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i. This paper is an extension of some of the results obtained by Hurwitz
[4] to totally coregular matrices, according to Definition 1 listed below. In
order to make this paper somewhat self-contained, the following definitions
have been included.

Let A (ank) denote an infinite matrix. The norm of A, written
is defined as supn-klankl. If A has finite norm, ak limn. an exists for
each k, and lim_, an1 exists, then A is called conservative. Asso-
ciated with each conservative matrix A is a number x(A defined by

x(A) a.

When only one matrix is being considered, I shall simply write x. A con-
servative matrix A is said to be coregular if x 0. For a matrix A and a
sequence x, I shall write An(X) ax, andAx IAn(x)l, considered
as a column matrix. A matrix A is said to be triangular if ak 0 for/ :> n,
and a triangle if A is triangular and ann 0 for each n. A is said to be row-

finite if each row of A contains only a finite number of nonzero elements, and
A is called multiplicative if A is conservative and ak 0 for each k.

DEFINiTiON 1. Let A be a coregular matrix. Then A is said to be totally
coregular if, for any sequence x with x, --> + An x) "- .
Throughout this paper the matrices and sequences discussed are real... The theorems in this section are concerned with row-finite coregular

matrices.

TIEOEM 1. Let A be a coregular matrix. Then a sucient condition for A
to be totally coregular is that

(,) there exists an integer q such that an is nonnegative for all k >- q.

Condition (,) states that, except possibly for those elements in the first
q 1 columns, all of the elements of the matrix are nonnegative.

Before proving the theorem, I give a proof of the following lemma.

LEMM 1. If A is a coregular matrix satisfying (,), then x O.

Proof. From the definition of x,

X limn E=q ank E=q ak >= E=q limn an E=q a O,
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where q is any integer satisfying (.). But A is coregular. Therefore x is
positive.
To prove the theorem, let x be a sequence with xk -- + . Then there

exists a positive integer N such that xk >= 0 for all k > N. By hypothesis,
there exists an integer q such that ank 0 for all k > q. Let p mx (N, q).
For ny M > 0 there exists n integer r > p such that k > r implies

x>M.
The remainder of the proof follows from the inequality

An(x) > =1a x + M=+a

The remainder of the proof is basically the same as that of the sufficiency
of [4, Theorem I].
To show that (i) A row-finite, (ii) A coregular, and (iii) > 0 are not

sufficient to imply (.), consider the Hausdorff matrix method H t with
gn 2 (n + 1)/(n + 2). H g is regular and hence satisfies (i) to (iii)
with: 1. But tn can be written as 2 2/(n + 2). Therefore

where 2/(n + 2) and

t 2 i=0
n 1,2,3,... h 0,1,2,...

Hence all of the terms of the matrix H are negative except those on the
main diagonal. Therefore (,) is not satisfied.

THEOREM 2. If A is row-finite and has infinitely many columns with negative
entries, then there is a sequence x such that Xn and lim infn An(x) < .

Proof. Because of the hypotheses, there are integers nr and kr (r 1, 2,
3,... such that nl < n2 < ..., anger < 0, and r < Nr r-4-1, where
No 0 and otherwise N is the largest k for which a.rk 0. If x r when
N’r_I < k < Nr and k k, and

Xkr max r, anrJ X
anrkr j=l,j

when k k, then x => r for N_ < h =< N. Therefore, xk-- as k--.
On the other hand, An(x) -<__ 0, and hence lira inf An (x) =< 0.

THEOREM 3. If A is a row-finite and coregular matrix, then a necessary
and sucient condition for A to be totally coregular is that A satisfy condition (,).

Proof. The sufficiency is Theorem 1, and the necessity is included in
Theorem 2.
For the remainder of this paper, let lim inf x, L lim sup x.
We now consider restrictions on A, other than coregularity, which will
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give us inequalities for liminf An(x) and limsup An(x) analogous to the
familiar one =< lira inf An(x) _-< lira sup An(x) =< L for a totally regular
matrix A.

If x is a convergent sequence, it turns out that no additional restrictions
on A are required;in fact,

lim A(x) =1 ak xk - x lim

In the next few theorems, we shall consider the more general case when is
not necessarily equal to L.

TIEOREM 4. Let A be a matrix for which x is defined. Then (,) is a suj-
cient condition for
(A) lim inf An(x) ZI a x + xl
and

(B) lim sup A (x) -< -’=1 a x -t- xL
whenever the series ak x is convergent.

