HOMOGENEOUS SYMPLECTIC MULTIPLIERS

BY
R. C. GunnNinG!

1. Introduction

Some properties of modular forms in one and several complex variables
have recently been extended by R. Godement to more general classes of
vector-valued modular forms associated to various matrix factors of auto-
morphy for the symplectic modular group [6]; the factors of automorphy
considered extend trivially to factors of automorphy, or multipliers, for the
full symplectic group. This suggested the exercise of generalizing the classi-
fication of scalar multipliers given in [8] to a classification of matrix multi-
pliers, which proved quite simple. The general technique is discussed in Sec-
tion 2, and its application to the symplectic group in Section 3.

2. The general formulation of the problem

Let D be a complex analytic manifold, G a transitive real Lie group of
complex analytic automorphisms of D, and K the isotropy subgroup of G at
a point zy € D; the image of a point z ¢ D under a mapping ¢ ¢ G will be denoted
by gz. Assume further that

(1) D is a Stein manifold, [2];

(2) the mapping G — D defined by g — gz admits C” local cross-sections,
(in the sense that there is a covering of D by open neighborhoods U; to each
of which corresponds a C” mapping z — ¢;(z) of U; into G such that
g;(2)20 = 2z for all ze U;).

A multiplier (of rank m) for G on D is a C” mapping (g, z) — M(g, 2) of
G X D into the group Gl(m, C) of nonsingular m X m complex matrices,
which is complex analytic in z for each fixed ¢ e @ and which satisfies the
functional equation

(3) M(gg',2) = M(g, ¢d2)M(g", 2).

Two such multipliers M (g, 2) and M,(g, z) will be called equivalent, written
M ~ M,, if there is a complex analytic mapping z — F(z) of D into
Gl(m, C) such that

(4) F(ge) = M(g,2)F(2)Mo(g,2)7".
From (3) it follows that the mapping k¥ — M (k, z,) is a complex representa-
tion of the group K, and from (4) that two equivalent multipliers induce
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equivalent representations. It thus suffices for a classification to consider
the inequivalent complex representations of K, and for each such representa-
tion p to determine the set 9M(p) of multipliers associated thereto and the
set M*(p) of equivalence classes in M (p).

From each nonempty set 9 (p) select in some manner a canonical element
Mo(g, z), henceforth to be assumed fixed. For any M (g, z) ¢ M(p) there is
a unique C* mapping z — F(2) of D into Gl(m, C) which satisfies (4) and
in addition F(z) = I. (The uniqueness is a clear consequence of the tran-
sitivity of G; as for the existence, the function F(g) = M(g, 20) Mo(g, 2)™
on @G is right-invariant under K, and hence induces a function F(z) on
G/K = D which is easily seen to be the desired function.) Then associate to
M (g, z) the m X m matrix ¢(z) of complex differential forms on D defined by

(5) ¢(2) = F(2)7 8F(2);

here the differential operator d (in the notation of [5] )is applied component-
wise, while multiplication and inverse are taken in the usual matrix sense.
This determines a mapping D from 9 (p) onto the particular set ®(p) of
differential forms described in the following:

Lemma 1. ®(p) s the set of m X m matrices ¢(2) of complex differential
forms of type (0, 1) on D such that

(6) 5g-¢(2) = Mo(g, 2)$(2) Mo(g, 2)~

(where 8g 1is the left translation of differential forms on D associated to the auto-
morphism z — gz as in [4]), and such that

(7) dp(2) + ¢(2) A ¢(2) = 0.

