GROUPS ON S" WITH PRINCIPAL ORBITS OF DIMENSION n—3

BY
D. MonTcoMERY AND C. T. Yana!

Introduction

Throughout this paper X is to be S” with the usual differentiable structure,
and @ is to be a compact connected Lie group acting differentiably on X,
with principal orbits of dimension n—3. We begin without assuming the
existence of a stationary point and obtain some information about the orbit
space X*. However our main concern is with the case where a stationary
point exists. In this case we obtain rather complete information about X*.
The main result is that if » > 4, then X* is a 3-manifold with boundary S%
and furthermore D is null, where D is the set of points on exceptional orbits
of dimension n—3.

Let G, be the isotropy group at . The orbit G(z) is a principal orbit if it
is (n—3)-dimensional and if for y in a neighborhood of z, G, and G, have
the same number of components. If G(x) is (n—3)-dimensional and there
is no such neighborhood of z, then G(z) is called an exceptional three-dimen-
sional orbit. The principal orbits form a dense open connected subset of S™
whose complement has dimension at most n—2. For all (n—3)-dimensional
orbits, it is true that dim G, is constant. For all principal orbits G'(x) the
number of components of G, is constant.

Let U be the union of all principal (sometimes regular) orbits, D the union
of exceptional (n—3)-dimensional orbits, and B the union of all singular
orbits. Then

X =UvuDuB,

and the sets U, B, D are invariant and mutually exclusive. Let p be the
natural map from X to the orbit space X*.

The number of components of G, is denoted by m(z) and m(x*) = m(x),
for any z such that p(x) = z*. It will be convenient to use p(y*) where

p(y*) = m(y*)/m(z*), y*eD*, z*eU*.

It is known that U¥* is orientable and that every orbit in U u D is orientable
(8].

In the case n = 4, G a circle, there is the following special example with a

stationary point Let the circle act on one plane with period 1/p, p > 1,

and on another plane with period 1/¢, ¢ > 1. Then G acts on the product
of the planes by defining

9(p1, p2) = (9(m), 9(p2)),
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and the action becomes defined for S* by requiring the point at infinity to be
a stationary point. In this case X* is S°, B* consists of the origin and the
point at infinity, and D* consists of two open arcs joining these two points.
Of course if p = 1, ¢ > 1, D* contains one arc, and if p = 1, ¢ = 1, D* is null.
This type of base space does not occur for any other dimension as we shall
see.

In fact the main purpose of this paper is to prove the following:

TaHEOREM A. Let G be a compact connected Lie group acting differentiably
on 8", n > 4, with principal orbits of dimension n—3 and with a stationary
point o.  Then X* is a simply connected 3-manifold with boundary B* = S%, and
the set D* 1s null.

As an illustration of the theorem consider the following example. Let
G1, G2, G5 be the proper orthogonal groups in dimension a, b, ¢, respectively.
Let G = Gy X G: X G; act on the product R* X R’ X R° by the definition

(91,92, 98) (P1, D2, 23) = (92(p1), 92(p2), 95(ps) ),

and let X be the sphere formed by adding o = p. as a stationary point of
G. Then dm X = a + b + ¢, and the principal orbits have dimension
e+ b+ ¢ — 3. It can be seen that D* is null and that B* is as described
in Theorem A. In case n = 4, and principal orbits of dimension n—3, G
must be a circle. Here much is known or can easily be deduced, but we do
not deal with this case except in so far as Sections 2 and 3 are applicable.
The nature of D and D* in this case is not fully understood by any means.
For example if closure D* is a simple closed curve, can it be knotted?

1. (n— 2)-dimensional orbits

We shall make use of results on (n—2)-dimensional orbits, and we de-
scribe and develop the ones we need in this section. We assume then in this
section that G is a compact connected group acting differentiably on S” with
principal orbits of dimension n—2. If all orbits are (n—2)-dimensional, it
can be seen by the use of a slice that X* is a 2-manifold which, since it is
simply connected, must be S

If some orbit has dimension less than n—2, then the base space is a disc
whose boundary is B*; the set D* is null. This can be seen by methods
analogous to those in [6]. Moreover on B*, the isotropy group is relatively
continuous except at a finite set 21 , -+ , 2y ; the orbits, in each interval of
B* complementary to this set, are of constant type. The following theorem
will also be useful.

