ON WEIERSTRASS PRODUCTS OF ZERO TYPE ON THE REAL AXIS

BY
J. P. Kahane and L. A. Rubel ${ }^{1}$
\section*{1. Introduction}

Let ${ }^{W}$ We the class of even entire functions $W(z)$ of exponential type, with real zeros only, and such that $W(0)=1$. It follows readily from the Hadamard factorization theorem that \mathbb{W} is identical with the class of all Weierstrass products $W(z)=\Pi\left(1-z^{2} / \lambda_{n}^{2}\right)$ with $0<\lambda_{0} \leqq \lambda_{1} \leqq \lambda_{2} \leqq \cdots$ and n / λ_{n} bounded. For a given function $T(r)>0$, let W_{T} be that subclass of ${ }^{W}$ consisting of those $W \in \mathbb{W}$ for which $|W(r)|=O(1) \exp (T(r))$. If $T(r)$ does not grow too fast as $r \rightarrow \infty$ and $W \epsilon \mathbb{W}_{r}$, then (see (2.4)) the sequence $\left\{\lambda_{n}\right\}$ must have a density D, and on each nonhorizontal ray $z=r e^{i \theta}$ through the origin, $|W(z)|$ grows like $|\sin (\pi D z)|$; and if $W_{1}, W_{2} \in \mathcal{W}_{T}$ and

$$
W(z)=W_{1}(z) W_{2}(z)
$$

is their product, then $\left(\right.$ see (2.6)) type $(W)=$ type $\left(W_{1}\right)+$ type $\left(W_{2}\right)$. The weakest known hypothesis on T that guarantees these conclusions is

$$
\int^{\infty} r^{-2} T(r) d r<\infty
$$

Our main result says that if T violates this hypothesis, then the conclusions will no longer hold.

That the types need no longer add has particular significance for generalized harmonic analysis. Since a class ${ }^{W}{ }_{T}$ corresponds to the collection of Fourier transforms of generalized distributions in a class \mathfrak{F}_{T}, multiplication in W_{T} corresponding to convolution in \mathfrak{F}_{T}, and the type of $W \in{ }^{\mathfrak{W}} \mathcal{W}_{T}$ corresponding to the support of the corresponding $F \in \mathfrak{F}_{T}$, our main result shows, independently of the recent work of Roumieu [5], the impossibility of extending the "theorem of supports" to certain classes of generalized distributions.

This paper is essentially self-contained, but a knowledge of the general background material, as discussed, say, in Chapters I, II, and V of Boas's book [1] is probably indispensable.

2. Notation, history, and statements of results

With the Weierstrass product

$$
\begin{align*}
W(z)= & \prod_{n=0}^{\infty}\left(1-z^{2} / \lambda_{n}^{2}\right) \tag{2.1}\\
& 0<\lambda_{0} \leqq \lambda_{1} \leqq \lambda_{2} \leqq \cdots, n / \lambda_{n} \text { bounded }
\end{align*}
$$

[^0]we associate the functions
\[

$$
\begin{array}{r}
n(t)=\sum_{\lambda_{n} \leqq t} 1, \quad D(t)=n(t) / t, \quad \bar{D}(t)=\frac{1}{t} \int_{0}^{t} D(u) d u \\
h(\theta)=\underset{r \rightarrow \infty}{\lim \sup } r^{-1} \log \left|W\left(r e^{i \theta}\right)\right|, \quad \chi(\theta)=\lim \inf r^{-1} \log \left|W\left(r e^{i \theta}\right)\right| \\
\text { for } 0 \leqq \theta<2 \pi .
\end{array}
$$
\]

In addition, we use the notation

$$
\begin{gathered}
h=h(\pi / 2)=\operatorname{type}(W(z)) \\
D^{\bullet}=\lim \sup _{t \rightarrow \infty} D(t), \quad D .=\lim \inf _{t \rightarrow \infty} D(t), \quad \bar{D}^{\bullet}=\lim \sup \bar{D}(t)
\end{gathered}
$$

