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Let

!. Introduction

L(s, x)= x(n)
=I T

be the L-function corresponding to a Dirichlet character function x(n) modulo
k. In case k > 1 and x(- 1) 1 the L-function is the transform of

x) x(n) 

in the sense that, for Re s > 1,

In view of the importance of the L-functions in analytic number theory it is
of interest to give a function-theoretic definition of their transforms (r, x),
that is, a definition of which will depend on its characteristic properties
rather than on any special representation. Earlier work of Hamburger [2,
3, 4], Siegel [11], and Hecke [5, 6] can be interpreted as contributions in this
direction. The results of Hamburger and Siegel, which are stated in terms of
the L-functions rather than their transforms , are in part function-theoretic.
It was Hecke who systematically investigated this and related questions about
modular functions. For some integers , all of which are divisors of 24, Hecke
[6] has shown that (r, x) is determined up to a multiplicative constant by
certain functional equations which it satisfies. It is not clear how the methods
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480 . c. SCHAEFFER

of these authors can be extended to answer the questions which are to be in-
vestigated.
The present note is an attempt to define the functions (r, x) by means of

certain functional equations which they satisfy, (8) below. Although much
of the analysis can be extended to the case in which/c is any positive integer,
we shall, for the sake of simplicity, consider the case/ p where p is an odd
prime. Alsox(-1) 1. Thus

(1) $(r, x) x(n)en/, x(- 1) 1.

It is clear that (r, x) is regular in Im(r) > 0, and it satisfies

(2) [b(x -[- iy, x)[ -< A(1 + y-), y > 0,

where A, c are some positive numbers. (It can in fact be shown that we may
take c 1/2.)

Let H(1) be the group of transformations (at + )/(,r - ) where a, ,
% i are integers with

a-+- t+---- 0 (mod2).

Consider the following subgroups of H(1)"

R(p), -= 0 (mod p),

H(p), , --- / 0 (mod p),

r(p), 0, a =-- =t=l (mod p).

It is clear that r(p) is an invariant subgroup of H(1). Write DH(1), DR(p),
D,(p), Dr(p) for fundamental domains of the corresponding groups. Thus
D.(1) may be taken as the set

Im(r) >- 0, --1 __< Re(r) _-< 1, [r [_>- 1,

where boundary arcs are identified in pairs by the transformations -l/r,
r -k 2 which generate H(1).
The function

(3) Z: e

satisfies the functional equations

( + 2) (), (--/) (--i)().
Here and elsewhere the square root has nonnegative real part. It is also
known that if (at f)/(r + i) is any transformation belonging to H(1)
then

(4) (ar-b )=/r-k
S(’rr"klt)llO(r)
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where

-) e

(5) s

Here () is the Jacobi symbol, and () 1. Defining

(r) O(r/p)

it follows from (4) that if (at + )/(’rr + ) R(p) then

(6) e\- (r-t- ti) (r),

where

if fl, , are even,

if a, it are even,

>0,

7>0.

(P---) e(irl4)(-l) if , 3’ are even, > 0,
(7) s’

() e-(’)w if a,are even, 3,> 0.

It will be shown that if (at + B)/(’rr + ) e H(p) then

(8) 7 + ’ x S’x()(. + )’(,, x).

A question which now arises is whether the functional equations (8) and the
order relation (2) determine (r, x) up to a multiplicative constant. In the
case of the principal character function x0 some qualification must be made.
tor

(r, x0) O(r/p) t(pr),

and both the functions 0(r/p) and tT(pr) transform according to (6) in H(p).
It is more convenient to state the question for transformations in r(p). In
case (at -t-/)/(r -[- ) belongs to r(p) we have x(ti) 1, so the (p + 1)/2
functions (r) and (r, x) transform according to the same rule in r(p).
The question to be investigated in the present note is the following: If b(-)
is regular in Im(r) > 0 where it satisfies

(9) \r+ (r + )

in r(p ) and the order relation

(10) b(z + iy) <- A (1 + y-),

must (q’) be a linear combination of the (p A- 1)/2 functions b(r), (r, x)?



