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A unique factorization domain (or UFD) is an integral domain in which
every element 0 is, in an essentially unique way (i.e., up to units), a product
of irreducible ones. In spite of the simplicity of this notion, many problems
concerning it have remained open for many years. For example the fact that
every regular local ring is a UFD has been coniectured in the early 40’s, many
partial results in this direction have been proved, but the general case has
been settled only in 1959 by M. Auslander and D. Buchsbaum [1]. Another
open question was as to whether a power series ring over a UFD is a UFD;
W. Krull studied it in a paper of 1938, and termed the answer "doubtful"
("zweifelhaft") [3]; we prove here that the answer to this question is negative.
However, using the result of Auslander-Buchsbaum, we prove that a power
series ring in any number of variables over a PID ("principal ideal domain")
is a UFD. We also show, by counterexamples, that unique factorization is
preserved neither by ground-field extension, nor by ground-field restriction.

I have received great help and stimulation from my friends M. Auslander,
I. Kaplansky, and especially D. Buchsbaum. More particularly, Lemma 3.3
is essentially due to D. Buchsbaum, whereas the ideas leading to the proof of
Theorem 2.1 came from discussions between him and me; after these discus-
sions we arrived independently at a proof of this result.

1. Some preliminary results

In this paper all rings are assumed to be commutative and noetherian
Let A be a noetherian domain; it is well known that the following conditions
are equivalent:

(UF. 1) AisaUFD.
(UF. 2) Any two elements of A have a g.c.d.
(UF. 3) Any two elements of A have a 1.c.m.
(UF. 4) The intersection of any two principal ideals of A is principal.
(UF. 5) Any irreducible element of A generates a prime ideal.
(UF. 6) Any prime ideal of height 1 of A is principal.

Furthermore, if A is a local or semilocal ring, these conditions are equivalent to:
(UF. 7) For any two elements a, b of A, we havedh(Aa + Ab) <_

(where dh denotes the homological dimension of a module).
We say that an element a of a ring A is prime if the ideal Aa is prime; any

prime element is irreducible; the converse is true in a UFD (by (UF. 5)).
The following lemmas are known, but we state and prove them for the

reader’s convenience:
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LEMMA 1.1. Let A be a UFD, and S a multiplicative system in A; then the
quotient ring A s is a UFD.
One can use the formula As a n As b As(Aa [ Ab) (a, b A) and (UF. 4).

One can also take a family P of irreducible elements of A such that every ir-
reducible element of A is an associate of one and only one element of P; then,
if pr is the set of elements of P which divide some element of S, and
if P" P Pr, then every element of As is, in one and only one way, the
product of a unit (in As) and of elements of pt (these elements being irre-
ducible in As).

LEMMA 1.2 (Mori). Let A be a noetherian ring, and m an ideal contained
in the Jacobson radical of A (so that A is a Zariski ring for the m-adic topology;
see ([10]), VIII, 4). If the completion is a UFD, so is A.

We use(UF. 4). Leta, beA;setq AanAb. We haveflq fl_afib
([10], VIII, 4, Corollary 2 to Theorem 11), whence there exists c e fl such
that fiq fic. Let c be an element of q which is congruent to c’ modulo
fimq; since c generates fiq modulo fimq, it generates fiq by Nakayama’s
lemma (ibid., Theorem 9, (f)). Hence q flq A fic A Ac (ibid.,
Theorem 9, (a’)), proving that q is principal.

LEMMA 1.3. Let A be a noetherian ring, m an ideal contained in the Jacobson
radical of A, and E a finitely generated A-module. For E to be a free A-module,
it is necessary and sucient that ElnE be free over A/m and that m (R) A E -- Ebe a monomorphism (i.e., TOrl(A/m, E) 0).

The necessity is clear. Conversely, let (xi) (i e I) be a finite family of
elements of E such that the (mE)-residues i form a basis of E/mE over

Aim. Let F be the free A-module Ax, (e)x its canonical basis, and u the
homomorphism of F into E defined by u(e) x. By Nakayama’s lemma,
u is an epimorphism. Let R be its kernel: an element (ai) of R is a system
of elements of A such that ai x 0. Since the . are linearly inde-
pendent over A/m, we have aie m for every i, whence, by hypothesis,
a(R) x 0in m (R) E. Using the exact sequence

m (R) R--m (R) F--m (R) E--0,

we see that ’ a, (R) e is in Im(m (R) R - m (R) F), whence

(ai) i ai ei e mR,

and R mR. From Nakayama’s lemma, we conclude that R (0), i.e.,
that u is a monomorphism, and that E is free.
Remark 1.4. It follows from Lemma 1.3 that a finitely generated projec-

tive (or fiat) module over a noetherian local ring is free. Thus, for a finitely
generated module E over a noetherian ring A to be projective, it is necessary
and sufficient that it be locally free, i.e., that E be free over A, for every
maximal ideal m of A.
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The following esy lemmas show that products of prime elements are
"hrmless" with respect to unique fctoriztion. Notice that, if p is prime
element of domain A, thenA is the ring of discrete vlution v (normed
by v(p) 1).

LEMMA 1.5. Let A be a domain, a, b elements of A, x and y products of prime
elements of A. For Aa n Ab to be principal, it is necessary and sufficient hat
Aax n Aby be principal.

By induction on the number of prime factors in x and y, we are reduced
to comparing Aa n Ab and Aa n Apb (p prime). Suppose Aa n Ab Ac;
then one sees easily that Aa n Apb is equal to Apc if v,(a) <- v,(b), and to
Ac if v,(a) > v(b). Conversely, if Aa n Apb Ad, Aa n Ab is equal to
Adp- if v(a) <= v(b), and to Ad if v,(a) > v,(b).