We state some known results.
(2.2) $h(0)=0$ if and only if $h(\theta)=\pi \bar{D}^{\cdot}|\sin \theta|$ for all $\theta[6, ~ p .428]$.
(2.3) If $W(z)=W_{1}(z) W_{2}(z)$, then (trivially) $h \geqq \max \left(h_{1}, h_{2}\right)$.
(2.4) If

$$
\begin{equation*}
\int^{\infty} r^{-2} \log ^{+} W(r) d r<\infty \tag{2.5}
\end{equation*}
$$

then $D .=D^{\bullet}$ and $h(\theta)=\chi(\theta)=\pi D^{\bullet}|\sin \theta|$ for $\theta \neq 0, \pi[3, \mathrm{p} .769]$.
(2.6) Corollary. If $W(z)=W_{1}(z) W_{2}(z)$ and $W_{1}(z)$ or $W_{2}(z)$ satisfies (2.5), then $h=h_{1}+h_{2}$.

Our main result, announced in [7], is that (2.3), (2.4), and (2.6) are essentially best possible. That the conclusion $D .=D^{\cdot}$ of (2.4) is no longer valid if (2.5) is weakened to the condition $h(0)=0$, is contained in [4, Theorem V].

Theorem. Let $T(r)$ be a positive increasing function defined for $r>r_{0}$ with $T(r) / r$ decreasing and $T(r) / \log r$ increasing, and such that

$$
\begin{equation*}
\int^{\infty} r^{-2} T(r) d r=\infty . \tag{2.7}
\end{equation*}
$$

Then there exist, given any $h_{1}, h_{2}>0$, Weierstrass products (2.1), $W_{1}(z)$ and $W_{2}(z)$, whose types are h_{1} and h_{2} respectively, satisfying

$$
\begin{equation*}
\left|W_{i}(r)\right|=O(1) e^{T(r)}, \quad i=1,2 \tag{2.8}
\end{equation*}
$$

but such that if $W(z)=W_{1}(z) W_{2}(z)$ is their product, then

$$
\operatorname{type}(W)=\max \left(h_{1}, h_{2}\right)
$$

In addition, for $i=1,2, \quad h_{i}=\pi D_{i}^{*}, \quad D \cdot_{\cdot i}=0$, and $\chi_{i}(\theta)=0$ for $\theta \neq 0, \pi$.
Remarks. The conditions $T(r) / r \downarrow$ and $T(r) / \log r \uparrow$ are regularity conditions on $T(r)$ and do not affect the convergence or divergence of the integral
in (2.7). It would be nice to eliminate these conditions, but we have not found a way to do this. The condition $T(r) / \log r \uparrow$ can be replaced, with certain changes in the proof, by any one of several somewhat related conditions of which three examples are
(i) $T(r) / \log (r / T(r)) \uparrow$,
(ii) $r^{1 / 2} \leqq T(r) \leqq r / \log r$,
(iii) the function $\tau(r)$, defined by $\tau(r)=T(r) / r$, is slowly oscillating in the sense that $\tau(a r) / \tau(r) \rightarrow 1$ as $r \rightarrow \infty$ for each positive a.

There is no difficulty in modifying the proof of the theorem to give a construction of an infinite set $W_{j}(z), j=1,2,3, \cdots$ of products (2.1) satisfying (2.8) such that

$$
\prod_{j=1}^{\infty} W_{j}(z)=(\sin \pi z) / \pi z=\prod_{n=1}^{\infty}\left(1-z^{2} / n^{2}\right)
$$

but such that for each $W_{j}(z)$ and each product $W(z)$ of a finite number of the $W_{j}(z)$, we have $h_{1}=h_{2}=\cdots=h=\pi$. To do this, one need only replace the pair of functions A_{1}, A_{2} of Section 4 by an infinite set having similar properties, and replace the constant k there by a function $k(t)$ that decreases extremely slowly to 0 as $t \rightarrow \infty$.