Proof. If ¢(2) = DM (g, 2), then (6) and (7) follow upon applying the
operator d to (4) and (5) respectively. Conversely if ¢(z) satisfies (7)
there is a C* mapping z — F(z) of D into Gl(m, C') which satisfies (5). To
see this recall that the existence of such mappings locally was proved for
instance in [9] (especially Section 19); that is, there is an open covering
{UJ of D together with a family of C* mappings z — F,(z) of the various
sets U; into Gl(m, C) such that Fi(z)'dF.(2z) = ¢(z). The mappings
¢ — Fij(2) = Fi(2)F;(z)™" of U; n U; into Gl(m, C) are consequently holo-
morphic and define a complex vector bundle on D which is moreover obviously
topologically trivial. Since D is a Stein manifold the bundle must be analyti-
cally trivial as well, [3], [7]; that is, there must exist holomorphic mappings
2z — Gi(2) of U, into Gl(m, C) such that G;(2) = F;;(2)@;(2) in U; n U;.
The function F(z) = Gi(2)™" Fi(2) is the desired mapping. Then M(g, 2) =
F(g2)Mo(g, 2)F(2)™" clearly satisfies the functional equation (3); and since

3M(g,2z) = F(g2)-18g-9(2) — Mo(g, 2)6(2)Mo(g, 2) 1Mo(g2)F(2)7",
the function M (g, z) will be holomorphic in z under the further assumption
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of (6). Thus M(g, 2) is a multiplier for which ¢(z) = DM (g, 2), and the
proof is thereby concluded.

Two differential forms ¢(z), ¢'(z) e ®(p) will be called equivalent, also
written ¢ ~ ¢', if there is a C* mapping 2 — G(2) of D into Gl(m, C) such
that

(8) G(g2) = Mo(g, 2)G(2)Mo(g, 2) 7,
and
(9) 3G (2) = G(2)p(2) — ¢'(2)G(2);

and the set of equivalence classes of elements in ®(p) will be denoted by
®*(p).

LemMma 2. The mapping D:M(p) — P(p) induces a one-to-one mapping
D*:1IM*(p) — 2*(p).

Proof. Let ¢(z) = DM(g, 2) = F(2)"'0F(2) and ¢'(2) = DM'(g, 2) =
F'(2)7'3F"(2), with the obvious notation; the assertion of the lemma is that

¢ ~ ¢ if and only if M ~ M". Now M ~ M is just the condition that there
exist a complex analytic mapping z — H(z) of D into Gl(m, C') such that

(10) H(gz) = M'(g,2)H(2)M(g,2)™".
Setting
(11) G(z) = F'(2)'H(2)F (2),

equation (8) is clearly equivalent to equation (10); and since the operation
9 applied to equation (11) yields the result that

9H(2) = F'(2)[3G(2) — G(2)$(2) + ¢'(2)G(2)IF (2)™,

it is also clear that equation (9) is equivalent to the condition that H(z) be
complex analytic. Thus the desired result is demonstrated.

Remark. These simple observations also hold practically without change
for a properly discontinuous group I' of complex analytic automorphisms
of D. It is only necessary to replace the sets 9 (p) by the sets (M) of
multipliers M (g, z) for which there is a C” mapping z — F(z) of D into
Gl(m, C) satisfying (4). The problem under consideration can then be re-
phrased as that of classifying the complex analytic vector bundles on the
complex space D/T'; and M (M,) is the set of those complex vector bundles
which are topologically equivalent to Mo(g, 2). In particularif Mo(g, 2) = I
(the trivial bundle), the set of topologically trivial complex analytic vector
bundles on D/T can be identified with the space of matrices ¢(2z) of differen-
tial forms of type (0, 1) on D/T satisfying (7) modulo the equivalence rela-
tion (9); for complex line bundles this reduces to a well-known result, [11].
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3. Multipliers for the symplectic group

The case to be considered here is that in which D is the set of p X p com-
plex symmetric matrices Z = (z;;) such that I — ZZ is positive definite
Hermitean: G is the 2p X 2p complex matrix group

== O (% o= (2 D

where C, D are p X p matrix blocks and ‘g denotes the transpose of the matrix
g; and the action of G on D is defined by ¢Z = (DZ + C)(CZ + D)™*. Thus
the isotropy subgroup of G at the zero matrix 0 e D is

K = {k = (g g)\Uunitary},

which is naturally isomorphic to the group U(p) of p X p unitary matrices,
[1], [10]. Any continuous complex representation p of U(p) can be extended
to a representation of Gl(p, C) and determines a canonical multiplier

Mo(g, Z) = p(CZ + D)

as in [6].