(If then A is true without (,), provided that x > O, and similarly
for B when L

Proof of (A). Assume > -. To prove (,) sufficient, fix :> 0.
Then there exists an integer N such that x -> e and an -> 0 for all/c _>_ N.
Ifr => N, then

An(x) (l- )=a, + Zrk=l ank(x l+ )

+ %+a(x- + ).
The third series is nonnegative, and

limn Z=I ank t,

limn-, Z=I ank(X- 1- ) Zrk=l ak(Xk- l+
Therefore,

lim inf An(x) (t 2rk=l a) + =a x

Since r >= N is otherwise arbitrary,

liminf An(x) - (1- e)X + ax,

and (A) follows.
(B) is obtained from (A) by considering x instead of x.
We shall say that a matrix A has property q if there exists an integer q such

that a 0 for/c >= q.

THEOREM 5. If A is a coregular triangular matrix with property q, then
(,) is a necessary and sujcient condition for A and B

Proof. The sufficiency is included in Theorem 4. To prove the necessity
of (,), use the necessity proof of [4, Theorem II’], selecting k > q.
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There is a class of matrices for which (A) and (B) are true for bounded
sequences, but which do not necessarily satisfy (,). The following two
theorems consider this class.

THEOREM 6. Let A be a matrix for which is defined. Then

**) lim,_, = a
is a sucient condition for A and B to hold for all bounded equence
which a x is convergent (in particular, for all bounded sequences x if A is
conservative).

Proof. Ifb (]al + a)/2andc (lal a)/2, then

an bn cn.
By hypothesis,

lim_ =b and lim’c 0.

Since x is bounded, there exists a number X > 0 such that x < X for
all k. Fix > 0. There exist integers M, N > q such that

1- <=x <_L+
for all k > N and, for n > M,

c < /(x + . + ),

wherem max(Ill,ILl) Letr > max(i,N).
To prove (A), for all n > r,

A(x) (1- ) an + =a(x + )

+ +b(x + ) _+c(x + ).

The third quantity on the right is nonnegative, and

limn_ Z=I a(x - ) ,=1 a xk (l ) _:"= a.
Therefore,

lim inf An(x) => (1 ) (t k__ a) -f- ,= a x

for each r > max (M, N). Letting r -- and then -- 0, we obtain (A).
The proof of (B) is similar to that of (A) and has thus been omitted.

THEOREM 7. Let A be a coregular triangular multiplicative matrix. Then
(**) is a necessary and sucient condition for

limsupAn(x) <= L and liminfAn(x) => xl

for each bounded sequence x.
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Proof. To show that (**) is necessary, suppose that there exists a number
}‘ > 0 such that, repeatedly, ’--1 ankl > It I(1 + 3}‘). (For any con-
servative matrix A,

lim infn_ =1 lank limn- =1 ank It I’)

Choose n so that E= an > It](1 + 3},). Since A is multiplicative,
choose an integer n so that

and, generally, np so that

EknP-l anpk < x] l, EknP-----1 ank > It I(1 + 3}‘).

Define xk (-1)psgnan (n_ .< n), where n0 0. Then

An(X) a x an x + 1)

For p even, An(X) > t ](1 + h) t(1 + h), and for p odd

Therefore lira sup A x > and lira inf A x < t.
Since the sequence x is defined in terms of the sign of ank there are two pos-

sibilities: (i) x is a sequence containing an infinite number of l’s and -l’s,
or (ii) all but a finite number of the x are of the same sign. If (i) is true,
thenl -1, L 1, and (A) and (B) donothold. I (ii) istrue, thenx
is a convergent sequence, and the above discussion shows that A is not con-
servative and hence not coregular, since Ax is not convergent.
The sufficiency follows from Theorem 6.
That the condition "multiplicative" in the necessary part of Theorem 7

cannot be replaced by "A has property q" is shown by the following example.
Let A (an) be defined as follows: ani --1, ann 1 for n > 1, and

an 0 otherwise. Then t= O, I] A 2, al --1, ak 0 for > 1,
and x 1. Therefore A is coregular. For any bounded sequence x,

A(x) -x + x.

Therefore lira sup An(x) -xWL and lira inf A(x) -x+l, (see
Theorem 4 for the form of the A-limits), but kian] 2 for all n > 1.