The first two lemmas are interesting in themselves, and we state them here. Lemma 1 states that if $D(r)$ is slowly oscillating in the sense of (2.9), then for each $\theta \neq 0, \pi,\left|W\left(r e^{i \theta}\right)\right|$ imitates the behaviour of $D(r)$. Lemma 2 enables us to make the passage from continuous mass distributions to discrete ones. As a corollary of Lemma 1 it is easily seen that if (2.9) holds, then $h(\theta)=\pi D^{\bullet}|\sin \theta|$ for $\theta \neq 0, \pi$, and by the well-known continuity of $h(\theta)$ that $h(0)=0$, thus giving another proof of a result of Redheffer [4, Theorem II].

Lemma 1. If

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\{D(r t)-D(r)\}=0 \tag{2.9}
\end{equation*}
$$

uniformly for t in any interval $0<\varepsilon \leqq t \leqq 1 / \varepsilon$,
then for $\theta \neq 0, \pi$

$$
\log \left|W\left(r e^{i \theta}\right)\right|=\pi r D(r)|\sin \theta|+o(r)
$$

Lemma 2. Suppose that $\nu(r)$ is a continuously differentiable function for $0 \leqq r<\infty$, that $0 \leqq \nu^{\prime}(r) \leqq q<\infty$, and that

$$
\begin{equation*}
\nu(r) \geqq n(r)>\nu(r)-K \quad \text { for some constant } K \text { and all } r . \tag{2.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\log |W(r)| \leqq \int_{0}^{\infty} \log \left|1-r^{2} / t^{2}\right| \nu^{\prime}(t) d t+O(\log r) \quad \text { as } r \rightarrow \infty \tag{2.11}
\end{equation*}
$$

3. Proofs of Lemmas 1 and 2

Proof of Lemma 1. Write $\log W\left(r e^{i \theta}\right)=\log \Pi\left(1-r^{2} e^{2 i \theta} / \lambda_{n}^{2}\right)=$ $\sum \log \left(1-r^{2} e^{2 i \theta} / \lambda_{n}^{2}\right)=\int_{0}^{\infty} \log \left(1-r^{2} e^{2 i \theta} / t^{2}\right) d n(t)$. For $\theta \neq 0, \pi$ we may
integrate by parts. The "integrated terms" drop out if the branch of the logarithm is conveniently chosen because n / λ_{n} is bounded (see (2.1)), and we get, after a multiplicative change of variables,

$$
\log W\left(r e^{i \theta}\right)=r \int_{0}^{\infty} \frac{2 e^{2 i \theta}}{e^{2 i \theta}-t^{2}} D(r t) d t .
$$

Hence the familiar formula

$$
\begin{equation*}
\log \left|W\left(r e^{i \theta}\right)\right|=r \int_{0}^{\infty} P(t, \theta) D(r t) d t \tag{3.1}
\end{equation*}
$$

where

$$
P(t, \theta)=\operatorname{Re}\left\{\frac{2 e^{2 i \theta}}{e^{2 i \theta}-t^{2}}\right\}=2 \frac{1-t^{2} \cos 2 \theta}{1-2 t^{2} \cos 2 \theta+t^{4}}
$$

For each $\theta \neq 0, \pi, P(t, \theta)$ is a bounded and Lebesgue integrable function of t on $(0, \infty)$, and it is well known that $\int_{0}^{\infty} P(t, \theta) d t=\pi|\sin \theta|$. Thus

$$
\log \left|W\left(r e^{i \theta}\right)\right|-\pi r D(r)|\sin \theta|=r \int_{0}^{\infty}\{D(r t)-D(r)\} P(t, \theta) d t
$$

By breaking the range of this last integral into three parts,

$$
\int_{0}^{\infty}=\int_{0}^{\varepsilon}+\int_{\varepsilon}^{1 / \varepsilon}+\int_{1 / \varepsilon}^{\infty}
$$

it is easy to see that $\int_{0}^{\infty}\{D(r t)-D(r)\} P(t, \theta) d t \rightarrow 0$ as $r \rightarrow \infty$ (but not uniformly in $\theta \neq 0, \pi)$, and the lemma is proved.