482 A.C. SCHAEFFER

Relations (6), (8) show that the (p -- 1)/2 functions

1, (, x)/O(r)
are automorphic under the group l’(p), and they are regular in the funda-
mental domain Dr(p) of r(p) except for poles at the places where (r) has
a zero of higher order than does (r, x). It will be shown that there is a
divisor Q’ on Dr(p) which consists of poles of total multiplicity

(p2 1)(p- 1)/16

such that if is any function which satisfies (9), (10) then (r)/(r)
is a multiple of Q’. If it can be shown that the (p -t- 1)/2 functions
1, (r, x)/(r) are a complete set of linearly independent multiples of Q’
then it will follow that any function (r) which is regular in Im(r) > 0
and satisfies (9), (10) is a linear combination of the (p + 1)/2 functions
(), (, x).
Now the genus of Dr(p) will be shown to be

g _(p3_ 4p2_ P + 12) (p-- 3)(p- p-- 4).

In order to find all multiples of Q’ there is defined on Dr(p) another divisor Q
consisting of poles of total multiplicity

ql -(p 1)(p 2),

which includes all poles of Q’. It is a consequence of the Riemann-Roch
theorem that if Q] > 2g 2 then there are precisely Q g -t- 1 linearly
independent multiples of Q. The divisor Q to be defined does satisfy the
condition QI > 2g 2, so it has precisely

QI- g + 1 (p3-- p)/8

linearly independent multiples. In this paper there are exhibited (pa p)/8
multiples of Q, but Ido not know if they are linearly independent. In case
they are linearly independent, then all multiples of Q’ are contained in the
linear space of-these (p p)/8 functions, and it remains to show that there
are precisely (p + 1)/2 such linearly independent functions. The proof can
readily be completed in the special cases p 3, 5.
There is a connection between these questions and the problem of finding

all irreducible representations of the quotient group H(1)IF(p). These rep-
resentations have been determined by Kloosterman and others; cf. [7, 8] where
the history of the problem is discussed.

There is also a connection between these questions and the problem of find-
ing the number of representations of an integer as the sum of three or more
squares; cf. Bateman [1] where further references are given.

II. The fundamental domain

The genus, a complete set of inequivalent vertices, and local uniformizers
are to be found for the fundamental domain Dr(p) of l(p). Some of the
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results of this section overlap those of Newman [9] and Hecke [5, 6]. We
consider the transformations (at 4-/)/(,r 4- it) and (-at )/(-,r -/t)
equal; ar.d if a transformation (at 4-/)/(,r 4- i) is ina group, we shall also

speak of its matrix (; ) as in that group.

There are p + 1 right cosets

(11)
0

0-< =< p-- 1,

of R(p) in H(1). There are p right cosets

(10 )(12)
2j

of H(p) in R(p).

0 <=j<=p-- 1,

The group H(p)/F(p) is cyclic of order (p 1)/2. In-
deed let a be an odd primitive root modulo p, and define d by

ad --- 1 (mod 4p2).
There are b, c such that

(ca
is the matrix of a transformation in H(p). Then

(13) U= (a b)c d

are cosets of r (p) in H(p). For a, - a (mod p) and if

(at 4- B)/(r -t- ) H(p),

then

where

1 _-< _-< (p- 1)/2,

D --= ia a (mod p).

There is thus a unique in the range 1 __< __< (p 1)/2 such that

D :t:1 (mod p),

and, since A, D =- 1 (rood p), the transformation belongs to r(p).
Choose for the fundamental domain D,( 1 of H(1) the set

Im(r) >_- 0, --1 __< Re(r) _-< 1, [>- 1,

where the line segments Re(r) 4-1, Im(r) -> 0,are identified by the trans-
formation r - 2, and the parts of the unit circumference in the first and second
quadrants are identified by the transformation -1/r. The boundary of
Du(1) lies on ares of three circles. The domain D,(p) consists of p -t- 1
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images of Dn(1) by the transformations with matrices (11). Thus the
boundary of DR(p) lies on arcs of p -t- 3 circles. The transformations by
which these boundary points are identified have matrices

Ol)
wherel -<j,k-< p- land4j/q- 1-= 0 (modp). If p-- 3(mod4),then
j k, so there are no elliptic vertices. If p 1 (rood 4), then there are two
solutions of the congruence 4/ --- -1 (mod p), so there are two elliptic
vertices, each of period 2. They are fixed points of transformations with
matrices

