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1. Introduction

Some properties of modular forms in one nd several complex vribles
hve recently been extended by R. Godement to more general classes of
vector-vlued modular forms ssocited to wrious mtrix fctors of uto-
morphy for the symplectic modular group [6]; the fctors of utomorphy
considered extend trivially to fctors of utomorphy, or multipliers, for the
full symplectic group. This suggested the exercise of generalizing the classi-
ficatio of sclr multipliers given in [8] to classification of mtrix multi-
pliers, which proved quite simple. The general technique is discussed in Sec-
tion 2, nd its ppliction to the symplectic group in Section 3.

2. The general formulation of the problem
Let D be complex nlytic mnifold, G transitive rel Lie group of

complex nlytic utomorphisms of D, nd K the isotropy subgroup of G t
a point z0 e D; the image of point z D under mpping g e G will be denoted
by gz. Assume further that

(1) D is Stein manifold, [2];

(2) the mapping G -- D defined by g -- gzo dmits C local cross-sections,
(in the sense that there is covering of D by open neighborhoods Us’ to ech
of which corresponds C mpping z ---. gs(z) of Us into G such that
g(z)zo z for ll z e U.).

A multiplier (of rnk m) for G on D is C mpping (g, z) M(g, z) of
G X D into the group Gl(m, C) of nonsingulr m X m complex mtrices,
which is complex nlytic in z for ech fixed g e G nd which stisfies the
functional equation

(3) M(g g, z) M(g, gz)M(g, z).

Two such multipliers M(g, z) nd Mo(g, z) will be clled equivalent, written
M M0, if there is complex analytic mpping z ---. F(z) of D into
G1(m, C) such that

(4) F(gz) M(g, z)F(z)Mo(g, z)-.
From (3) it follows that the mapping/ --. M(I, Zo) is complex representa-
tion of the group K, 8nd from (4) that two equiv8lent multipliers induce
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equivalent representations. It thus suffices for a classification to consider
the inequivalent complex representations of K, and for each such representa-
tion p to determine the set 91(p) of multipliers associated thereto and the
set 9*(p) of equivalence classes in 91(p).
From each nonempty set 91Z(p) select in some manner a canonical element

Mo(g, z), henceforth to be assumed fixed. For any M(g, z) l(p) there is
a unique C mapping z -- F(z) of D into Gl(m, C) which satisfies (4) and
in addition F(z0) I. (The uniqueness is a clear consequence of the tran-
sitivity of G; as for the existence, the function (g) M(g, Zo) Mo(g, z) -1

on G is right-invariant under K, and hence induces a function F(z) on
G/K D which is easily seen to be the desired function.) Then associate to
M(g, z) the m X m matrix (z) of complex differential forms on D defined by

(5) b(z) F(z)-15F(z);
here the differential operator 5 (in the notation of [5] )is applied component-
wise, while multiplication and inverse are taken in the usual matrix sense.
This determines a mapping from 9(p) onto the particular set (p) of
differential forms described in the following:

LEMMA 1. (p) is the set of m X m matrices (z) of complex differential
forms of type (0, 1) on D such that

(6) ig.(z) M0(g, z)(z)Mo(g, z)-
(where g is the left translation of differential forms on D associated to the auto-
morphism z -+ gz as in [4]), and such that

(7) (z) + (z) ^ (z) 0.

Proof. If (z) :DM(g, z), then (6) and (7) follow upon applying the
operator 5 to (4) and (5) respectively. Conversely if (z) satisfies (7)
there is a C mapping z -- F(z) of D into Gl(m, C) which satisfies (5). To
see this recall that the existence of such mappings locally was proved for
instance in [9] (especially Section 19); that is, there is an open covering
{U} of D together with a family of C mappings z F(z) of the various
sets U into Gl(m, C) such that F(z)-lSF(z) (z). The mappings
z -- Fj(z) F(z)Fj(z)-1 of U n U. into Gl(m, C) are consequently holo-
morphic and define a complex vector bundle on D which is moreover obviously
topologically trivial. Since D is a Stein manifold the bundle must be analyti-
cally trivial as well, [3], [7]; that is, there must exist holomorphic mappings
z ---. G(z) of U into Gl(m, C) such that G(z) Fj(z)G(z) in U n U.
The function F(z) Gi(z)-1F(z) is the desired mapping. Then M(g, z)
F(gz)Mo(g, z)F(z)- clearly satisfies the functional equation (3); and since