Remark. The hypothesis (2.9) can be replaced by the following, apparently weaker, hypothesis:

$$
\lim _{r \rightarrow \infty}\{D(r t)-D(r)\}=0 \quad \text { for each } t \in(0, \infty)
$$

since a frequently discovered result asserts that if (2.9') holds for a Lebesgue measurable function $D(r)$, then (2.9) actually holds. (The history of this result is too complicated for us to unravel here, and we give only the reference [2, 1.4].)

Proof of Lemma 2. For fixed r, we write, as in the proof of Lemma 1, $\log |W(r)|=\int_{0}^{\infty} L(t) d n(t)$, where $L(t)=\log \left|1-r^{2} / t^{2}\right|$. We point out that $L(t)$ is Lebesgue integrable on $(0, \infty)$,

$$
L(0+)=+\infty, \quad L(r-)=L(r+)=-\infty, \quad L(\infty)=0
$$

and that $L(t)$ is decreasing and continuous in $(0, r)$ and increasing and continuous in (r, ∞). We must compare

$$
Y=\int_{0}^{\infty} L(t) d n(t) \quad \text { and } \quad Z=\int_{0}^{\infty} L(t) d \nu(t)
$$

We will prove that $Y<Z+O(\log r)$ where $n(r)$ may be replaced by any increasing function $\mu(r)$ satisfying $\mu(0)=0$ and $\nu(r) \geqq \mu(r)>\nu(r)-K$ for
some constant K. We assume that $\nu^{\prime}(t) \geqq p>0$. This involves no loss of generality since if we replace $\nu(t)$ by $\nu(t)+t$, and $\mu(t)$ by $\mu(t)+t$, we change Z and Y not at all because $\int_{0}^{\infty} L(t) d t=0$. We may suppose without loss of generality that $\nu(0)=0$ since suitably redefining ν on the interval $[0,1]$ changes the value of the integral in the conclusion (2.11) only by $O(1)$. The additional $O(1)$ is negligible compared to $O(\log r)$, which is the discrepancy allowed in (2.11).

With each large r we associate the numbers r_{1} and r_{2} such that

$$
\nu\left(r_{1}\right)=\mu(r)=\nu\left(r_{2}\right)-K
$$

Since $\nu^{\prime}(t) \geqq p$, we will have $r-r_{1} \leqq r_{2}-r_{1} \leqq K / p$. The following inequalities hold, as can be readily verified:

$$
\begin{align*}
& \int_{0}^{r} L(t) d \mu(t) \leqq \int_{0}^{r_{1}} L(t) d \nu(t) \tag{3.2}\\
& \int_{r}^{\infty} L(t) d \mu(t) \leqq \int_{r_{2}}^{\infty} L(t) d \nu(t) \tag{3.3}
\end{align*}
$$

From these inequalities we deduce that $Y \leqq Z+X$, where

$$
X=-\int_{r_{1}}^{r_{2}} \log \left|1-r^{2} / t^{2}\right| d \nu(t)
$$

and we shall prove that $X \leqq O(\log r)$. Clearly,

$$
X \leqq-\int_{r_{1}}^{r_{2}} \log \left|\frac{t-r}{t}\right| d \nu(t)
$$

Since $r_{2}-r_{1} \leqq K / p$ and $\nu^{\prime}(t) \leqq q$, we have

$$
X \leqq-q \int_{r_{1}}^{r_{2}} \log ^{-}\left|\frac{t-r}{r}\right| d t \leqq q\left(r_{2}-r_{1}\right) \log r_{2}-q \int_{r_{1}}^{r_{2}} \log ^{-}|t-r| d t
$$

so that $X \leqq(q K / p) \log (r+K / p)+2 q$.