--2/c 1 + 4l’
\ 1 2/ /

where 4k -t- 1 0 (mod p), 0 k p.
The domain D,(p) is the sum of p copies of DR(p) by transformations with

matrices (12). Thus the boundary of D,(p) lies on arcs of p2 - p -b 2
circles. If p 3 (mod 4), there are no elliptic vertices, and these arcs are
identified in pairs. If p 1 (mod 4), then for each/ that satisfies 4/ - 1 0
(mod p) there is a unique in the range 0 -< g p such that

(21g 01)(--21k 1--[-4] 1 )
is the matrix of a transformation belonging to H(p). Thus there are two
elliptic vertices. If p 1 (mod 4), then the domain DH(p) has p -t- p 4
boundary arcs which are identified in pairs, it has two elliptic vertices, each of
period 2, and it has p + p + 2 parabolic vertices.
The domain Dr(p) is the sum of (p 1)/2 images of D,(p). Let these

images be contiguous. Then the boundary of Dr(p) lies on arcs of

(p3_ P+4)/2

circles. These arcs are identified by transformations in F(p).
elliptic vertices in Dr(p). For if v0 is a fixed point of

There are no

(r + )/(Tr + ) r(p)

and Im(v0) > 0, then

20 .- +/- v/(. + ) -4.

Since a -- is even, this implies that a -- 0. But a --- -+-1 (mod p),
so a -t- ti 2 (mod p), which is impossible, since p is odd. Thus the funda-
mental domain Dr(p) of I(p) is bounded by (p3 P -b 4)/2 arcs which are
identified in pairs, and there are exclusively parabolic vertices which are at
rational points on the real axis and at .
A transformation in H(p) that has a rational point r/s fixed, where
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(r, s) 1, must be of the form

(1 ,prs r + ,pr14)
’PS2r -t- 1 -]- prs

where is even in case rs is even, while is any integer in case rs is odd.
if (at -f- )/(’r -t- ) e H(p) and has r/s fixed, then

(15)

:For

(a p)r -1- Ss O, /r -+- ( p)s O,

where p is rational. The determinant of these equations is

(a -[- (3) -4- 1 0,p p

SO p =t=1. Without loss of generality take p 1. Then

a-4- i 2.

Since a 1 -( 1), equations (15) show that the transformation is of
the form (1).

This shows that any such transformation belonging to H(p) must belong
to F(p). It also shows that the local uniformizer in Dr(p) may be taken

{:-2,w,- if rs is odd,(16) -/(,-r) if rs is even.

(Here and henceforth we suppose that (v, s) 1 without explicitly Stating so
each time.) For let

(1 rprs r + pr
-psr + 1 + rprs

If

then

-1
r r/s

-1
"4- rpsr/s

Let 2 if rs is even, and 1 if rs is odd. Then is as given in (16).
Two rational points r/s and r’/s’ where (r, s) (r’, s’) 1 belong to the

same cycle of D.(p) if and only if the following two conditions are satisfied"

(17) (s, p) (s’, p), rs r’s’ (mod 2p).

For if (at -+- f)/(/r -t- ) belongs to H(p) and maps r/s onto r’/s’, then

(18) ar +/s pr’, "),r + its ps’,

where p =t= 1. Then

r’s’ (ar "4- s)(,r + its) =-- rs (mod 2p),

and conditions (17) are necessary. For the converse it is sufficient to show



486 A.C. SCttAEFFER

that under conditions (17) the points r/s and r’/s’ can be mapped into the
same point. Thus consider the following cases"

(i) If(s,p) pandrsisodd, letxr-l-2psy= 1. Then

(xr -t- 2py)/(,r -I-
belongs to H(p) for some /, ti, and it maps r/s onto 1/kp where k is odd.
Then r/(2pr - 1) belongs to H(p), and for some it maps 1/kp onto lip.

(ii) If (s,p) p and rs is even, then (at + )/(-sr + r) belongs to
H(p) for some a, , and it maps r/s onto .

(iii) If (s, p) 1 let xpr - tis 1 where or x is even. Then

(at + )/(xp" + )

belongs to H(p) for some a, , and it maps r/s onto . Then, by translation,
take 0 __< < 2p. Since conditions (17) have been proved necessary,

=--rs (mod 2p).

The parabolic vertices of Dn(p) thus fall into 2p + 2 cycles which can be
represented by the points

(19) , l/p, O, 1, 2, 3, ..., 2p-1.