COROLLARY 1.6. Let A be a domain, a an element of A, and y a product of
prime elements of A. Then the ideal Aa n Ay is principal.

Take x b 1 in Lemma 1.5.

LEMMA 1.7 (Nagata; see [5]). Let A be a domain, and S the multiplicative
system generated by any family (x)i qf prime elements. If As is a UFD,
so is A.

Let v be the normed valuation having A as valuation ring. Writing
every element a’ of A in the form a’ aXI x(’) (almost all exponents are
0 since A is noetherian), Lemma 1.5 shows that it is sufficient to prove that
Aa n Ab is principal whenever v(a) v(b) 0 for all i. We then have
Asa n A Aa and Asb n A Ab (ifad/seA withseSanddeA, then
v(d) >= v(s) for every i, and s divides d in A). On the other hand
As(Aa n Ab) As a n As b is a principal ideal As c; we may assume that
ceA and thatv(c) Oforeveryi. Then

Aa n Ab A nAsa n Asb A n Asc Ac,

proving Lemma 1.7.
Remark 1.8. Lemma 1.7 may be used for proving the classical result that

a polynomial ring R[X] over a UFD is a UFD: the prime elements of R re-
main prime in R[X]; we take for S the set of nonzero elements of R; then
R[X]s is K[X] (K: quotient field of R) and is a UFD (since it is a PID);
hence R[X] is a UFD. This method does not work for power series.

2. Regular unique factorization domains

We sy that ring A is regular if, for every mximl ideal m, A, is regular
local ring.

THEOREM 2.1. If A is a regular UFD, then A[X] and A[[X]] are regular
UFD’s.
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We first prove that B A[X] is regular. Let be a maximal ideal in B;
set m A n . ThenB containsB’ A [X] and is equal toB’(nB’).
Since a quotient ring of a regular local ring is regular [9], it is sufficient to
prove that B’ is regular; in other words, we may assume that A is a regular
local ring, and that m is its maximal ideal. Then /Bm is a maximal ideal
in B/Bm (A/m)[X], and is therefore principal; since m is generated by
d dim(A) elements, ) is generated by d + elements. On the other
hand, we have inA achain0 < < a roof d+ l prime ideals,
whence, in B, the chain B0 < B < Bm< ); therefore the height
h() is -> d -+- 1. It follows that h()) dim(Bv) d + l, and that
B is a regular local ring.
We now prove that C A[[X]] is regular. Since the elements of 1 -t- CX

are invertible, every maximal ideal of C contains X, and may therforee be
written as !I2 CX + Cm where m is a maximal ideal of A. Then C, is
a dense local subring of A,,, [IX]]. As above A [[X]] is a regular local ring.
Thus C is also a regular local ring.

Let us now prove that B A[X] and C A[[X]] are UFD’s. For B, it
is well known since Gauss. Let a, b be two elements of C; we set q Ca n Cb.
Since C is a UFD for every maximal ) [1], and since C q C a n C b,
q is a "locally free" C-module, i.e., a projective C-module (Remark 1.4). To
prove that q is principal, we may, since X is prime in C, assume that X does
not divide a or b (Lemma 1.5); then q/Xq q/(CX n q) (q -t- CX)/CX,
and q/Xq is a projective ideal in A. Since A is a UFD, q/Xq is principal,
i.e., free (over A). Applying Lemma 1.3, we see that q is free over C, i.e.,
principal, Q.E.D.

COROLLARY 2.2. If A is a PID, then A[[X1, Xn]] is a regular UFD.

In fact A is obviously a regular UFD, and our assertion follows from
Theorem 2.1 by induction on n.
Remark 2.3. If A is a regular UFD, so is every ring obtained from A by

a finite number of polynomial and power series adjunctions of indeterminates
(in any order.)

3. Power series over a UFD; reduction properties

Let A be a ring (noetherian, as usual) and let R A[[X]] be the power
series ring in one variable over A. Given a series u R, we shall denote by
u. the coefficient of X in u, so that u ’,j0 u. X. Let S be a multipli-
cative system in A; then Rs is a subring of As [[X]] (which we shall denote
by RS), in general distinct from Rs in fact Rs is the (X)-adic completion of
Rs, and is therefore a fiat R-module. The ring Rs is not a Zariski ring for

See also M. AUSLADER AND I). A. BUCHSBUM, Homological dimension in local rings,
Trans. Amer. Math. Soc., vol. 85 (1957), pp. 390-405.

See J-P. SERRE, Gomtrie algdbrique et gdomgtrie analytique, Ann. Inst. Fourier,
Grenoble, vol. 6 (1955-1956), pp. 1-42.
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its (X)-adic topology; but, if we denote by S’ the set of all power series the
constant term of which is in S, S’ is a multiplicative system in R, Rs, is a
Zariski ring for its (X)-adic topology, and Rs is its (X)-adic completion.
The proofs are straightforward, and may be left to the reader.

THEOREM 3.1.
rnal ideal m of A.

Let A be a UFD such that A,. [[X]] is a UFD for every maxi-
Then A[[X]] is a UFD.