4. Proof of the theorem

Let us first illustrate the method of proof with a simple example to show that one may have $h_{1}(0)=h_{2}(0)=0$, but not $h=h_{1}+h_{2}$. Put

$$
\begin{aligned}
& n_{1}(r)=\left[\int_{0}^{r}\{1+\sin (\log \log t)\} d t\right] \\
& n_{2}(r)=\left[\int_{0}^{r}\{1+\cos (\log \log t)\} d t\right]
\end{aligned}
$$

and let $W_{1}(z)$ and $W_{2}(z)$ be the Weierstrass products (2.1) over the sets whose counting functions are $n_{1}(t)$ and $n_{2}(t)$, respectively. The slow oscillations imply (by Lemma 1 and the continuity of $h_{i}(\theta)$) that $h_{1}(0)=h_{2}(0)=0$. Lemma 1 shows that $W_{1}(i y)$ behaves very much like
$\exp \{\pi y(1+\sin (\log \log y))\}$, and $W_{2}(i y)$ like $\exp \{\pi y(1+\cos (\log \log y))\}$ as $y \rightarrow \infty$. But since sin and cos are out of phase, we get not

$$
h=2 \pi+2 \pi=4 \pi
$$

but $h=\left(2+2^{1 / 2}\right) \pi$ instead.
Beginning now the proof of the theorem, we will suppose without loss of generality that $T(r)$ is continuous and that $\lim _{r \rightarrow \infty} T(r) / r=0$ because a function $T(r)$ satisfying the hypotheses of the theorem certainly has a continuous minorant $T^{*}(r)$ satisfying the hypotheses with $\lim _{r \rightarrow \infty} T^{*}(r) / r=0$. Also, (2.7) implies that $T(r) / \log r \rightarrow \infty$ since we have supposed that $T(r) / \log r \uparrow$. We will not prove the "in addition" part of the theorem since it will be amply clear from the proof that each of the functions $W_{1}(z), W_{2}(z)$ will satisfy the requirements of the second part. To construct these Weierstrass products $W_{1}(z)$ and $W_{2}(z)$, we take two functions $A_{1}(t)$ and $A_{2}(t)$ satisfying the following simple conditions:
(4.1) $\quad A_{1}(t)$ and $A_{2}(t)$ are nonnegative continuously differentiable periodic functions of period 2π for $-\infty<t<\infty$.
(4.2) $A_{1}(t) A_{2}(t) \equiv 0$, i.e., $A_{1}(t)$ vanishes where $A_{2}(t)$ does not, and vice versa.
(4.3) $\max _{t} A_{1}(t)=h_{1}, \max _{t} A_{2}(t)=h_{2}$.

For example, we might choose

$$
A_{1}(t)=h_{1}\{\max (\sin t, 0)\}^{2} \quad \text { and } \quad A_{2}(t)=h_{2}\{\min (\sin t, 0)\}^{2}
$$

Now define $\nu_{i}(t)$ (where, as throughout this section, $i=1,2$) by

$$
\nu_{i}(t)=\int_{0}^{t} A_{i}(l(s)) d s
$$

where $l(s)$ is the continuous function defined by

$$
\begin{align*}
l^{\prime}(H(t)) & =k \frac{\log t}{t} \quad \text { for } \quad t \geqq t_{0}=\max \left(r_{0}, e\right), \tag{4.4}\\
l(t) & =k \frac{\log t_{0}}{t_{0}} t \quad \text { for } \quad 0<t<H\left(t_{0}\right)
\end{align*}
$$

where $H(t)=T(t) / \log t$, and the constant k will be chosen later in a way that depends only on the choice of the functions $A_{1}(t)$ and $A_{2}(t)$.

Finally, we define $W_{i}(z)$ by

$$
\log W_{i}(z)=\int_{0}^{\infty} \log \left(1-z^{2} / t^{2}\right) d n_{i}(t)
$$

where $n_{i}(t)=\left[\nu_{i}(t)\right]$.

Lemma 3. $\lim _{r \rightarrow \infty}\left\{A_{i}(l(r t))-A_{i}(l(r))\right\}=0$ uniformly for t in any interval $0<\varepsilon \leqq t \leqq 1 / \varepsilon$.