TueoreM 1.1. Let G be a compact connected Lie group acting effectively on
X = 8". If every orbit has dimension n—2, then n = 3 and G 1is a circle, or
elsen = 2and G = e.

In this case X/G is homeomorphic to S°. It now follows from a theorem
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of Conner [3, p. 29] that G is a circle group, or else G is SO(3) or its covering
group and the isotropy groups are finite. To complete the proof, it must
be shown that the latter case is impossible under the added assumption that
all orbits have dimension n—2.

Hence assume G is SO(3), or its covering group, and that all orbits have
dimension n—2, so that n = 5. By another of Conner’s theorems [3, p. 27]
there is a spectral sequence {E; ‘} with (using his notation in which G = L,
@ = rationals)

By' = H'(L/B. X X/L; Q) ® H'(B.; Q)

whose B, term is associated with H*(X; Q) = H*(S%; Q).

Since all isotropy groups are finite, it follows (again using Conner’s nota-
tion) that B, = B, = G; since @ = L and since G has the same homology
over Q as S°, we have

E3' = H'(S; Q) ® H'(S% Q).

Clearly the E., term cannot be associated with H*(S%; Q) since B’ = Q.
This contradiction proves the theorem.

2. Properties of D*

For the present we do not assume a stationary point exists nor that n > 4.
We do assume that @ is a compact connected Lie group acting differentiably
on X = S” with principal orbits of dimension n—3.

For y* e D* select y e p"(y*). Let V be a closed 3-cell which is a slice
at y and on which G, acts orthogonally. Then H = G,/Gy is a finite group
acting effectively and orthogonally on V.

We note that every element of H preserves the orientation of V; this can
be shown to follow from the fact that U* is orientable. Thus H is a finite
group of rigid motions leaving y fixed. Hence H is one of the following: (a)
cyclic group; (b) dihedral group; (c) tetrahedral group; (d) octahedral
group; (e) icosahedral group.

Lemma 2.1. U* u D* is a 3-manifold.

This follows from the fact that H is one of the groups of rigid motions as
listed above, and can be seen by examining the actions of such groups.

Since X is a sphere, it is known that dim D* < 1 [5]. Itis also known that
D* contains no isolated points, and that U* u D* is simply connected [6].

TueoreM 2.1. If G is a compact connected group acting differentiably and
effectively on X = 8™ with every orbit of dimension n—3, then G = eandn = 3.

Assume an action possible with n > 3. Then X* is simply connected and
is also a 3-manifold by the preceding lemma. Hence it has the same co-
homology groups for Z, and hence for Q, as S°.

Referring to Conner’s theorem [3] as applied earlier, we see in this case that
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G is not a circle because a circle cannot act on S* with all its orbits one-dimen-
sional. Moreover G' cannot be SO(3) or its covering group by the same
argument as in the earlier case. This completes the proof of the theorem.

Lemma 2.2. Every y* ¢ D* has a compact neighborhood V* which may be
regarded as a solid sphere of center y* such that V* n D* is a finite union of radii.
If y*y¥ is a radius in V* n D* and p(y*) /p(y1) is not even, then we can find a
second radius y*y;‘ such that (G, p~(yr y*y’;)) has a cross-section L with G,
being constant on L — p~ (y*).

Let y e p " (y*), and let V be a closed 3-cell which is a slice at y and on
which G, acts orthogonally. Let H = G,/Gv as above. By Lemma 2.1

V¥=G(V)/G =V/G, =V/H

is a compact neighborhood of y* which is a closed cell.

Every xz ¢V is on D if and only if the isotropy group H, is not trivial.
Hence V n D is a finite union of diameters of V. It is possible that some ele-
ment of A might reflect one of these diameters into itself, in which event it
would become a radius in V*. At any rate it is always true that

V*nD* = (VnD)/G,

is a finite union of radii of V*.

Let y* y;k be any radius of V*in V* n D*, and let yy: be a radius of V with
p(yy1) = vyt . Let yiyys be the diameter of V containing yy;. If an
element of H takes yy; to yys , then the order of H is an even multiple of the
order of Hy, , and therefore p(y™)/p(y1) is even. Thus if p(y")/p(y1) is not
even, then no element of H maps yy; into yy. . Hence y” g2 is a second radius
of precisely the kind desired. This completes the proof.