Let u, v be any two elements of R A [[X]]; we shall prove that q Run Rv
is principal. As in Theorem 2.1, the maximal ideals of R are the ideals
J Rm - RX, with m maximal in A. For such a maximal ideal, we set
S A m, and we use the previous notations. Since R A [[X]] is a
UFD, and since it is the (X)-adic completion of the Zariski ring Rs, R,
R is a UFD (Lemma 1.2); thus qR is principal, i.e., free over R, whence
q is locally free, i.e., projective, over R. As at the end of the proof of Theo-
rein 2.1, we conclude, using Lemma 1.3, that q is principal, Q.E.D.
Theorem 3.1 shows that, in order to prove that a power series ring over a

UFD A is a UFD, we may assume that A is local. We are now going to
perform a partial reduction to the case in which A has dimension 2. We say
that a noetherian ring A is a Macaulay ring if, for every maximal ideal m,
A is a local Macaulay ring ([10], Appendix 6). The reduction we have in
mind is as follows:

THEOREM 3.2. Let A be a Macaulay UFD such that A, [[X]] is a UFD .for
every prime ideal of height 2. Then A[[X]] is a UFD.

By Theorem 3.1, we may assume that A is local. We then proceed by
induction on the dimension d of A. Our assertion is true for d 0, l, 2.
Assume that our assertion has been proved for dimensions 0, l, d 1,
and let A be of dimension d. Let S be a multiplicative system in A, con-
raining a nonunit. Then As is a UFD (Lemma 1.1). Every prime ideal
of As is of the form ]3 oAs, where is a prime ideal of A disjoint from S,
and we have (As) A,. Since is not the maximal ideal of A, we have
h() =< d 1. Since every A, is a Macaulay ring ([10], Appendix 6, Theo-
rem 2, Corollary 4), As is a Macaulay ring. On the other hand (As)e [[X]I
is a UFD for every prime ideal 3 of height 2. Thus it, follows from Theorem
3.1 and from the induction hypotheses that A [[X]] is a UFD; with the nota-
tions introduced in the beginning of the section, R.s, is therefore a UFD
(Lemma 1.2). From this we are going to deduce that R A[[X]] is a UFD.
We may assume that dim(A) _>_ 3. We shall prove that, for any u, v R,
the ideal Run Rv is principal;since RX is prime, we may assume (by Lemma
1.5) that the constant terms u0, v0 of u, v are 0.
For every prime element p of A, we shall denote by n, the normed valua-

tion having A, as valuation ring, and set

(1) n(u, v) ,(n,(uo) + n,(vo) ).
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We shall prove that Run Rv is principal by induction on the integer n(u, v).
The case n(u, v) 0 is settled by the following lemma"

LEMMA 3.3. Let A be any local UFD, and u, v two elements of R A[[X]]
such that their constant terms Uo, Vo are relatively prime in A. Then u, v are
relatively prime, i.e., Ru r Rv Ruv.

Since u and v have no common divisor, it is sufficient to prove that they
have a 1.c.m., i.e., that dh(Ru q- Rv) =< 1. We set u Uo q- Xu
andv Vo q- Xv’. SinceRu q- Rv q- RX Ruo q- Rvo q- RX, and since
(uo, Vo, X) is a prime sequence ([10], Appendix 6), we have

dh(Ru + Rv + RX) 2

([10], Chapter VII, 13, Lemma 6). If we prove that

(Ru -- Rv) RX Ru - Rv,
then the same Lemma 6 will prove that dh(Ru q- Rv) 1. Now if
Xw au q- by, with a ao -ff Xa’ and b bo q- Xb’ in R, we have

X(w a’u b’v) aouo + bovo + X(aou’ + boy’);

this implies ao Uo q- bo Vo 0, whence (since Uo and Vo are relatively prime)
there exists co in A such that ao Co Vo and bo Co uo. We thus have

X(w- a’u- b’v) Xco(vou’- UoV’)

Xco((, Xv’)u’- (u- Xu’)’) Xco(vu’- u,’).

Dividing by X we see that w belongs to Ru + Rv, and this proves Lemma 3.3.
We now come back to Theorem 3.2. For proving that Ru Rv is principal

by induction on n(u, v), we may assume that u and v have no common factor,
and also (by Lemma 1.5) that neither u nor v has a nontrivial constant factor.
Let s be a prime element of A, distinct from the prime divisors of u0 and v0
let S be the multiplicative system generated by s, and S’ the set of all power
series having their constant term in S. Since Rs, is a UFD, u and v have a
l.c.m, ws in R, we may assume that ws is in R, and that it is not a multiple
(inR) of any element of S’. We writews uvs vus;thenus andvSare
in R by the following lemma"

LEMMA 3.4. Let A be a UFD, S a multiplicative system in A, and z an ele-
ment of R A [[X]] such that Zo is prime to every element of S. Then we have
zR n R zR.

Suppose we have (Zo + Zl X + .-.)(bo s: + bl sIx + ) R, with
bn R, Sn e S, bn and s relatively prime. We have to prove that sn is a unit
for all n. This is true for n 0 since zo boe Rso and since Zo and bo are prime
to So. Suppose it is true for 0, 1,... n 1. Then, computing the co-
efficient of Xn, we see that Zo bn s e R; since Zo bn is prime to s, this implies
s is a unit. This proves Lemma 3.4.
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This being so, we have u s Uo and Vo s Vo, where uo divides Uo and
s

Vo divides vo. Since u e Rs, us, there exist in S and a in R such that tu au
we then have also tv avs. The constant terms verify

sqr(2) ao s ao, to Uo ao Uo, Vo ao Vo.