5M(g, z) F(gz).[g.(z) Mo(g, z)(z)Mo(g, z)-]Mo(gz)F(z)-,
the function M(g, z) will be holomorphic in z under the further assumption
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of (6). Thus M(g, z) is a multiplier for which O(z) )M(g, z), and the
proof is thereby concluded.
Two differential forms (z), 1(z)e (p) will be called equivalent, also

written 1, if there is a C mapping z -- G(z) of D into Gl(m, C) such
that

(8) G(gz) Mo(g, z)G(z)Mo(g, z)-,
and

(9) (z) (z)(z) (z)(z);
and the set of equivalence classes of elements in (p) will be denoted by
*(p).

LEMMA 2. The mapping 5)’9(p) (p) induces a one-to-one mapping
,.,() - *(p).

Proof. Let (z) )M(g, z) F(z)-F(z) and (z) )M(g, z)
Fl(z)-F(z), with the obvious notation; the assertion of the lemma is that

1 if and only if M M. Now M M is just the condition that there
exist a complex analytic mapping z H(z) of D into Gl(m, C) such that

(10) H(gz) M(g, z)H(z)M(g, z)-.
Setting

(11) G(z) F(z)-H(z)F(z),
equation (8) is clearly equivalent to equation (10); and since the operation

applied to equation (11) yields the result that

H(z) F(z)[G(z) -G(z)(z) + (z)(z)]F(z)-,
it is also clear that equation (9) is equivalent to the condition that H(z) be
complex analytic. Thus the desired result is demonstrated.

Remark. These simple observations also hold practically without change
for a properly discontinuous group F of complex analytic automorphisms
of D. It is only necessary to replace the sets 9(p) by the sets 9r(M0) of

Cmultipliers M(g, z) for which there is a mapping z ---. F(z) of D into
Gl(m, C) satisfying (4). The problem under consideration can then be re-
phrased as that of classifying the complex analytic vector bundles on the
complex space D/F; and 9(M0) is the set of those complex vector bundles
which are topologically equivalent to Mo(g, z). In particular if Mo(g, z) I
(the trivial bundle), the set of topologically trivial complex analytic vector
bundles on D/r cn be identified with the space of matrices O(z) of differen-
tial forms of type (0, 1) on D/F satisfying (7) modulo the equivalence rela-
tion (9); for complex line bundles this reduces to a well-known result, [11].
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3. Multipliers for the symplectic group
The case to be considered here is that in which D is the set of p p com-

plex symmetric matrices Z (zi.) such that I Z2 is positive definite
Hermitean" G is the 2p X 2p complex matrix group

where C, D are p X p matrix blocks and tg denotes the transpose of the matrix
g; and the action of G on D is defined by gZ (DZ )(CZ D)-. Thus
the isotropy subgroup of G at the zero matrix 0 e D is

K ( ) Uunitary}0

which is ntumlly isomorphic to the group (p) of p X p unitary mtrices,
[1], [10]. Any continuous complex representation p of (p) cn be extended
to representation of Gl(p, C) nd determines cnonicl multiplier

Mo(g, Z) (CZ + D)
as in [6].
The technique of classification used requires the determination of the set
(p); however (6) nd the transitivity of G show that derentil form

(Z) e (p) is determined uniquely by its vlue (0) t the origin, so that it
is enough to describe merely the set 0(p) {(0) [(Z) e (p)}. An ele-
ment 0(p) of course hs the form d, where re constant
mtrices nd to be explicit, note that the ction of transformation
U (u) of the isotropy subgroup (p) on such n element is given by

U. uu d2.
LEMM 3. 0(P) is the set of matrix differential forms 0 of type (0, 1) at the

origin such that

(2) v. (u) (v)- or al V (p),

and

(3) n=0.