Since U* u D* is a 3-manifold, it can be triangulated (see Moise [5] and
also Bing [1]). The preceding lemma shows that D* is locally tame (see
Bing [2]). It follows from Bing’s result that D* 4s polyhedral in some tri-
angulation of U* u D*. This fact is used in 2.3 and in 3.4.

Lemma 2.3. There is no simple closed curve E* in D* such that for all
y* e B*, p(y*) is divisible by an integer k > 1 independent of y*.

It can be seen that a simple closed polyhedral path, in a simply connected
manifold, is the boundary of an oriented surface of some genus. We are
indebted to Papakyriakopoulos for pointing out this fact to us. See [4] for
a proof when the 3-manifold is E°.

Let @* be an oriented 2-manifold in X* — B* = U* u D* with E* as its
boundary; we assume, as we may without loss of generality, that
(Q* — E*) n D*is finite. Then p '(Q*) — p "(E*), after a closed subset of
dimension < n—3 is removed, is an orientable (n—1)-manifold. Let z be
the integral fundamental (n—1)-cycle of

[p7(Q*), p(E*) up™ ((* — E*) n D¥)].
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Then 9z is an (n—2)-cycle on p~"(E*). Using the fact that p(y*) is divisible
by k for all y* ¢ E*, we can see that (1/k)dz is an integral cycle on p~ (E*)
which does not bound on p~'(Q*). This shows that p '(Q*) has (n—2)-
torsion. This is a contradiction which completes the proof of the lemma.

3. Properties of B*

We continue without the blanket assumption of a stationary point and
without assuming n > 4.

LemMA 3.1.  Let G be a compact connected Lie group acting differentiably on
S"™ with a stationary point o and principal orbits of dimension n—3. If a is
an solated orbit in B, then B consists of two stationary points, G is a circle, and
n = 4.

There is a local coordinate system at o on which @ acts orthogonally. Let
Y be an (n—1)-sphere of center « in this local coordinate system. Since a
is an isolated orbit of B, all orbits in ¥ must have dimension n—3. By
Theorem 1.1, n = 4 and G/Gy is the circle group. But Gy can contain only
the identity, and G must be a circle. Hence B is a stationary set of the circle
@, and this set must have the cohomology of a sphere of some dimension.
Since « is isolated, the sphere must be the zero-dimensional sphere consisting
of a and one other point. This proves the lemma. It can be seen that X* is
a simply connected 3-manifold.

Lemma 3.2. Let G be a compact connected Lie group acting differentiably
on 8™ with principal orbits of dimension n—3. At an tsolated orbit of B¥, X*
18 locally a 3-cell.

Let b* be an isolated orbit of B*, and choose b e p~"(b*) where
dim G(b) = m.
Let K be a slice at b, and let Y be a sphere in K of center b; then
dmY =n —m — 1.

All Gi-orbitsin ¥ have dimensionn—m—3,son — m = 4. Then for G* , the
identity component of G , we have

Y/Gy = S
Now F = G»/Gy acts on S°. Let Fy be the elements of F which preserve
orientation, so that S*/F, = S°. If Fy # F, then 8°/F is a projective plane,
and U* would fail to be orientable. Hence F; = F and

Y/Gy = S,
which completes the proof.

LemMA 3.3. Let G act differentiably on S™ with principal orbits of dimension
n—3. Then B* consists of tsolated points and 2-manifolds which are 2-spheres.
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Moreover X* is a 3-manifold with boundary, and the boundary consists of the
2-spheres in B¥,

If b* is in B* and not isolated in B*, choose b e p~'(b*), and let K be a
slice at b. Let m = dim G(b), and let ¥ be an invariant (n—m—1)-sphere
in K with center b. The group G; acts in ¥ with orbits of dimension n—m—3.
Not all Gs-orbits in Y are of dimension n—m—3 because of the fact that b* is
not isolated. Therefore ¥/Gy is a disc, and G,/Gy acts on this dise, and the
resulting orbit space is Y*. Notice that no element of G,/Gy can reverse
the orientation of the disc, for if it did, we would have dim D* = 2, which
isimpossible. Hence Y*is a disc, and Y* n B*is a simple closed curve. This
shows that B* is locally a 2-cell at b*, and that X* is locally a 3-cell at b*.
The space X* is known to be simply connected, and this implies that each
component of the boundary is a 2-sphere [9]. This completes the proof.