The technique of classification used requires the determination of the set
®(p); however (6) and the transitivity of G show that a differential form
¢(Z) € ®(p) is determined uniquely by its value ¢(0) at the origin, so that it
is enough to describe merely the set ®,(p) = {¢(0) |$(Z) € 2(p)}. Anele-
ment ¢ € ®o(p) of course has theform ¢ = Y .; s, dz:; , Where ¢;; are constant
matrices and ¢;; = ¢;; ; to be explicit, note that the action of a transformation
U = (uy;) of the isotropy subgroup U(p) on such an element is given by

SU ¢ = D ks brr s Ury dFsj .

LeMMA 3. ®o(p) s the set of matrix differential forms ¢ of type (0, 1) at the
origin such that

(12) 3U-¢ = p(U) ¢ p(U)™" for all U e u(p),
and
(13) o Ao =0.

Proof. Clearly (12) is just the condition that ¢ = ¢(0) for some ¢(Z)
satisfying (6). The main portion of the proof, contained in the subsequent
paragraphs, consists of the demonstration that d¢(Z) = 0 whenever ¢(Z)
satisfies (6); as a consequence of that (13) is equivalent to (7) and the
lemma follows as stated.

To carry out the proof suppose that p(U) is the direct sum of irreducible
representations p(U) = @, p"(U); the associated canonical multiplier is then
the direct sum M(g, Z) = ®.M'(g, Z), where M"(g, Z) = p'(CZ + D).
Now if ¢(Z) satisfies (6) it can be decomposed into matrix blocks
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&(Z) = (¢”°(Z)) such that (6) becomes
(14) 8g-¢"(Z) = M'(g, Z)¢"(Z)M" (9, 2)™".
Write the components of the matrix ¢"*(Z) in the form
¢"(Z2) = (2247 dunis(Z)dz:;)
and the components of the matrix M"(g, Z) in the form
M'(g, Z2) = (Ma(g, Z)) = (pa(CZ + D));

throughout this proof the range of the indices ¢, j, k, [ will be from 1 to p,
and the ranges of the indices a, b, ¢, e will be the sizes of the matrices under
consideration. For each transformation W = ¢Z introduce a complex Jaco-
bian matrix J(g, Z) = (Jklij(g, Z)) such that dwy; = Zif sz@'j(g, Z)dz,,
and Jri;(g, Z) = Juwi(g, Z). Then (14) can be written componentwise

(15) it buvii(92) Turii(g, Z)dZis = D ijes Muc(g, Z) Mie (g, Z)dbreii(Z)d2s;

where M* (g, Z) = (Ms:(g, Z)) = "(M*(g,Z))™"; of course (15) implies the
equality of the coefficients of the dz;; for each 7, j since the coefficients are
symmetric in 7, j. From the explicit form W = ¢Z = (DZ + C) (CZ + D)™
an easy caleulation gives dW = “(CZ + D)™'dZ(CZ + D) *; at Z = 0 in
particular, dW = D*dZ 'D* sothat J..:;(g, 0) = dk; di; , where D* = (di) =
‘D™". Then since g0 = CD™' and M(g, 0) = p(D), equation (15) implies
that

(16) Zkl bapii(C _1)&:1' C—l;kj = Zce P:c(D)P:bkes(D)(ﬁ:gij,

where ¢ = ¢(0). Now the components ¢q:;(Z) can also be considered as
forming an m® X p° matrix

