%) — Z = ( Qwivr/2'2)?

p=0 P

4+ lim {SOTTSKJ(—‘I/T) + go7 Sk, 2(—1/7)

K->

K —%mi P
— & kz lmz exp (—2mim’v/k) (mr + k/2'"%) Z <W§ri—rmr—)>
c=0(2) (m,k)=1

X X —2wivT P
— 2" 4+ k 2 k <—___) }
B iy (2 e (it 0% (e 5
T =1

Comparing this with (4.06) and using (4.10) and (4.11) we have
Fv,z('f') — & TrFm( "‘1/7')

= (61t 62l —ear) + pgo %{(i’”ﬁ)p — e Tr(@)p}

21/2 21/27.
K K
(4.12) +1lim >, > exp (—2mim'v/k)
i orot

( e —2mivr )p
. 1£o(m7—l— k/27)" ;O P! (m
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— (/2 —m) Y L <——~——2"i" )}

=0 p! \k(kr/2Y2 — m)

K K
+1lim > Y exp (—2mim'v/k)

K-> k=1 |m |=1
k=1(2) m=0(2)
(m,k)=1

(4.12) {(W/z”2 + k)" pZzlo o (,@%)p

1/2 2wty )pl
—eo(kr — m/27%)" E (k———-————(zll%T ) I .
2. The group G(~/3). Let F, ;be defined as follows

F,3(1) = exp (—2xivr/3") + 2 a.(v) exp (2wins/3"%),
n=1

0 r+1)/2 1/

) = (=172 3 Lt (2) Lo { )

3k
so(—=1)"2r & 1 V)(r+1)/2 4 (3m0)')
+ 31/2 kgl 3,0 _ 1 A3k—l,v(k'n) ;], I

T BEk — 1)f
1 L\ 02

5 Ask—2,v((1 - k)n) <—>
—_ n

i {4#(3%1/)1/2}
33k — 2)

(4.13)

80(—1)”22# =
+ 32 1‘?;:1 3k

= @01 (¥) + @n2(¥) + an3(v).

Put z = exp (2mir/3"%), fi(x) = Doy ana1(v)2". Applying the same argu-
ment used above, and using Lemma (2.01) with a = 0, b = 3, ¢ = 1, we
obtain

K K
fu@) =¢on+lim 2, D> (kr/3'" — m) exp (—2mim'v/k)
(4.14) L0 e
. {ex ( 2y ) _ i _1_( Qwiv )p
P\krr/3® —m)) ~ 0 9t \kGer /3% —m)) [~
Let fo(2) = 2oy ans(v)z”. Using once again the same argument, and

applying Lemma (2.03) with ¢ = 2, b = 3, we obtain

fo(x) = ¢ 0+ & lim }K: i (kr — m/3"*)" exp (—2wim’v/k)

K->w k=1 {m|=1
k=2(3) m=0(3)
(4.15) (k)1

dex 2wy ) _ i 1 27ty >p
PR —m)) ~ =2 p kB Phr —m)/ [



MARVIN ISADORE KNOPP

36
", Once more we apply the

Finally, we let fs(z) = 27" + 2 meitns(v)a”.
We use Lemma (2.03) with @ = 1, b = 3 and obtain

above argument.
fs(z) = exp (—2xivr/3'%) + ¢,5 + €07
2y ~ 1 (2rv)’

3y
m/3")" exp (—2wim’v/k)

+elim Y, Y (kr —

(4.16)

K> k=1 |m|=1
k=1(3) m=0(3)
(m,k)

o (rariety) - £ o)}

k@ kr — m)) S p!

Here we have separated out the term form = 0, k = 1
By (4.14), (4.15), and (4.16) it follows that

v 3(7') = eXp ("“2W/£VT/31/2) + Cy1 + Cy,2 + Cy,3

1)-£362)

4+ lim Z Z (kr/3"* — m)" exp(— 2wim'v/k)

K-> k=1

k=0(3) (mk) l
2wty 1 2my P
{e"p ( ) ~ 2 (/c(kr/sw - m)) }

k(kr/3Y2 — m) =0 P!