Let P be the set of common prime factors of uo and vo then ao is (up to a
unit) a product of elements of P. If Uo is a multiple of some p e P, then
np(a) < np(uo), whence n(a, v) < n(u, v). By the induction hypothesis on
n(u, v), a and v have a 1.c.m., whence also a g.c.d, d, and we can write a da"
and v dvtt with att, v" relatively prime. Since tu dat’us and since d and
are relatively prime by Lemma 3.3, d divides u. Since it divides also v, and
since we have assumed that u and v have no common factor, we have d 1,
whence a and v are relatively prime. Then the relation tv av

s shows that
v divides vs shence v and v are associates in Rs,, whence Rs, u n Rs, v Rs, uv,
and Run Rv Ruv by Lemma 3.4.
We are thus reduced to the ease in which u0 has no factor in P, and simi-

la,rly for v0. Then, using (2), we see that we may assume that a0, u0, and
v0 are pairwise relatively prime. This implies that they are uniquely deter-
mined by u0 and vo, and therefore independent of s. This being so, we are
going to use the hypothesis that A is a local Macaulay ring.

Let A be a ring, s an element of A, and c co -t- c X + a power series
over A. We say that c is an s-series if c As for every n. The s-series are
the elements of A[[sX]], and therefore sums and products of s-series are
s-series. We need the following two lemmas"

LEMMA 3.5. Let A be a local ring, s an element of A, a ao + 31 X +
and b bo - bi X -- two power series over A such that ab is an s-series
and that (ao, bo, s) is a prime sequence in A. Then there exist an invertible
power series y 1 + yl X - over A such that yb is an s-series.

We set ao b, + al bn-1 -t- + an bo Cn S (C, A ), and we suppose that
the elements yl,"" ,yn-1 have already been found; we then have
b. -- b._ y -- + b0 y- z. s with z. A forj 1, n 1. We have
to prove the existence of yn in A such that b - bn-1 Yl + + bo Yn Asn,
i.e., that bn q- bn-1 Yl -Jr-’’’ "t- bl Y-I As @. Abo. Since (ao, bo, s) is a
prime sequence, (ao, bo, s) is also a prime sequence ([10], Appendix 6), so
that ao is prime to As" q- Abo. It then suffices to show that

ao b,, + b._ Yl "- -- bl Yn--1) As - Abo.

Sinceaobn =- -(a bn_ + + an-1 bl) (mod. As + Abo), weare reduced
to proving that

Vn bn_ (ao y al) - - bl(ao Yn--1 an-l) A8 - Abo.
n--1 ?,]ttLet y’ be the polynomial 1 - yl X -- -- Yn- X and the power

series such that y’y" 1. The element Vn is the coefficient of X in the series
(b- bo)(aoy-- a). Forn=> 1, we thus havev=- (aoby’-- ba)nmod. Abo.
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Consider the polynomial z bo + zl sX -- -- zn- 8n-lxn-1; it is an
s-series. Moreover we have gPb =-- z mod. Xn, whence b =- y"z mod. X.
Now, since the series a0 y’ a has no constant term, the series v b(ao y’ a)
vcrifies v --- y"z(ao y’- a)rood. Xn+l, whence v =- z(ao- ay")rood. Xn+l.
Notice that yP’a (ab)(y’b)-l; since y’b is congruent to an s-series rood. X,
and since its constant term b0 is prime to S, (y’b)-i is congruent rood. X" to
an s-series over A[bl], whence also over A. Therefore y"a is congruent
rood. X" to an s-series, and so is z(ao ay’t) (since z is an s-series). The
coefficient of X in this series has been seen to be equal to Vn since it is
b,)(a0 ay")n -- Ejn= zj s(ao ay")_ we see that v, Abo + As. This
concludes the proof of Lemma 3.5.

LEMMA 3.6. Let A be a local UFD, s an element of A, S the multiplicative
system generated by s, S the multiplicative system in R A[[X]] formed by the
series having their constant terms in S. Let u and u be two elements of R such
that

(1) uo ao bo uo ao s, ao bo s being a prime sequence in A
(2) uR,u’.

tfThen there exists u" ao - uX -- in R, associate of u in Rs and di-
riding u in R. We then have u’ Ru.

Let us write u(X) t(X)u’(X), where t(X) bos-1 + h X + is a
series with coefficients t. in As. Notice that st_ A" in fact it is true for
n 1; supposing it is proved for 1, n 1, we see, by expressing that
the coefficient of Xn-1 in t(X)u(X) is in A, that t_ aos e As-n; hence
tn_l As since a0 is prime to s and since t_ e As. We can thus write
t_l b_s-withbn_eA. We setX sY. Then

u(sY) s-1(bo -+- b Y + )u’(sY) (bo + b Y -t- )(ao + u’ Y + ...).

Since u(sY) is an s-series with respect to Y, the two series in the right-hand
side verify the hypotheses of Lemma 3.5. Thus there exists an invertible
element y(Y) 1 + y Y -t- of A[[Y]] such that

y(Y)(ao nL- uP Y - s-ly(Y)u’(sY)

is an s-series with respect to Y. Now,
s-ly y --1s y(s-X)

is an invertible element of Rs As [[X]], and 8-1y(s-IX)uP(X) is an element.
u" of R. Since u’ and u" are associates in the completion Rs of the Zariski
ring R,, and since they belong to Rs,, they are associates in Rs, ([10], VIII,

f RSuff4, Theorem 9 (ap) It is clear that u0 a0 since u Lemma 3.4-
shows that u eRu". Similarly we have that u’ e Ru". This proves
Lemma 3.6.
We can now rapidly terminate the proof of Theorem 3.2. Just before