The proof follows from the estimate

$$
\left|A_{i}(l(r t))-A_{i}(l(r))\right| \leqq\left\|A_{i}^{\prime}\right\|_{\infty}\left\{\max _{r t \leqq \xi \leqq r} l^{\prime}(\xi)\right\} r(1-t)
$$

if $t<1$, where $\left\|\|_{\infty}\right.$ denotes the supremum of the indicated function. There is a similar estimate if $t>1$. But from (4.4), provided that $r \geqq H\left(t_{0}\right) / t$ (then $\left.H^{-1}(r t) \geqq e\right)$, we have $l^{\prime}(\xi)=k\left(\log H^{-1}(\xi)\right) / H^{-1}(\xi)$, and for such r we then have
$r l^{\prime}(\xi)=k r \frac{\log H^{-1}(\xi)}{H^{-1}(\xi)} \leqq k r \frac{\log H^{-1}(r t)}{H^{-1}(r t)}$

$$
=\frac{k}{t}(r t) \frac{\log H^{-1}(r t)}{H^{-1}(r t)}=\frac{k}{t} \frac{H(y) \log y}{y}=\frac{k}{t} \frac{T(y)}{y},
$$

where $y=H^{-1}(r t)$. But $(k / t)(T(y) / y) \rightarrow 0$ uniformly for $t \geqq \varepsilon>0$ since $T(y) / y \rightarrow 0$ as $y \rightarrow \infty$.

Lemma 4. $\quad D_{i}(r)=A_{i}(l(r))+o(1)$ as $r \rightarrow \infty$, and the hypothesis of Lemma 1 is satisfied by $D_{i}(r)$.

We have to prove the first part, from which the second follows, by Lemma 3. The proof is immediate, on noticing that $D_{i}(r)=r^{-1} \nu_{i}(r)+o(1)$, so that

$$
D_{i}(r)-A_{i}(l(r))=\int_{0}^{1}\left\{A_{i}(l(r t))-A_{i}(l(r))\right\} d t+o(1)
$$

and by Lemma 3 the second member is $o(1)$.
Lemma 5. $\quad l(r) \rightarrow \infty$ as $r \rightarrow \infty$.
It is precisely at this point that the condition (2.7) enters the picture. We write

$$
l(H(r)) \geqq \int_{t_{0}}^{r} l^{\prime}(H(s)) d H(s)
$$

By (4.4) we may write this last integral as

$$
\begin{aligned}
& \int_{t_{0}}^{r} l^{\prime}(H(s)) d H(s)=k \int_{t_{0}}^{r} \frac{\log s}{s} d\left(\frac{T(s)}{s}\right) \\
&=k \int_{t_{0}}^{r} \frac{\log s-1}{s^{2}} \frac{T(s)}{\log s} d s+O(1)
\end{aligned}
$$

on integrating by parts. Since the divergence of the last integral is an easy consequence of (2.7), we are done.

From Lemma 4 and Lemma 1, we conclude that

$$
\log \left|W_{i}\left(r e^{i \theta}\right)\right|=\pi r A_{i}(l(r))+o(r)
$$

and therefore that for $W=W_{1} W_{2}$

$$
\log \left|W\left(r e^{i \theta}\right)\right|=\pi r\left\{A_{1}(l(r))+A_{2}(l(r))\right\}+o(r)
$$

Since, by Lemma $5, l(r) \rightarrow \infty$, it is clear that

$$
\operatorname{type}\left(W_{i}\right)=h_{i},
$$

and that because of (4.2) and (4.3)

$$
\text { type }(W)=\max \left(h_{1}, h_{2}\right)
$$

It remains only to verify that the W_{i} satisfy (2.8), which we now do. By Lemma 2, if we show that

$$
\begin{equation*}
Z_{i}=\int_{0}^{\infty}\left|\log 1-r^{2} / t^{2}\right| d \nu_{i}(t) \leqq T(r) \tag{4.5}
\end{equation*}
$$

for large r, we will be done except for the trivial enlargement of the $O(1)$ of (2.8) to $\exp (O(\log r))$, that is, to a term of polynomial growth. We leave it to the reader to verify that by simply dropping a finite number of terms from each of the products (2.1) for $W_{i}(z)$, the additional factors of polynomial growth are cancelled without affecting the other conditions.