(4.17)
(kr — m/3"")" exp (—2wim/v/k)

K K
+ &o lim Z Z
K->w k=1 [m|=1
m=0(3)
(m,k)=1
ox 27y ) _ i 1 2w )p
P\kGhr —m)) ~ 5= pl \kGPhr —m)) |
In this last infinite sum we have combined those & such that &k = 1(3) and
2(3), and made use of the fact that m = 0(3), (m, k) = 1 implies

k =
k= 1(3) ork = 2(3).
Now let
— 27w 1
B A el )
Ska(r) = k%J) (;b%:ll (kr/3"" — m)" exp o\ T AR
—k — m'7/3"%
kr/3"% — m)" ex {21 —_ =
104)2(:13) (Z%_ . (kr/ P kr/3Y2 — m J

where, as before, —k' = (mm’ + 1)/k. Let

u = 1/2 2w 1
(kr — m/3"")" ex p{ - (m -?Wk,—“r—rﬁ»

Sx,z(’r) = & Z Z

k=1 |mi=1
m=0(3)
(m,k)=1
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= & & e (]CT - /”1//3 ) exp 27y mJ .
m=0(3)
(m,k)=1

If we interchange the roles of m and k, it is easy to see that
(4.18) g0 7 Sxa(—1/7) = Ske(7),

(4.19) g0 7 Ska(—1/7) = Ska(r).

Going back to (4.17), we see that

corF,3(—1/7) = eor’ exp (2miv/3"%1) 4 eo(Coy + o2 + €05) 7

+ exp (—-21rivr/31/2) Z — ( 2w vt /31/2)p

p=0

+ lim {eor Sxa(—1/7) — & Z i exp (—2mim'v/k) (k/3"* + mr)"

K-> k=1 |m|=1
) i_l_( —2wiyr >’)1
= p! \k(k/37 + mr)) |

k=0(3) (m,k)=1
+ llm{é’oT Sxo(—1/7) — Z Z exp (—2mim'v/k) (k + mr/3'%)"

K-> k=1 [m|=1
~ 1 —2mivr P
p;» p! (/0(3”2/6 + mr)) }

Comparing this with (4.17) and using (4.18) and (4.19) we have
Fv,S(T) — &0 TTFV,3(_1/T) = (Cv 1 + Cy 2 + Cv,3)(1 - gOTT)

+ 3 L (2mivr/37 — e (2min/3) )

p—-O
K K

. Ly 1/2 —21r’iu‘r ?
+11<1$ kz:,l |r£1 exp (—2mim v/lc){eo(lc/?) + ms)’ Z (m)

k=0(3) (m,k)=1
_ e . 1 2y )p
(4.20) (kr/3 m) 1; ol (7c(kr/3”2 —m)

K

I 1/2\r ( —-21r’iVT >T'
+11¢1.{2 kz_: 17;1 exp (—2rim'v/k) I(k + mr/37%)" pZ::o o \kGE + )

(m.,k)=1

ot o)}

=0 p! \k(3"2kr — m)
3. We summarize the results of this section with the following theorem.

TuporeM (4.21). Let Fi(r) = a0 + 24 a- F.i(7), where F, (1)
(I = 2, 3) is defined by (4.01) or (4.13). Thenin 9(r) > 0, I";(r) is regular
and satisfies
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(4.22) Fi(r) — eo T Fi(=1/7) = pu(7),
where p(7) s a polynomial of degree at most r.

This follows by noting that the right-hand sides of (4.12) and (4.20) are
polynomials of degree at most r. If » = 0 and & = -1, the right-hand sides
of (4.12) and (4.20) are zero, and (4.22) becomes F;(—1/7) = F;(r). More
particularly, if uy = 1, a4 = 1, a0 = 0,7 = 0, & = +1, (4.01) and (4.13)
reduce to the expansions for 7(2%: 1) and j(3"%; 7) respectively as given by
Raleigh in [4], and (4.22) becomes j(I'*; —1/7) = j(I"*;7), (I = 2,3). Thus
we have given another proof of the validity of Raleigh’s formulas.