Lemma 3.5, we were reduced to proving that two series u, v have a 1.c.m. in
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R A[[X]] under the following additional, hypotheses" we have u0 a0 u0
and v0 a0 v0 with a0, u0, v0 pairwise relatively prime; for any prime element
s of R which does not divide u0 or v0, u and v have a 1.c.m. ws in Rs, (S’"
set of series having a power of s as constant term); we have ws uvs vus

with us vsinRandu s ,
su0,v6 sv0. SineeA isa Macaulay ring of

dimension __> 3, we may choose s prime to Auo + Aao, so that (u0, a0, s) is
8qa prime sequence; then (u0, a0 is also a prime sequence. In Lemma 3.6,

we replace u by u,, u’ by us, ao by u0 b0 by a0 and s by sq" we see that there
exists u" in R, associate of us in Rs, such that u Ru" and us Ru’. Then
w vu" is a 1.c.m. of u, v in Rs,, and its constant term a0 u0 v0 is prime to s.

By Lemma 3.4, we have w Ru n Rv; if z Ru n Rv, we have

zeRs, unRs, vnR= Rs, wnR= Rw

(Lemma 3.4) therefore Run Rv Rw, and this concludes the proof of Theo-
rein 3.2.
Theorem 3.2 admits the following interesting corollary"

COOLLAIY 3.7. Let A_ be a Macaulay UFD such that A is a regular local
ring for every prime ideal of height 2. Then A[[X]] is a UFD.

Remark 3.8. It would be interesting to know whether the property that A
is a Macaulay ring such that A is regular whenever h(o) 2, is transmitted
to A[[X]]. It is true for the partial property of being a Macaulay ring. On
t.he other hand, if is a prime ideal of height 2 in R A[[X]], n A is a
prime ideal of height 2, 1, or 0; if A is a complete local ring of equal character-
istic 0, the fact that R is regular follows from the classical jacobian criterion
[4]; the general case could possibly be handled in a similar way, in spite of the
difficulties caused by the inseparable derivations. On the other hand, if A
has the above-said property, so has the polynomial ring A IX]" no trouble for
being a Macaulay ring; if 3 is a prime ideal of height 2 in A[X], then A n
has height 1 or 2, whence A is regular; and also (A[X]) is regular, since it
is a quotient ring of A [X] (see proof of Theorem 2.1).

4. Power series over a UFD. The two-dimensional case

Theorem 3.2 almost reduces the question, as to whether power series ring
over a UFD A is a UFD, to the case in which A has dimension 2. At any
rate this two-dimensional case is the crucial one for our problem. The answer
is that there exists a two-dimensional UFD A (which may be assumed to be
local) such that A[[X]] is not a UFD.

THEOeEM 4.1. Let A be a domain, a, b, c three elements of A, and i, j, k
three integers. We assume" b is prime, b and c are relatively prime,

i--1 ba eAb+Ac, a eA +Aci, ijk- ij-.tic- ki >= 0.

Then R A[[X]] is not a UFD.
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Let S be the multiplicative system generated by c in A, S’ the set of all
power series having their constant termsin S. We set R A [[X]]; it is the
(X)-adic completion of the Zariski ring R,. Consider the series

1 v cb a-lX . Ro
The proof is in three steps.

X(a) No power series b al X a2 R is an associate of v in
R (nor, a fortiori, in R,).

In fact, if (cb a-IX)(c- + d c-X ...) R, the coefficient of X
must be in A i.e., d bc- a-c- c-A, whence divides d b. Since c is
prime to b, c- divides d, nd there exists d in A such that d c-d. We
thus hve dbc- a-c- A, whence a- Ab + Ac, in contradiction with
the hypothesis.

(b) There exist an integer and a series

’ btc- + + b_ c-X-1 +
in Rz b A) such that vv’ e R.

We hve to find elements b, b, of A such that

(2) bb a-b -be Ac, bb, a ,_ Ac for n 2.

We take b -’*- ae(-)bt-e, a(-)(-)bt-i+a o b and so on until b_
this is possible, provided ij. The next relation (2) is

bb a(-)bt-+ Ac+

Let us write a db + ec with e, d e A. We thus get the relation

bb (db + ec)(-)bt-+ c+eA

In the binomial expansion of (db + ec) (-), the terms in which c appears
with an exponent ij my be written s b((-)-)F(b, c), where F is
form of degree i with coefficients in A. Our relation is thus equivalent to
bb b:---+t+F(b, c) Ac+. It my be solved by tking
b b---+tF(b, c); notice that the exponent of b is since we
hve assumed that ijk -jlc ki ij O.

In general suppose we have determined b, b(,._): in such a wy that
b(_) bt(-)F,_l(b, c), where t(n- 1) => => ij nd where Fn_ is a
form of degree (n 1)i with coefficients in A. We my then tke

b(n-1) ij+l a-bt(n-)-’,_ (b, c)

nd so on until bnij- a--)(-)bt(-)-+F b
_

c) (multiplying ech time
by a-b-). The next relation to be fulfilled is then

bb,,i (db eci)it-)bt(n-)-i+Fn-(b, cj) Aci+.
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In the form (db -4- ec) 1(i-1)Fn-(b, c’), the sum of the terms in which c has
un exponent _<_ nij may be written as b((n-1)i+(i-)-ni)Fn(b, c) where Fn is
form of degree ni. Thus our congruence may be solved by taking
b bt(n-1)-i]+iik-i-iFn(b, cl). Since ijlc- ij- .tic- tci >= O, the ex-
ponent t(n) of b is __> t(n 1). Thus b. stisfies the same conditions as
b(n-1)i], and the coefficients bq may therefore be found by induction on q.