Since X* is a 3-manifold, it can be triangulated; see Moise [5] and also
Bing [1]. Moreover this can be done so that B* u D* is a subpolyhedron.
This follows [2] because it can be seen by the use of slices that B* u D* is
locally tame.

When there is a stationary point, the case of main interest for this paper,
then we can get much of the information about B* which we need by using
the results of Yang [10).

LemMmA 3.4. There is no simple closed curve E* in B* u D* which does not
lie entirely in B* and such that for all y* e E¥ — B*, p(y*) is divistble by an
integer k > 1 independent of y*.

Note first that if any such curve exists, then there is such a curve which is
polyhedral, because E* is polyhedral in D* in any case and any arc in B* can
be replaced by a polyhedral arc.

The proof is very similar to the proof of Lemma 2.3 and will be omitted.

4. D* is empty

We assume throughout the remainder of this paper the full hypothesis of
Theorem A, that is, that G is a compact connected Lie group acting differ-
entiably on 8" (n > 4) with a stationary point « and with (n—3)-dimen-
sional principal orbits. The assumption n > 4 implies that « is not an iso-
lated orbit of B.

In order to show that D* is empty, as we now wish to do, it will be con-
venient to define DY to be the subset of D* consisting of points y* for which
p(y*) is even.

By Lemma 3.4, Dy u B* cannot contain a simple closed curve unless the
curve is completely contained in B*,

Lemma 4.1. X* — (B* u DY) is simply connected.

In order to prove the lemma, form a new space W* by beginning with X*
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and adding to it, for each 2-sphere in B* a 3-cell with its boundary identified
with the 2-sphere. Then W* is a simply connected 3-manifold without
boundary. Consider the set

A* = B*u D* u (all new 3-cells).

We wish to deform 4* over itself, and we begin by shrinking each of the new
3-cells to a point inside itself. Thus A* becomes A1 which is a graph, and
this graph carries no simple closed curve by Lemma 3.4. Any component
of this graph can be shrunk to one of its end points. Thus in the original
space, X* — (B* u DY ) is simply connected as we wished to prove.

LemMma 4.2.  Under the assumption of this section there can be no point of D
in the vicinity of a.

Choose coordinates, for a neighborhood of «, on which G acts linearly, and
let ¥ be an invariant (n—1)-sphere in these coordinates with center «. The
group G is connected, and G-orbits on Y have dimension n—3. The con-
clusion follows from the known results on connected groups on a sphere with
principal orbits of dimension two less than the dimension of the sphere.

Let B} be the union of the 2-spheres in B*.

LemMma 4.3. BY n closure DY = 0.

Assume this is false, and let b* be a point of BY n closure Df . By taking
a slice at a point b e p(b*) we can see that there exists an arc b*yf with
b*y¥ — b* < DY and such that p(y*) is constant ond*yf — (b* u y¥). Using
Lemma 2.2 we can extend this are, if p(y*)/p(y¥) is not even, to a larger
arc with p(y*) constant on the larger arc except at a finite number of points.
We can therefore find a maximal arc If = b*y¥ 2* such that p(y*) is constant
on this arc except at a finite number of points. By Lemma 2.3, If has no
self-intersections, and by Lemma 3.4, If must end either at a point of X* — B*,
or else on a different component of B* from the component containing the
initial point b* of 17 .

If 2* € D*, p(2*)/p(y*) is even for any neighboring point * of I , as other-

wise the path would not be maximal. Hence, in any case, p (I ) carries an
(n—2)-cycle ¢ mod 2 which is not bounding on B u D. Let ¢’ be a 1-cycle
mod 2 on U linked with ¢, and let ¢” be the image of ¢’ in U*. We may as-
sume that ¢” is a simple closed curve. Moreover we may assume, by making
a slight deformation if necessary, that ¢’ is mapped homeomorphically onto
c’.
Let Q* be an oriented 2-manifold in X* — (B* u DY) with ¢” as its boundary
and such that Q* —.c” intersects D* at a finite number of points. Let @* be
obtained from a polygon P* = af a3 - -+ afei1 by identifying afii ats4e With
ar¢+4 ar,-+3 and Otri.;,.z 054*i+3 with ari+5 ari+4, 7 = 0, e, T — 1. Thus ¢” is
obtained from i, of by identifying the end points.