¢ (Z) = (paman(Z)),

and in this matrix form (16) is

(17) ¢"(CD™)-(D* ® D*) = (p'(D) ® p*(D))$".
Select a suitable matrix 7' to exhibit the direct sum decomposition
(18) P (U) ® p*(U) = T(®,6(U))T,
where ¢?(U) are irreducible representations, and set
(19) V'(Z) = T7¢"(2).
Then upon decomposing ¥"(Z) into matrix blocks
V(Z)
(20) v'(Z) =

V*(2)
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compatibly with the decomposition (18), equation (17) becomes
(21) Y (CD)(D* ® D*) = ¢*(D)y""

For a transformation ¢ in the isotropy subgroup in particular, equation (21)
reduces to

(22) (U ® U) = e(U)P""

78¢q

Now the rows of the matrix ¢*¢ are symmetric tensors of rank 2, and the
representation U ® U is irreducible on such tensors; so by Schur’s lemma
either §"°? = 0 or ¢%(U) is also the symmetric representation of degree 2
and % is a scalar matrix [12]. That is, if $"°¢ # 0 then ¢*(U) = U ® U
and ¢"°? has components

(23) Yabi; = $h(8ai 8sj + Baj 0bi)
for some complex constant h. Therefore (21) becomes
Yard i(CD™) = 30D et duc dye dit dj1(8ek Se + 821 6t
= 30D ce dao Ore(dic djo + dic dsc).

These components can also be considered as being the coefficients of a new
matrix differential form

(24) ¢r8q(CYD~1) = (EW d’zg%j(é _l)dzij) = (h'Zceij dacdbe(zicc-ljedzij);

and on setting Z = cp™ and recalling from the definition of the symplectic
group that I = ‘DD — ‘CC, it follows that D ‘D = (I — ZZ)™" and hence
that (24) can be written

(25) V°UZ) = h(I — ZZ)7'dZ(I — ZZ)™".

Note that hence

oy (Z)
= (I — 22)7dZ[1Z(1 — ZZ)™ — (I — ZZ)7'Z) A dZ(I — ZZ)™"
=0

since (I — ZZ)Z = Z(I — ZZ), so that the components D_;; vass;(Z)dz:;
of the matrices ¢"°?(Z) are 3-closed differential forms. If the matrix T’ of (18)
is decomposed into blocks T = (T"--- T%...) compatibly with the de-
composition (20), then (19) can be written

i bunii(Z)dZij = Dgeai Tivea Vedti(Z)d2ij

and consequently the components of the matrices ¢"(Z) are also d-closed
differential forms; since this was all that remained to be demonstrated, the
proof is thereby completed.

The mapping D:9M(p) — ®(p) followed by the restriction isomorphism
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®(p) — By(p) gives a mapping Do:M(p) — Po(p). Two differential forms
é, ¢ € ®(p) will be called equivalent, written ¢ ~ ¢', if there is a nonsingular
matrix G such that

(26) G = p(U) Gp(U)™ for all U e U(p)
and
(27) ¢ = GoG;

arid the set of equivalence classes of elements in ®,(p) will be denoted by
o) (P)

*LEMMA 4. lee mapping Do:M(p) — Bo(p) induces a one-to-one mapping
Do 1 IM*(p) — Po (p).

Proof. In view of Lemma 2 it is only necessary to show that
&(Z), $'(Z) e ®(p) are equivalent in the sense of (8), (9) if and only if their
restrictions ¢(0), ¢'(0) e ®,(p) are equivalent in the sense of (26), (27).
If G(Z) satisfies (8) then G(0) satisfies (26); consequently, as in the uni-
tarian trick, G(0) = p(D)G(0)p(D)" for all D eGl(m, C), so that (8)
implies that G(g0) = G(0) and hence that G(Z) is constant. Then (8)
and (26) are equivalent conditions, and therefore so are (9) and (27), which
suffices to prove the lemma.

The net result of this chain of lemmas can be summarized in the following:

TaeoreMm. The set M*(p) is in a natural one-to-one correspondence with
the set of matrixz differential forms of type (0, 1) at the origin which satisfy
(12) and (13) modulo the equivalence relation defined by (26) and (27).