Proof. Clearly (12) is just the condition that O(0) for some (Z)
stisfying (6). The min portion of the proof, contained in the subsequent
pmgmphs, consists of the demonstration that (Z) 0 whenever (Z)
stisfies (6); s consequence of that (13) is equivalent to (7) nd the
lemm follows s stated.
To crry out the proof suppose that p(U) is the direct sum of irreducible

representations p(U) , p( U); the associated cnonicl multiplier is then
the direct sum M(g, Z) M(g, Z), where M(g, Z) p(CZ + D).
Now if (Z) stisfies (6) it can be decomposed into mtrix blocks
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(Z) (rs(z)) such that (6) becomes

(14) g.4Y(Z) M"(g, Z)4ff(Z)M(g, Z)-1.
Write the components of the matrix Cr(Z) in the form

(
and the components of the matrix Mr(g, Z) in the form

Mr(g, Z) (M,(g, Z) (p,(CZ -+- D));
throughout this proof the rnge of the indices i, j, k, will be from 1 to p,
nd the ranges of the indices a, b, c, e will be the sizes of the mtrices under
consideration. For ech transformation W gZ introduce complex Jco-
bin mtrix J(g, Z) (J,(g, Z)) such that dw, J,(g, Z)dz
nd J,(g, Z) J,(g, Z). Then (14) cn be written componentwise

(15) :(gZ)](g, Z)d M(g, Z)M*(g,Z)::(Z)d
where M*(g, Z) *(M (g, Z)) (M(g, Z))--1 of course (15) implies the
equality of the coefficients of the d for each i, j since the coefficients are
symmetric in i, j. From the explicit form W gZ (bZ + ) (CZ + D)-an easy calculation gives dW t(CZ + D)-ldZ(CZ + D)-I; at Z 0 in
particular, dW D*dZ tD* so thatJ,(g, 0) d d,., where D* (d.)
tD-. Then since g0 D- and M(g, O) p(D), equation (15) implies
that

(16)

where (0). Now the components (Z) can also be considered as
forming an m X p mtrix

and in this matrix form (16) is

(17) rs(D-).(* *) (or(D) p*S(D))rs.

Select a suitable matrix T to exhibit the direct sum decomposition

(18) 0r(U) @ p*S(U) T(qzq(U))T-1,

where aq(U) are irreducible representations, and set

(19) (Z) T-I’(Z).

Then upon decomposing r(z) into mstrix blocks
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compatibly with the decomposition (18), equation (17) becomes

(21) (brsq(/D-1)(D* (R) D*) aq(D)b

For a transformation g in the isotropy subgroup in particular, equation (21)
reduces to

(2) (U (R) U) (V)r.
Now the rows of the matrix q are symmetric tensors of rank 2, and the
representation U @ U is irreducible on such tensors; so by Schur’s lemma
either rq 0 or aq(u) is also the symmetric representation of degree 2
and q is a scalar matrix [12]. That is, if q 0 then aq(U) U @ U
and rsq has components

..rsq(23) abij h(ai bj + aj bi)

for some complex constant h. Therefore (21) becomes

abi jk

h da d(3 + ,).
These components can also be considered as being the coefficients of a new
matrix differential form

(24)

and on setting Z D-1 and recalling from the definition of the symplectic
group that I tDD tC, it follows that DtD (I 2Z)-1 and hence
that (24) can be written

(25) q(z) h(I- 2z)-id2(I- Z2)-.
Note that hence

’(z)

h(- 2Z)-d2[Z(- 2Z)-- (- Z2)-Z] h d2(- Z2)-’
=0

since (I Z2)Z Z(I 2Z), so that the components i wa"’qi(Z)d
of the matrices rsq(z) are 5-closed differential forms. If the matrix T of (18)
is decomposed into blocks T (T... Tq’’’) compatibly with the de-
composition (20), then (19) can be written

(Z)d2 qa Taa(Z)dz

and consequently the components of the matrices (Z) are also -closed
differential forms; since this was all that remained to be demonstrated, the
proof is thereby completed.
The mapping ’(p) (p) followed by the restriction isomorphism
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(p) -- 0(p) gives a mapping 0:9E(p) -- 0(p). Two differential forms, 1 e (I,0(p) will be called equivalent, written b-- 1, if there is a nonsingular
matrix G such that