To prove (4.5), write it as

$$
Z_{i}=-\int_{0}^{\infty} \varphi(t / r) t \nu_{i}^{\prime \prime}(t) d t
$$

where

$$
\varphi(t)=\frac{1}{t} \int_{0}^{t} \log \left|1-\frac{1}{u^{2}}\right| d u=\log \left|1-\frac{1}{t^{2}}\right|+\frac{1}{t} \log \left|\frac{1+t}{1-t}\right| \geqq 0
$$

Thus

$$
Z_{i}=\int_{0}^{\infty}-\varphi(t / r) t l^{\prime}(t) A_{i}^{\prime}(l(t)) d t=\int_{0}^{H}+\int_{H}^{\infty}
$$

where $H=H(r)=T(r) / \log r$ as before. Now

$$
\int_{0}^{H}-\varphi(t / r) t l^{\prime}(t) A_{i}^{\prime}(l(t)) d t \leqq\left\|A_{i}^{\prime}\right\|_{\infty}\left\|t l^{\prime}(t)\right\|_{\infty} \int_{0}^{H} \varphi(t / r) d t
$$

It is easy to verify that $\int_{0}^{H} \varphi(t / r) d t \leqq 3 H \log (r / H) \leqq 3 T(r)$ and to show that $\left\|t l^{\prime}(t)\right\|_{\infty} \leqq k T\left(t_{0}\right) / t_{0}$, so that

$$
\int_{0}^{H} \leqq k K_{1} T(r)
$$

where K_{1} is a constant that depends only on the choice of the functions A_{i}.
Now for sufficiently large t the function $t l^{\prime}(t)$ is decreasing, and thus, for
large r, we have the estimate

$$
\int_{H}^{\infty}-\varphi(t / r) t l^{\prime}(t) A_{i}^{\prime}(l(t)) d t \leqq\left\|A_{i}^{\prime}\right\|_{\infty} H l^{\prime}(H) \int_{H}^{\infty} \varphi(t / r) d t
$$

But $H l^{\prime}(H)=k T(r) / r$ and $\int_{H}^{\infty} \varphi(t / r) d t \leqq r \int_{0}^{\infty} \varphi(t) d t$. Hence

$$
\int_{H}^{\infty} \leqq k K_{2} T(r),
$$

where K_{2} also depends only on the choice of the A_{i}.
Having chosen the A_{i} then, we select k so that $k\left(K_{1}+K_{2}\right)<1$ and conclude that $Z_{i} \leqq T(r)$ for all sufficiently large r, and the theorem is proved.

Bibliography

1. R. P. Boas, Jr., Entire functions, New York, 1954.
2. J. Korevaar, T. van Aardenne-Ehrenfest, and N. G. de Bruijn, A note on slowly oscillating functions, Nieuw Arch. Wisk. (2), vol. 23 (1949), pp. 77-86.
3. R. E. A. C. Paley and Norbert Wiener, Notes on the theory and application of Fourier transforms. V, Trans. Amer. Math. Soc., vol. 35 (1933), pp. 768-781.
4. R. M. Redheffer, On even entire functions with zeros having a density, Trans. Amer. Math. Soc., vol. 77 (1954), pp. 32-61.
5. C. Roumieu, Sur la transformation de Fourier des distributions généralisées, C. R. Acad. Sci. Paris, vol. 248 (January 1959), pp. 511-513.
——, Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup., vol. 77 (1960), pp. 41-121.
6. L. A. Rubel, Necessary and sufficient conditions for Carlson's theorem on entire functions, Trans. Amer. Math. Soc., vol. 83 (1956), pp. 417-429.
7. J. P. Kahane and L. A. Rubel, Sur les produits canonique de type nul sur l'axe réel, C. R. Acad. Sci. Paris, vol. 248 (June 1959), pp. 3102-3103.

Université de Montpellier
Montpellier, France
University of Illinois
Urbana, Illinois

[^0]: Received October 6, 1959.
 ${ }^{1}$ The second author was partially supported in this research by the United States Air Force Office of Scientific Research of the Air Research and Development Command.