Since the interior of P* intersects D* at only a finite number of points,
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these points of intersection are on an arc I* which intersects the boundary
of P* at one end point which will be chosen as af;41. In X let oups o be
the cross-section of (@, p~ (adrs1 af)) representing c.

Let ay, a4 be a cross-section of (G, p~"(ax arp1)) such that

(1) a1, as, -, asys are identical as points of p~(Q*),

(2) i1 asivs = ouips auipzand 0‘41-’-2 Q4ip3 = Oigs Qaips, 0 =0, -+, 1 — 1,
when they are regarded as arcs in p~'(Q*).

Since P* — [*is contractible, there is a cross-section K of (G, p~ (P* — I*))
such that

Knp'_l(a;:a;tﬂ) = kg Q41 , k = 1,"',47'— 1,

—1, % % *

Kn P (Ot4r Qgri1 — O4 r+1) = Olgr Olgpy1 = Olgrl
—1, * * *

Knp (ary1 @l — Qry1) = Ol 01 — Odppd -

As cycles in p'(Q*), auri1 o is homologous t0 oupy oy s+ o asrys . By
using the cross-section K it is easily seen that whenever N is a neighborhood
on p ' (I*), then as41 01 @3 * -+ @y auar41 is homologous toa cycle in N. Hence
on p '(Q*%), ¢’ is homologous to a cycle of p~'(I*).

Let 2* be a point of I*. We claim that the inclusion map ¢ of p~"(2*) into
p'(I*) induces a homomorphism of H;(p~*(z*)) onto Hi(p (I*)), where
Z, is the coefficient group. The proof is by induction on the number of points
in I* n D*. If I* n D* = @, we may regard p (I*) as a cylinder on p~(2*).
It follows that p~'(2*) is a deformation retract of p~"(I*). Hence our asser-
tion follows. If I* n D* contains only one point y*, it is easily seen that
p " (y*) is a deformation retract of p'(I*), and hence the inclusion map of
P~ (y*) into p~"(I*) induces an isomorphism of Hy(p™"(y*)) onto Hy(p~"(I*)).
Using the retracting deformation, we know that p~"(z*) covers p " (y*) an
odd number of times. Hence the inclusion map of p*(2*) into p~(I*) in-
duces a homomorphism of H;(p™"(z*)) onto Hy(p '(I*)) as we use Z; for
coefficients. In general if I* n D* contains m points, m > 1, we divide [*
into two arcs If and I3 with a common end point such that I n D* contains
m — 1 points and I3 n D* contains one point. The Mayer-Vietoris sequence

0 — Hi(p™'(1") < Hu(p™'(I1)) + Hi(p (1)) — Ha(p™' (W n &)
is exact, and the homomorphisms
Hi(p7\(B n ) = Hi(p™' (1)),
Hi(p™' (I n 13)) — Hi(p™ (1))

are onto by the induction hypothesis. For any e ¢ Hy(p~'(I*)), there is an
element (e, , e) in Hy(p"(I¥)) + Hi(p~'(I3)) having e as its image. Let ¢
be an element of Hy(p '(If n Iy)) with e as its image in Hi(p~*(13)). Let
e1 be the image of ¢/ in Hy(p*(I¥)). Then

(el - 61;0) = (61)62) - (61762)
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has e as its image. Hence Hy(p " (I¥)) — Hy(p~'(I*)) is onto, and conse-
quently Hy(p "(If n I¥)) — Hy(p~*(I*)) is onto. This completes the proof
of the assertion.

From this result it follows that on p~(Q*), ¢’ is homologous to a cycle on a
principal orbit. By deforming the principal orbit toward the known sta-
tionary point, ¢’ is seen to be homologous to zero in X — D. This contradicts
the fact that ¢’ is linked with ¢ and completes the proof.

Lemma 4.4. B¥ a closure D* = 0.