(26) G p(U) G p(U)-1 for all U e (p)

and

(27) GCG-I;
and the set of equivalence classes of elements in (Po(p) will be denoted by

LEMMA 4. The mapping )0:fflZ(p) 0(p) induces a one-to-one mapping

Proof. In view of Lemma 2 it is only necessary to show that
(Z), 1(Z) e (p) are equivalent in the sense of (8), (9) if and only if their
restrictions (0), (0)e 0(p) are equivalent in the sense of (26), (27).
If G(Z) satisfies (8) then G(0) satisfies (26) consequently, as in the uni-
tarian trick, G(O) p(D)G(O)p(D)- for all D e Gl(m, C), so that (8)
implies that G(gO) G(O) and hence that G(Z) is constant. Then (8)
and (26) are equivalent conditions, and therefore so are (9) and (27), which
suffices to prove the lemma.
The net result of this chain of lemmas can be summarized in the following"

TrlEOIEM. The set M*(p) is in a natural one-to-one correspondence with
the set of matrix differential forms of type (0, 1) at the origin which satisfy
(12) and (13) modulo the equivalence relation defined by (26) and (27).

ConollAlV. If p is an irreducible representation, all the multipliers in
9E(p) are equivalent to the canonical multiplier M0(g, Z) p(CZ D).

Proof. If p is irreducible, then for the particular unitary matrices U I,
where is a complex number of absolute value one, p(U) rI for some in-
teger r and equation (12) becomes v2r ; hence only the zero differential
form satisfies (12) and (13), so the desired result follows from the above
theorem.
The corollary shows that for irreducible representations the multipliers

considered by Godement are indeed the most general type. Perhaps the
simplest case in which there are multipliers other than the canonical mul-
tiplier is that of the representation

(0 o)u*

for which the canonical multiplier is of course

Mo(g,Z) (CZq--D 0 )0 ’(CZ + D)-1
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To analyze the remaining multipliers decompose any matrix differential
form G0(o) into blocks

compatibly with (28), so that condition (12) becomes

U. UTM U,
U.)21 U21U-1,

Then as in the above corollary it follows that 11 22 21 0, while
satisfies the same condition as the differential forms rsq of Lemma 3 and
hence can be written as in (23) or (25); that is,

for some complex constant h, from which it follows that (13) is automatically
fulfilled. The only nonsingular matrices satisfying (26) in this case are of
the form

(ao’
hence two differential forms , of type (29) corresponding to constants
h, h respectively are equivalent precisely when h (a/b)h for some non-
zero constants a and b, that is, if and only if either h h 0 or hh O.
Consequently there is but a single multiplier not equivalent to the canonical
multiplier, an explicit representation for which can be calculated quite easily.
As in (25) the differential form (Z) e@(p) corresponding to (29) is

(Z) (00 (I-- 2z)-ld2(I--Z2)-1)0
for h 1; and since

is a nonsingular matrix function for which F(0) I and F(Z)-I)F(Z)
(Z), the desired multiplier is given by

M(g, Z) F(gZ)Mo(g, Z)F(Z)-1

(CZ + D C= 0 ’(CZ -l- D)-’
The situation in one complex variable is of course particularly simple,

the only multipliers other than the canonical multiplier being derived as in
the example considered above. Indeed, it will probably suffice merely to
list the possible 3 X 3 multipliers, this case being sufficiently general to il-
luminate the entire pattern. The isotropy subgroup at the origin is the circle
group (the multiplicative group of complex numbers of absolute value one),
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so the relevant representations are of the form

p()= ’ o

for some integers t, , a, and ghe corresponding canonical multipliers are

0 0 )0 0 (c + d) "
There are no oher multipliers unless ag leasg gwo of ghe integers q, q, q
differ by 2; if, say, qt 2, ghen in addition o (aO) here is ghe mul-
giplier

(cz + d) c(cz + d)- 0
(31) M(g, z) 0 (cz + d) 0 )0 0 (cz + d)

and if both q q 2 nd q q 2, then there re the three multipliers
(30), (31), nd

(cz + d) c(cz + d)’- c(cz + d)-
(32) M(g, z) 0 (cz + d) c(cz + d)- }.

o o (cz + d) /
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