CoRrOLLARY. If p s an trreducible representation, all the multipliers in
M(p) are equivalent to the canonical multiplier Mo(g, Z) = p(CZ + D).

Proof. If pis irreducible, then for the particular unitary matrices U = &I,
where ¢ is a complex number of absolute value one, p(U) = €I for some in-
teger 7 and equation (12) becomes £€7¢ = ¢; hence only the zero differential
form satisfies (12) and (13), so the desired result follows from the above
theorem.

The corollary shows that for irreducible representations the multipliers
considered by Godement are indeed the most general type. Perhaps the
simplest case in which there are multipliers other than the canonical mul-
tiplier is that of the representation

(258) o) = (§ 3.

for which the canonical multiplier is of course

Molg, 2) = (CZ (_)i- P ‘ez ?1— D)”1>'
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To analyze the remaining multipliers decompose any matrix differential

form ¢ € ®y(p) into blocks
d)ll ¢12
¢ = < ¢21 ¢22>

compatibly with (28), so that condition (12) becomes
6U‘¢11 — U¢11U—1, 6U'¢12 — U¢12 tU,
5 U . ¢21 — U*¢21 U——l, 5 U . ¢22 — U*¢22 tU.

Then as in the above corollary it follows that ¢ = ¢” = ¢™ = 0, while 7
satisfies the same condition as the differential forms ¢"*¢ of Lemma 3 and
hence can be written as in (23) or (25); that is,

(29) 6 =h (g dOZ>

for some complex constant h, from which it follows that (13) is automatically
fulfilled. The only nonsingular matrices satisfying (26) in this case are of

the form
al O
¢ (% )

hence two differential forms ¢, ¢' of type (29) corresponding to constants
h, K' respectively are equivalent precisely when k' = (a/b)h for some non-
zero constants @ and b, that is, if and only if either h = h' = 0 or hk' # 0.
Consequently there is but a single multiplier not equivalent to the canonical
multiplier, an explicit representation for which can be calculated quite easily.
As in (25) the differential form ¢(Z) e®(p) corresponding to (29) is

o(2) (g I-22) dg([ - ZZ)“)

for h = 1; and since
(I Z( - zZ)™"
o - (5 7077
is a nonsingular matrix function for which F(0) = I and F(Z YOF(Z) =
¢(Z), the desired multiplier is given by

M(g, Z) = F(gZ)M(g, Z)F(Z)™

_(CZ+ D c
- 0 t(CZ_I_D)—-l .

The situation in one complex variable is of course particularly simple,
the only multipliers other than the canonical multiplier being derived as in
the example considered above. Indeed, it will probably suffice merely to
list the possible 3 X 3 multipliers, this case being sufficiently general to il-
luminate the entire pattern. The isotropy subgroup at the origin is the circle
group (the multiplicative group of complex numbers € of absolute value one),
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so the relevant representations are of the form

g0 0
p(e) =10 €% 0
0 0 &%
for some integers ¢i, ¢z, ¢, and the corresponding canonical multipliers are
(cz + d)*® 0 0
(30) My(g, 2) = 0 (cz + d)* 0
0 0 (cz 4+ d)®

There are no other multipliers unless at least two of the integers ¢i, ¢, ¢s
differ by 2; if, say, ¢ — ¢ = 2, then in addition to (30) there is the mul-
tiplier

(cz + )™ c(ez + d)™ 0
(31) Mi(g, 2) = 0 (cz 4+ d)® 0 ;
0 0 (cz + d)®

and if both ¢ — ¢
(30), (31), and

2 and g2 — ¢3 = 2, then there are the three multipliers

(cz + ) clez + )™ icP(cz + d)@7°

(32) Mg, 2) = 0 (cz + d)®  clez + )®™
0 0 (cz + d)*
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