(c) R cannot be a UFD.

SupposeRisaUFD. Setu w’. Letu u ubethedecomposi-
tion of u in irreducible factors in R; since the constant term of u is a power
of b, and since b is prime, the constant term of each u is a power of b. Since
b is prime to c, each u remains irreducible in the UFD Rs,. On the other
hnd, we have u w’e vRr R, vRs, (since Rs, is a Zriski ring, and
R its completion), whence v’ R, since R is a domain. Since v is obviously
irreducible in Rz, (its constant term being irreducible in A), the relation
w’ u Uq and the unique factorization in R, show that v must be an
associate of some u in R,. This contradicts (a), Q.E.D.

Remartc 4.2. The condition ijtc ij -jlc ]ci >= 0 is surprisingly sym-
metric in the exponents i, j, /c. I huve tried to find weaker conditions by
replacing the series v bc- a-X by more complicated one; but, for
v bc bsX ai-lX (s large; the analogue of (a) works), the analogue
of (b) requires again the same inequality ijtc ij jlc lci >= O. It may
thus be possible that, to every UFD A, is attached a numerical invariant I
(generalizing ijk ij jk lci) such that A[[X]] is a UFD for I < 0 and
is not for I >__ 0. At any rate, in a regular UFD, there cannot exist elements
a, b, c and exponents i, j,/c verifying the assumptions of Theorem 4.1.
Now, in order to disprove the conjecture that a power series ring over a

UFD is a UFD, it is sufficient to construct a UFD containing three elements
verifying the assumptions of Theorem 4.1. This is done in the following
theorem"

THEOIEM 4.3. Let k be a perfect field of characteristic 2. The ring
B ]c[x, y, z], where z x y O, is a UFD, and so is the local ring
B(x,y,z)

The proof is divided into two lemmas"

LEMMA 4.4. Let k be a perfect field of characteristic 2, and A the polynomial
ring k[x,y]. We set p x, q y3, f xp2 + yq2 x + yV. Let a, b be
two relatively prime elements of A. Then every divisor of a + fb is an element
of the same form (i.e., a’ - fb’:).

(a) Since a product of elements of the form a nt- fb is of the same form,
it suffices to prove the lemma for irreducible divisors. Let us write

a -- fb uv,



12 PIERRE SAMUEL

with u irreducible. In A the squares are the elements _i, ai x2iy2J;
they form a subring A of A; the ring A is a free module over A2,
with (1, x, y, xy) as basis. Let us write

+ x(3) u u + ux + uy + uxy, v + vy + vxy.
Since uv a + (bp)x + (bq)y, the fact that (1, x, y, xy) is a basis of A
over A gives the four relations"

(4.1) a ulvl u2v2x- usvy-{- u4v4xy,

(4.2) bp ul v2 -{- u2 vl - y(ua v4 + u4 v),

(4.3) bq ul v + us Yl + X(U2 V4 + U4 /)2),

(4.4) 0 Ul Y4 -- 4 Vl + U2 V$ "{- U3 V2,

Multiplying (4.2) by/)3, (4.3) by/)2, adding, and using the relation

(this is (4.4) since A has characteristic 2), we get

2X)v p-+-/)2 q b /)1(Ul v4 -t- u4 Vl) "+" /)4 u /)3 y + u2 /)2 x) -+- u4 va y +
v4(a- u4vxy) -+- u4(/)- /)xy) /)4a + uv;

setting v’ /) p + /). q and u’ u p + u q, we thus get

(5.1) by’ v4 a + u4 v,

and similarly

(5.2) bu’ u4 a -[-/)4 u.

It follows from (5.1) and (5.2) that a(/)] u -+- u4/)) b(/)’/)4 u
since a and b are relatively prime, there exists t’ in A such that v u
Hence t’bu /) u + u(a + fb) b(u’ + fu), and b divides t’u.
Since u is irreducible, it is prime to b (otherwise it would divide b, whence
also a (= uv fb2), contradicting the hypothesis that a and b are relatively
prime). Thus b divides t’, and we may write t’ bt with in A; hence
v u-[-u/) tb2. The above formula for tub= t’bu, and the analogous
one for t’bv, thus give

(6) tu u’2 -t- fu], tv v’2 + fv].
(b) The first formula (6) has the same form as /)u a + fb:; let us

write t -t- t x -+- t y + t] xy. In formulae (3), (4), (5), we replace u
by itself, u by itself, v by t, v by t, a by u’, nd b by u4 then u is unchanged,
and the analogue of (5.2) is u4 u’ u4 d -+- t4 u; this implies t4 0 since
u 0. The analogue of (5.1) is u4(t3p-+- t2q) t4u’ + u4t, whence
u4(t- t3p- t2q) O. If tp-+- tq, wehave u4 0, and, similarly,
/)4 0. We will see later that the relation m v4 0 suffices for reaching
our conclusion.
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(c) We now prove that, if t3 p q-t2 q, we also have U4 "--/)4-" 0.
Here we use the fact thatp xandq y. We thus have

(7) t + tx + tu tx + t:u.
Let j be the maximum of the degrees of t2 and t3. Since the monomials with
nonzero coetIicients in t, t z, and t y are all distinct, the degree of is at
least 2j + 1. On the other hand, since tx 4- t y3, the degree of
isat most j-l- 3. Hence 2j4- 1 __< j --k 3, j =< 2, and we can write

t2 a0 q- as q- a, t3 b0 -k b 4- b, where ai and b are forms of degree
i. Comparing terms of degrees 1, 3, 5 in (7), we get

(8) a0z+b0y=b0z, ax-+-by bx+aoy3, a2 x - b y a y.