It is now clear that results analogous to Theorems (3.16) and (3.18) are
true for the groups G(+/2) and G(+/3). In particular the result analogous
to Theorem (3.16) enables us to construct automorphic forms of even integral
dimension r for the groups G(~/1), (I = 2, 3). That is, we can construct
functions F;(7) such that

(4.23) Fu(r + 1) = Fi(r), 7Fi(—1/7) = Fi(r).
V. The group G(2)

In this section we construct functions which behave under substitutions of
((2) in much the same way that the functions F,(7), defined by (3.02), be-
have under modular substitutions. These functions were given by Simons
[6] for the case r = 0.

Let X, be defined as follows, with » again a nonnegative even integer.

00

A7) = 2 an(v) exp (wint),

n=1
(5.01) w ‘ ”
w) = (=D T 3 Ic”lAk,u(n)(v/n)(’J’])”IHl{ﬂ%l’.L}.
k=1
k=2(4)

The method of proof of Proposition (3.01a) yields the following result.
ProrositioN (5.02). If a,(v) is defined as in (5.01), then as n — -+ =

i €xp (wi(v + n)) exp (2n ()" '

anlv) ~ 3ol

As in the previous sections, Proposition (5.02) shows that A\,(7) is regular
in 9(v) > 0. Again we derive the transformation properties of \,(7) for
purely imaginary and extend the result to 9(7) > 0 by analytic continuation.

Put

z = exp (wir), fz) = D2 1an(v)x".

Then
@) = (=17 > > exp (—2aivh’ /k)
8 izt P

. :1 (z exp (—2mih/k)}" <;L>w+m-lr+1 {M} .
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We can apply the previous argument, this time using Lemma (2.01) with
a=2b=4,¢c =2 toobtain

2K K
M) =ce + 116 lim >, Z (kr/2 — m)" exp (—2im'v/k)
(5.03) k)

' {exp (F(‘/F??lwfﬁ)) - pz=:% pl! (l@%'rr—b)” ’

We have made use of the fact that £ = 2(4) and (m, k) = 1 together imply
that m = 0 does not appear in the sum. Let

2K 2riv [, 1 \
Ser) = 35 30 thny2 = ) oxo 3 (' =

k=2(4) (m,k)=1

= 2ZK i (197/2 - m)T exp {27r’£y :,k_/__;n?“,i%1

(5.04) k230 ot kr/2 —m
2K K

- i _ , -k — m/t/2

- 5 X G2 — e fam

k=2(4) (m,k)=1
LS (k2 + m)’ exp{21riv —F + m'r/2)

kr/2 +m |-
Here again we have put —k’ = (mm/ + 1)/k. TFrom (5.04) it follows that
_ 3 o . —=kr+ m' /2
TSK( 1/7') = Z Z (mT + /0/2) eXp{21r'LV mj
—k'r — m'/QI
—k/2 + mr |

B T /2 — I\
= Z Z (mr k/2) exp {27!'7/1’ m[
—m'/2 + k'7|

mr + k/2 |-
Now put I = k/2 and n = 2m. We wish to find integers I’ and n’ such that
W + nn’ 4+ 1 = 0. Sincek = 2(4), k/2 is odd and m' is odd. Thus
(k/2 + m’)/2 is an integer, and we put I’ = 2k’ — mand n’ = (k/2 + m’)/2.
It is easy to see that, with this choice, nn’ + U’ + 1 = mm’ + kk’ + 1 = 0.
Now (5.05) becomes

2K K

TS8k(=1/r) = X X (nr/2 =1

2l=1 n/2=1

+ >2° 3 (mr — k/2)" exp {21er
(5.05)

+ Z Z (mr + k/2)" exp j?wiv

21=2(4) (n/2,21)=1
. —n' /2 — (U 2)1/2
(5.06) - exp {27er w+ /nT/Z(— —l,_ n/2)7/ }
- , —n' +1/2 + (V' + n/2)7/2)
+ Z ;1 (nr/2 4+ 1)" exp {27er w3 &
2l 2(4) (n/2,21)=1
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In (5.04) wehavek = 2(4), (m, k) = 1. Hencemisodd. Thereforen = 2m
satisfies n = 2(4), and (5.06) becomes