8Two points r/s and r’/s’ where (r, s) (r’, 1 belong to the same
cycle of Dr(p) if and only if the following conditions are satisfied"

(20) r-- r’ (modp), s s’ (modp), rs r’s’ (mod2),

where =t=1. For since a --- =t=1 (mod p), relations (18) show that
conditions (20) are necessary. Conversely, if conditions (20) are satisfied,
then conditions (17) are also satisfied, so there is a transformation

( + )/( + )

belonging to H(p) which maps r/s onto rr/s’. But this transformation must
belong to F (p), for (18) and (20) show that, modulo p,

pr - r (r, ps =- s s.
Since either r’ or s’ is relatively prime to p, it follows that a or ti is congruent
to -+- 1 modulo p. But ai 1 (mod p) since the transformation is in H(p),
and it follows that a --- +/- 1 (mod p). Thus the transformation belongs
to

It my be shown from (20) that the parabolic vertices of Dr(p) fall into
p 1 cycles. Or one can show that corresponding to each vertex (19) there
are (p 1)/2 vertices of Dr(p) which are in distinct cycles in Dr(p). Let

V1 V2 ", V(p-1)/2

be cosets of F(p) in H(p). Every rational number r/s can be mapped by
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F (p) onto one and only one of the p2 1 points

where 1 -< j _< (p 1)/2 and v is one of the vertices (19). For let N be a
transformation in H(p) which maps r/s onto a vertex v of (19). Then

V. N e r(p)

for some j since r(p) is a normal subgroup of H(p), and V N maps r/s onto
V(v). On theother hand, supposevl, v are vertices inthe set (19), possibly
the same vertex, and suppose there is a transformation W e F(p) which maps
V.(vl) onto Vk(v2). Then

WV(v) V(w.)
implies that

V[WV(v) w.,

Now V-;IWV H(p), but distinct vertices (19) belong to distinct cycles of
D,(p). It follows that vl vs. Then V-;WV has v as a fixed point and
must then be of the form (14). Hence this transformation belongs to l(p).
Since r(p) is normal subgroup of H(p), the condition 1 =< j, ]c =< (p 1)/2
implies that j /.

The genus g. of D, (p) is

f(p-- 3p)/4 if p-- 3 (mod4),
g" [(p 3p- 2)/4 if p--= 1 (mod4).

For if p 3 (mod 4), then the boundary of D,(p) lies on p -[- p + 2 circular
arcs which are identified in pairs. There are p -t- p 2 vertices which fall
into 2p 2 cycles, each parabolic. If p 1 (mod 4), then the boundary of
D,(p) consists of p + p + 4 circular arcs which are identified in pairs.
There are p p 2 parabolic vertices, which fall into 2p + 2 cycles, and
two elliptic vertices, each of period 2. The genus gr of Dr(p) is

(21) gr (p3 4p2 P + 12)/8.

For the boundary of Dr(p) consists of (p3 p + 4)/2 circular arcs which
are identified in pairs. There are (p p + 4)/2 parabolic vertices, which
fall into p 1 cycles.

[Referee’s remarks. In obtaining (21) the author has used the relationship

g 1/2(n- k-l- 1),

where g is the genus of a subgroup of the modular group whose fundamental
domain, before corresponding sides and vertices are identified, is simply con-
nected and contains 2n sides identified in pairs and/ cycles of vertices. A
different approach to the determination of the genus of the group F(p) is as
follows.

Let G(n) be the principal congruence subgroup of level n of the full modular
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group. G Then it is known [cf. F. KLEIN and R. FRICKE, Vorlesungen iber die
Theorie der elliptischen Modulfunlctionen, vol. 2, p. 654, Leipzig (1892) and
E. HECKE, Zur Theorie der elliptischen Modulfunktionen, Math. Ann., vol. 97
(1926), pp. 210-242] that the genus g of G(n) is given by

= +(n-6)
12n

where is the index of G(n) in G. For n > 2, is given by

(here mtrix nd its negative re identified). When n is n odd prime p,
this gives

p(p- 1)
and consequently

g (p + 2)(p 3)(p 5)/24 (pa- 6p p + 30)/24.