The first relation implies b0 0, whence a0 0. The third shows that y
divides a say a yc (c form of degree 1) whence zgc q- b cx ya

y2this implies that y divides b2 say b d y, whence xc q- yd ct ap-
plying the same process, we get Cl yco, dl ydo, and zc q- yd yCo’,

this shows that Co do 0, whence a b2 0. The second relation (8)
is now a z 4- b y 0; since x and y are linearly independent over A, this
implies al b 0. Therefore we have t. t,s 0, 0, and, by (6),
u’ q- (p2x 4- q y)u4 0; the linear independence of 1, z, y over A shows
that u4 0; similarly /)4 0.

(d) We finally show hov u4 v4 0 implies the conclusion of our lemma.
By (5.2) we have u’ 0, i.e., u, p q- u q 0. Since p and q are relatively
prime, there exists c in A such that u. cp and u cq. By (3) we con-
clude that u u q- c(px q- q2y) Ul q- cf, as asserted.

LEMMA 4.5. Let A be a UFD, and f an irreducible element qf A such that if
a and b are relati/)ely prime in A, then el)cry di/)isor of a fb is of the form
a’-fb’. ThenB A[z],wherez =f, isa UFD.

Since f is irreducible, it is not a square in the quotient field K of A, whence
B is a domain. We give the proof in characteristic 2 (inseparable case); the
separable case is analogous, and slightly simpler. We first prove that B is
integrally closed. Let c q- dz (c, deK) be an element of K(z) which is
integral over B. Then its square is in K and is integral over A, whence
belongs to A. The cases c 0 and d 0 are easy. We write c ua/v,
d ub/v with a, b, u,/) in A, a, b relatively prime, and u,/) relatively prime.
We thus have u(a fb) Av. Since/) is prime to u, it divides a

,v fb")/’ ,v’’ ft"whence is of the form v ft" we also have (a
t’ in A), whence a(w’, fb (vw’) f(vt’) Since f is irreducible,

and f are linearly independent over A, whence a vw, b /)t’. Since a
and b are relatively prime, this implies/) 1, whence c, d A nd c + dz B.
(In the separable case, the proof is easier and classical, since one can use the
trace of c + dz, not only its norm.)

For proving that B is a UFD, we show that every prime ideal 0 of height
1 of B is principal. The ideal n A is a prime ideal of height 1 of A, i.e., an
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ideal Ac where c is irreducible. Since B is the integral closure of A in
purely inseparable extension, is the only prime ideal of B over Ac; hence
Bc is a symbolic power (n) of . Let v be the normed valuation having B
as valuation ring, and let a -}- bz (a, b e A) be a uniformizing element for v.
Wehve(a + bz) a fb A Ac, whence n v(c) 2. If
v(c) 1, we hve Bc, nd our assertion is proved. We thus suppose
that (c) 2, so that Bc (). We hve b 0, for, otherwise, a + bz A
and v(c) 1. If a 0, we esily see that Bz, since f is irreducible.
We thus ssume that a and b re 0, nd write a da’ b db’ with a’,
relatively prime. We hve 2 v(a + bf) 2(d) + v(a’ + b"f); if
v(d) 1, we see that v(c) 1, case already treated; thus v(d) O, a’ + b’z
is uniformizing element for v, and c divides a
are relatively prime, the hypothesis shows that c v + wf with v, w e A.
Thus c (v + wz), is the only prime ideal of height 1 containing v + wz,
nd therefore B( + wz). This concludes the proofs of Lemm 4.5 nd
of Theorem 4.3.
Now we apply Theorem 4.1 to the ring B k[x, y, z] (z x y O)

of Theorem 4.3 (or to the local ring B(.,.z))" we replace the elements a, b, c
of Theorem 4.1 by x, y, z. The exponents i, j, k may then be taken to be
3, 7, 2. The decisive inequality ijlc- ij- j- ]ci 0 is verified since
42- 21 14- 6 1. We have thus found a UFD A (which my be
assumed to be local) such that A[[X]] is not UFD.
Remark 4.6. The completion of the local UFD (k[x, y, z,

.(where z- x- y 0) is the ring lc[[x, y, z, X]]. It is not UFD by
Lemm 1.2, since it is the completion of the local ring A[[X]], where A
(lc[x, y, z]) (,,,z)

Remarlc 4.7. Other equations thn z x y 0 (over perfect field
of characteristic 2) give rise to UFD’s" except in part (c) of Lemma 4.4 the
only hypotheses which hve been used re "z= f [x, y], f irreducible,
f px qy with p, q relatively prime". The computation mde in prt
(c) of Lemm 4.4 may be extended to the following equations"

IIz x y 0, z x y 0,
13 17z x y 0, z x y 0,

Z x ylz x y 0, z x y 0, 0.