K

S(=1/7) = 3 Z (”T/Q‘l)re"p{z”i” (%—l—lﬂ_%)}

(n,l)=l
LSS . =0+ U2 1)\
+ ; :2;(14) (nr/2 + 1) exp{2mv <_nr/2 T + 3))

(n,l)=1
Comparing this with (5.04), we see that
(5.07) T Sx(—1/7) = (—=1)"Sk(7).
Going back to (5.03) we obtain
(=1)7N(=1/7) = (=1)"c,7"

+T6hm{< DFSK(=1/7) = (=17 32 3 exp (~2eism/b)
Koe k= 2(4) ('r:l,nkl)“ 1

(mr + k/2)" - Z 1 <~ﬂ’”_)p} .

=0 p! \k(k/2 + mr)
Comparing this with (5.03) and using (5.07) we have
M) — (=1)'72N(=1/7) = ¢.(1 — (=1)"7)

2K K
+—£ lim >, . exp (—2rivm’/k)
16 K-> k=1 |m |=1
k=2(4) (mok)=1
2mwivr P
(5.08) {(—1) (mr + k/2)" Z (m)

& 2rriv ?
— (kr/2 — m) p;l);! (m) }

The right-hand side of (5.08) is a polynomial in 7 of degree at most r.
Let » = 0. Then (5.08) becomes \,(7) — (—1)"\,(—1/7) = constant, and
in particular if » is even, the right-hand side of (5.08) is zero, and we have
M(—=1/7) = MN(7). Thus for even », A\,(7) is an invariant for the group
generated by 7 = 7 4+ 2, 7 = —1/7. This group contains G(2). If » is
odd, we have N(7) + MN(—1/7) = constant. Since 7/(27 + 1) =
—1/(=2 — 1/7), A(7/(27 4+ 1)) = A(7), so that in any case \,(7) isan
invariant for G(2). Inthecaser = 0and v = 1, (5.01) reduces to the Fourier
expansion of A(7) as given by Simons in [6]. Thus we have shown directly
from the Fourier series expansion that A(7) is invariant with respect to G(2).

If r is a positive even integer, denote the right-hand side of (5.08) by p,(7).
We can now state the following theorem.
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TaEOREM (5.09). If \,(7) is defined as in (5.01), then in 9(7) > 0, \,(r)
18 regular and satisfies
(5.10) M(r) — (=1)'N(=1/7) = p(r),
where p,(7) s a polynomial of degree at most r.
It is an immediate consequence of (5.10) that
M) = 27 + DN/ (27 + 1)) = pu(r) + (=D)70((=27 — 1) /1),

which is again a polynomial of degree at most ». Thus we have the following
result.

CoRroLLARY (5.11). Let

(5.12) Alr) = a0+ D beasN(r),

with ay, a1, -+, a_, constants and N\,(7) as in (5.01). Then in 9(7) > 0,
A(r1) s reqular and satisfies

(5.13) A(r) — (2r + D'A(7/(27 + 1)) = p(7),

where p(7) is a polynomial of degree at most r.

We now apply Corollary (5.11) to construct automorphic forms A(7) of
dimension r for G(2). That is, we choose u sufficiently large and
@, 01, -, 0, in such a fashion that p(7) = 0, exactly as we did in Section
III, where we constructed forms for the full modular group. Then,

(5.14) Alr+2) =A(>r), @2+ 1)'A(+/2r+1)) = A(7),

and since 7’ = 7+ 2,7/ = 7/(27 + 1) generate G(2), A(7) is an automorphic
form of dimension r for G(2). Now, in contrast to the functions F(7) and
Fi(7), previously constructed, A(7) has no principal part at <, and it is not
immediately clear that A(7) is not identically zero. However, the following
result implies that A(7) cannot reduce to a constant, so that the forms we have
constructed are nontrivial.

ProrositioN (5.15). Let b, be the '™ Fourier coeffictent of the function
A(7) defined by (5.12). Then, as n — + =

ratiss €xp (wi(u -+ n)) exp (2w (np)
39112314

Proof. Tt is immediate from (5.12) that b, = D 4 a_, a.(»), for n > 0,
where a,(») is defined by (5.01). The result is now a trivial consequence of
Proposition (5.02).

1/2)
by ~a_y u .
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