Suppose this is false, and let b* ¢ BY n closure D*. Let b*y¥ be an arc with
b*y¥ — b* = D* and such that p(y*) is constant on b*y¥ — b*. By the re-
sult above, p(y*) is odd on b*yf — b*. Using Lemma 2.2, we can obtain an
arc I* beginning at b* and ending at a point of DY u B* such that onl*, p(¢*)
is constant except at a finite number of points and such that no interior point
on I*ison DY . By Lemma 3.4, I* cannot end on the same component of B*
as the one from which it started.

As in the proof of the above, p™ (I*) carries an (n—2)-cycle mod 2 which
is not bounding on B u p~*(* u D). Since B* u I* u DY does not contain
any nonbounding 1-cycle, an argument similar to the one above produces a
contradiction. This completes the proof that

B* n closure D* = .
Lemma 4.5. D* = 0.
Let J* = b*d* be an arc such that b* ¢ BY , d* ¢ D*, b* # o*, and
J* — (b*u d*) C U~
Let &* be an interior point of J*, and choose z € p~'(x*).
We shall see first that any closed path v in U — p~'(J*) near x can be
shrunk to a point in X — p~*(J*). Let p(y) = v*. Sinced* ¢ BY , b* ¢ ¥,
where S* is a 2-sphere in Bf . There is an SF in X™ which is near S* and

such that V* the region between S* and ST, is a spherical shell. We can
assume by the lemmas above that
V*n D* = 0.

Now v* can be shrunk into V* while staying in X* — (J* u D*) and then
can be shrunk to a point in V*, again while remaining in X* — (J* u D*).
This shrinking of v* can be covered, and it follows that v can be shrunk to a
regular orbit, with the shrinking taking place in U — p *(J*). This regular
orbit can be shrunk to  without touching p~'(J*). Hence v can be shrunk
to a point in X — p '(J*).

Next let v be any closed path in X — p™'(J*). Then v bounds a singular
2-cell ¢ in X, and since dim (p~*(b*) u p '(d*)) < n — 3 and since p " (b*)
and p~(d*) are differentiably imbedded, we may assume that

an (p7'(b*) up (%)) = 6.
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Hence we may assume that ¢ meets p~ (J*) at only a finite number of points
each of which is above an interior point of J*. The preceding argument
then shows that o can be deformed so as to have no intersection with p™(J*),
because near any such intersection we may replace a small sub-2-cell which
intersects by another 2-cell which does not.

It follows from the above that X — p~'(J*) is simply connected, and hence
that it has trivial one-dimensional homology. On the other hand, p*(J*)
carries an (n—2)-cycle mod k, and by duality this is a contradiction. This
proves the lemma.

5. A lemma on B*

Lemma 5.1, Let G be a compact connected Lie group acting differentiably
on 8", n > 4, with a stationary point a and with principal orbits of dimension
n—3. Then B* = S, and X* is a simply connected 3-manifold with boundary
S,

In B* there is at least one 2-sphere S*, and this can be displaced to ST,
near 8*, 8¥ < U*. We now deform S¥ to S , where S3 lies in U™ except
that at one point it coincides with o*. Now S3 can be raised, because of
o, to §¥in X. Of course S can be shrunk to a point in X, and moreover
this can be done while avoiding isolated orbits in B, since each such orbit has
dimension at most n—4 and there are at most a finite number of them. In
this way we see that the fundamental cycle of S* bounds in (X* — isolated
orbits of B*). However the fundamental cycle of S* cannot bound in a
proper closed subset of X*. This proves that there are no isolated orbits in
B* and also that B* = S* This completes the proof of the lemma and also
of Theorem A.

6. A lemma on U*
Lemma 6.1.  U* has trivial homotopy groups in all dimensions.

For the proof let .
f*:8° — U™
By deforming we obtain .
8> U*ua*
with precisely one point going to «*. This may be raised to
fuSf>Uvua

The map f; is homotopic to a constant, that is, f;(S°) is the boundary of a
singular (¢+1)-cell. Therefore the same is true for ff . The singular
(¢41)-cell in X* may be deformed so it does not touch B*. This completes
the proof.

The above may be extended in part to the case of a compact connected
group acting on S" with orbits of any dimension with a fixed point . Then
the continuous image of any sphere in U* can be shrunk to a point in X*.
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