If S {A A satisfies (.)} and T {A A satisfies (**)}, then S a T
contains all matrices A for which an 0 for all n and k. However, S and
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T are incompatible;in other words, S = T and T S. The example follow-
ing Theorem 7 shows that T S, and we now exhibit a matrix B e T S.

Let B (bk) be defined as follows" bnn 1, bn,n-1 --l/n, and bnk 0
otherwise. Then

Therefore B e T, but B S, since bn,n--- --1In.

3. Most of the results in Section 2 have obvious analogues for sequence-
to-function transformations.

4. We now apply the theorems of Section 2 to Hausdorff matrices. A
Hausdorff matrix H, (hn) is generated by a sequence ln} in the
following manner-hn A-, k =< n, h 0 for k > n, where

g) [:s’=0 1 ’C.,0" g+"
It is well known that H, having finite norm is a necessary and sufficient con-
dition for H, to be conservative. (For a discussion of these and other proper-
ties of Hausdorff matrices see [2, Chapter XI] or [3].) Let H denote the set
of Hausdorff matrices with finite norm, i.e., the set of conservative Hausdorff
matrices. Then g0, and if h lim, hn, hk 0 for all k > 0.

LEMMA 2. Let H e H. If there exists an integer r > 0 such that h >= 0

for all n, then hn} > 0 for all n and k for 0 < k <= r, and h,o

Proof. Assume r > 1. By hypothesis A- _>-0 for all n.

Wltr An--rtr_l- A tr < A t.tr_l

Therefore A-+ -+ 0 for each r > 1 There-g_x $ in n. But An-r+Xgr_
fore hn-x,- >= 0 for all n > 0. Similarly, we can show that hn >= 0 for
0 < k < r- 1 and all n.
To show h,0 $, observe that Ang => 0 for n -->_ 0, / > 0. Therefore

Aunt An--lt0 An--ltl nn-l0
CogoAgY 1. Let H, be a coregular Hausdorff matrix. Then H is totally

coregular if and only if h, >- 0 for k 1, 2, 3, ....
Proof. Since H H, h 0 for k > 0. From Theorem 3, H is totally

coregular if and only if h ->_ 0 for all k q for some integer q. However,
from Lemma 2, h >- 0 for all k q implies hn >- 0 for k 1, 2, 3 ....
THEOREM 8. Let H g be a multiplicative Hausdorff method. Then H,

satisfies (,) or (**) if and only if g is totally monotone.

Proof of suciency. hnk hnk Therefore ’k0 ]h, g0 t.
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Proof of necessity. For the proof using (.), note that h0 0, and then
refer to Corollary 1 and Lemma 2.
The proof using (**) is basically the same as that of [4, Theorem VII and

will be omitted.
Theorem 8 is an extension of [4, Theorem VI] to multiplicative Hausdorff

matrices.
We now generalize a result of [1, p. 452].

TEORE 9. Two coregular Hausdorff methods with nonvanishing moment
sequences cannot be totally equivalent unless they are identical.

Two triangles A and B are said to be totally equivalent if and only if AB-1

and BA-1 are totally regular.
Let , ’ be two totally equivalent nonvanishing coregular moment se-

quences. Then /r and r/ are totally regular. Therefore A(/.) 0
and A(/) 0forn, r 0, 1,2,.... In particular

O,
and

which is a contradiction unless p,/#? #,+/#,+ .e., ,/#? #+/p+,
for n 0, 1, 2, .... Because/ is regular, ,/ 0/0 1. There-
fore . for n 0, 1, 2, ....

Since H is the set of Hausdorff matrices with finite norm, one might con-
jecture that the only totally coregular Hausdorff mtrices are those which are
multiples of totally regular Hausdo matrices. The following theorem
demonstrates that such is not the case.

THEOnEM 10. There exists a totally coregular Hausdorff method that is not
multiplicative.

Proof. Let 0 1, n (nq- 2)-1, n > 0. Let kn (n-b 1)-1.
Then n +, n > 0. Therefore A > 0 for k 1, 2, 3,..._ n
0, 1,2,....

&"0 i0 (C.i) 1)’)i 0 + i (C,.i) 1) iXi+

Since "X > O, "0 > O. Therefore is totally monotone.

since h0 . Therefore H, is totally coregular and is not multiplicative.

I wish to express my thanks to the referee for his careful critique and helpful
suggestions in the preparation of this paper.
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