All these systems of exponents, except the first one, verify the inequality
ijlc ij jlc ki >- O. It seems likely that a great number of equations
of the form z x2r+l y:S+l 0 give rise to UFD’s, but, for the time
being, I have not been able to find a general procedure. Notice also that
everything in Theorem 4.3, except again part (c) of Lemma 4.4, works if the
polynomial ring ]c[x, y] is replaced by the power series ring k[[x, y]]; however
I feel that the possibility of extending part (c) to power series is much less
likely than the possibility of extending it to more general exponents; at any
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rate it would be interesting to know whether the complete local ring
k[[x, y, z]] (z x y7 0 or more general exponents, k perfect of charac-
teristic 2) is a UFD. It would also be interesting to extend Theorem 4.3 to
other characteristics p 0 (the equation between x, y, z being a purely insep-
arable equation z f(x, y) 0)" the computations in Lemmas 4.4 and 4.5
(especially 4.4) would be more complicated, but there is a fair chance that one
should be able to handle them properly; on the other hand, very different
methods would have to be used in characteristic 0. In this case, Mr. Mumford
has proved recently that the complete local ring k[[x, y, z]] (k. complex field)
isaUFDifz- x3- y5 0, and is not a UFD if z- x3- y7 0.
Remark 4.8. The existence of a complete two-dimensional local UFD A

such that R A[[X]] is not a UFD would have the following, rather strange,
consequences. Every prime ideal of height 2 of R verifies A n (0),
for, otherwise, we would have a monomorphism of the two-dimensional com-
plete local ring A into the one-dimensional local ring R/5, carrying maximal
ideal into maximal ideal, and such that A and R/ have the same residue
field; this would contradict the existence of two analytically independent
elements in A. Therefore, if we denote by S the set of nonzero elements of
A, every prime ideal in Rs has height __< 1, whence Rs is a Dedekind domain
(since it is obviously noetherian and integrally closed). However Rs is not
a PID, for, otherwise, R would be a UFD by Lemma 1.7. Now, since R is a
local ring, every finitely generated projective R-module is free (Remark 1.4),
whereas this property is not shared by

5. Ground-field extensions

In this section we are going to show that unique factorization is preserved
neither by ground-field extension, nor by ground-field restriction. Of course,
our rings will remain integrally closed domains. The examples we give are
taken from the theory of plane conics. We thus discuss first the conditions
under which the affine coordinate ring of a conic is a UFD.

THEOREM 5.1. Let C’ be an irreducible conic in the ajne plane, defined
over a field k, let A be its ajne coordinate ring (over k ), and let C be the prqec-
tire extension of C’.

a If C has no rational point over k, then A is a UFD;
(b) if C carries rational points over k, but if the points at infinity of C are

not rational over k, then A is not a UFD;
(c) if the points at infinity of C are rational over k, then A is a UFD.

Let X be a positive divisor on C, rational over k. This divisor is a "com-
plete intersection" (i.e., there exists a positive divisor D in the projective
plane, defined over k, such that X C.D) if and only if it has een degree:
this comes from the facts that C has order 2, genus 0, and is normal. To
every prime ideal (0) in A corresponds a positive divisor X’(3) on C’,
which is prime-rational over k. For to be principal, it is necessary and
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sufScient that there exist a positive linear combination I of the points at
infinity of C, rational over k, such that X’(I) -k I is a complete intersection,
i.e., has even degree.

In case (a), every rational divisor on C’ has even degree (for, otherwise, C
would carry a rational point; see [2], p. 33); we thus take I 0, is princi-
pal, and A is a UFD. In case (b), let I be the prime ideal in A correspond-
ing to a rational point of C’; then X’(I) has degree one; on the other hand,
if a rational divisor I has the points at infinity as components, its degree is
even (if the two points at infinity are distinct, they must occur in I with the
same coeificient since they are conjugate over It; if there is only one point P
at infinity, k(P) is a purely inseparable extension of degree 2 of k, and the
coetficient of P in I must be a multiple of the order of inseparability, i.e., of
2). Thus no X’() -t- I can have even degree, showing that I is not prin-
cipal, and that A is not a UFD. Finally, in case (c), any linear combination
of the points at infinity is rational over k, showing that every prime ideal
I (0) in A is principal, and that A is a UFD.
Now the examples are quite simple:
(1) Let C’ be defined by x2+2y + 1 0 over Q. Then Q[x,y] is a

UFD by case (a), and Q(i)[x, y] is not a UFD by case (b) (i -1).
(2) Let C’ be defined by x-t- y- 1 0overQ. Then Q[x, y] is not a

UFD by case (b), but Q(i)[x, y] is a UFD by case (c).

6. Open problems
Some open questions, closely related with this paper, have been described

in Remarks 3.8, 4.2, and 4.7. I will now describe another one.
The UFD’s constructed in 4, as well as Mumford’s k[[x, y, z]] (k complex

field, z x y 0), are not the first examples of nonregular UFD’s.
The first examples came from the following geometric origin" if V is an arith-
metically normal projective variety such that every divisor on V is a complete
intersection, then the homogeneous coordinate ring A of V is a UFD, and so
is the local ring A of the vertex of the projecting cone of V. The following
are examples of such varieties"

(a) generic surface of order 4 in 3-space [6],
(b) Grassmann varieties [7],
(c) nonsingular hypersurfaces in a projective space of dimension >__ 4

([8]; algebraic proof in [5], in the case of hyperquadrics).
The last example seems to be the most interesting one, at least from an
algebraic point of view. It. leads to the following question"

"Let A be a local domain of dimension >__ 4, which is a factor ring R/(f)
of a regular local ring by a principal ideal. Assuine that A, is regular for
every nonmaximal prime ideal . Is A a UFD?"
One could try to weaken the hypothesis "A regular/principal" to "A is

a Macaulay ring". Under this weaker hypothesis the question could be
more manageable by homological methods.
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All the examples of UFD’s I know are Macaulay rings. Is this true in gen-
eral?
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