Further, the shape of the fundamental region of G(p) has been fully described.
Now r(p) is a subgroup of G(p) of index 3, and for a set of right coset rep-

resentatives for G(p) modulo r(p) we may choose, for example,

Thus the fundamental domain of r(p) consists of three copies of the funda-
mental domain of G(p) by the representatives above, and the calculation of
the genus of F(p) can be carried through on this basis.]

III. The functions

In this section certain modular functions are defined, it is shown how they
transform under H(1), and their expansion about rational points is deter-
mined. Part of this is known; equations (23), (24) were obtained by Kloos-
terman [7, 8] using the method of Hermite, but I do not know where to find
all that will be required. The starting point is the Poisson summation
formula

q(n) q(t)e2t dt.

This formula is valid, for example,.if q(t) is absolutely integrable and
q(t u) has a derivative at 0.

If ,, u, a, N are real numbers with N > 0, then

g(z, 7") eirN(n+a) e(ir’/g)(a’bN]2WnN)2 e2wi(a+#N/2+nN)z
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is a regular function of r in Im(r) > 0 for every finite z, and it satisfies

(22)

where

g q(n),

q( t) eirxN(t+a) e-(ir/2T)(a+v/2+t2v)2 e2ri(a/N/2/tN)z/7.

The Poisson summation formula is valid, and making the successive changes
of variable

vN a + N/2 + tN, u - Xr/2- nr/N- z,

we have

e-(ilr)u du

where the square root has positive real part, so (22) follows.
Now let X, a be integers, and define

fa(Z, V, X) (-- 1)x(n+a) e(i’/p)(a+xp/+n’)’ e2iz(a+x’/2+n’),

)hn ir(h/2+n) 2iz(X/2+n)(z,r,X) (-1 e e

Then we have

fa+p(Z, ’, X) fa(Z, ’, X), f--a(--Z, r, X) (--1)f(z, ,

and, by (22),

7

Likewise for the function (z, r, ) we have

(-z, , x) (-1) (z, , x),
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(z, + 2, x) e’’" (z, , x),

T

The object now is to find how the functions fa(Z,
transformation on r in H(1) with an appropriate corresponding transforma-
tion on z. This will be accomplished by finding how the functions

ha(z, (z,
transform under H( 1 ), then how the functions (z, , k) transform under H(1).
The dependence of ha(z, ) on k is not indicated because it will appear that
the rule of transformation of h under H(1) is independent of
Now we have from the preceding,

ha+p(z, v) ha(z, ), h_a(-Z, ) ha(z, ),

ha(z, + 2) e2ia/p ha(z, ),

1 (-)
r
(-) e-() h(z, ).h,.

P
If L(r) (at + )/(r + ) is a transformation belonging to H(1), define

It is to be shown that for transformations L e H(1) we have

(23) ha IL=
in case 0 (rood p), and

1
e

in case (, p) 1. Here ’ is defined by 2’ 1 (mod p).
The proof of (23), (24) is by induction. Now (23) is true for the identiy.

If (23) or (24) is true for a transformation L H( 1 ), then it is also true for
the transformationL*() L( + 2). If (23) is true for someL() H(1),
then writing L*() L(-1/) ( a)/( ) we have

ha(z,

e =oE h (z, r),

where 28’ 1 (mod p). This is (24) for the transformation L*(r).
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If (24) is true for L(r) belonging to H(1), again writing

L*(r) L(--1/r) (t3r a)/(itr ")

we have

haiL*= .(,-1)/2 1___ e(/4)(_) e(2i’/p)(aa-2ab+b)hb
(%)

p c=o bO

There re two cses to consider, 0 (mod p) nd 0 (mod p). In the
first cse the sum on bis zero unless c 2’a (mod p). But if 0
(mod p), then -2’ (mod p), so we hve

This is (23) for the transformation L*(r).
Thus consider the cse (, p) 1. For ny c define the integer k(c) by

(26) 2’ 2’a + c (mod p).

Then in (25) we hve, using well-known expression for the Gussin sums
pl

e(2i’/p)(-2ab+b)e-(2vlp)bc e(2ri’lp)(b-2bk)
bO b=O

Hence (25) becomes

where k k(c) is defined by (26). Let ’ stisfy 2’ 1 (mod p). Then

-’ -5’(2’k) -’(2’a + c)

and

i’(--2,’a 2ac "c) (mod p),

(mod p).

Thus we have

ha L* i e(//a)(P-1) Z e(2i"/P)(a-2ac-’C)hc (z,

which is (24) for the transformation (r a)/(ir ,). This completes
the induction since the transformations + 2 and -1/r generate H(1).
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Since

fa(Z, % ) h(z, r)4(z, , ),

the rule of transformation of the functions fa(z, , ) depends on how the
functions (z, r, X) transform under this group. It is clear from the definition
of (z, , ) that

((0, v, 0) O(r) =e’*.

The transformation of (z, r, X) under H(1) can be inferred from the rule of
transformation of 0(r) under H(1).
For this purpose define

q(z, , x) (z, , x)
()

Then

q(z, r + 2, ) eXnq(z, , x), q(-z, , x) ( )q(z, , x),

q
r

x

If (at -F B)/(,r -t- ti) e H(1), then

(27) q
\fr+"r -[- ’ X),T,

/

where
(ir/4)(B-v+2$-2)xu if B, are even,

(28)
[e()("++-)x if a, are even.

Relation (27) my be proved by induction, since if it is true for some trans-
formation belonging to H(1) then it remains true when z, are replaced by
z, 2, or by z/r, -1/. It is clear that (27) holds for the identity, so it
holds in general.
We have

A(Z, r, X) h(z, r)q(z, r,

so the transformation of fa under H(1) is determined by the transformation
of ha, q, 0 under that group. If L (ar 4- fl)/(/r 4- i)e H(1), then, col-
lecting results, we have

(29)
fa ( Z ar + 5 k)



where S is defined by (5). The expansion of ha L in terms of functions
hb(z, , k) is given by equations (23), (24).
Now let z approach zero, and henceforth write

(30)

in place of fa(O, r, ). If k is odd, then (0, r, ) vanishes identically in r,
so q(0, r, k) also vanishes when k is odd. These functions are of course can-
celled from the right-hand side of (29) before letting z approach zero. Then
(23), (24), (29) show that if (at + )/(Tr + a) ell(l), then

(al) fo +
if 7 ----- 0 (mod p), and

if (-, p) 1, where 2,7’ 1 (mod p).

and

R2 (T + {)1/’2 E e(2ri’’/#)(aa--2ab-t-6b)fb(T, )

(36)
if fl, Tareeven, > 0,

Here

b0

(ir14)(-’+2-2)x if , are even,
(35)

[e(/)(++-) if , are even,

if a, are even, 7>0.

Having determined in (31) (32) the transformation of the functions

f(r, k) in H(1), we now find their expansion about rational points r/s. Now
every rational point can be mapped by transformations belonging to H(1)
into r 1 or r oo. Thus the expansion of a function fa(r, k) near any
rational number can be referred to an expansion near 1 or oo. In order to
find the expansion of f(r, k) near r 1 write (30) in the form

f r,- 1
e’ e’x’ 1)" Y ( 1)"+ e-(z+x’+’’
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Then, using (22), it follows that

fa(r-lr
/

e(irrlp)aS eirXspl4) -Ee-(2rilp)(a’Fxpl2)(n+p/2)

Then, replacing r by 1/( r 1 ), we have

(37)
e(irlp) a=eirXp/4f.(r, x)

(r 1)f

e( irr/ p) (n+pi2) .
E e--C2ri/p) (aq-hpl2) (n+p/2)e--(ir/p(r--1)) (n+p[2) 2.

Thus the definition (30) of fa (r, },) and equation (37) give the expansion of
fa(r, ) in the neighborhood of and 1 respectively. It will be convenient
to write equations (31), (32) in the form

if 0 (mod p), and

39 f r, X R ( 1 )/ - ( )--r + a b=o --r + a’

if (% p) 1, where 2yy’ 1 (mod p).
To find the expansion of f(r, ) about a vertex r/s we suppose (r, s) 1

and s > O. Let u be the local uniformizer, and consider the following cases.

(i) If rs is even and (s, p) 1, choose t, such that

(rr q- fl)/(sr q- it) ell(l)

with ti > 0. Then by substituting the series for f((ir )/(-sr -- r), )
defined by (30) into the right-hand side of (39) we obtain

Re Xme(2ris p) (ra2_2am+m2) (mq-Xp/2)(40) f(r, k)
(--,r q-r)/

(--1)

where
t e-ir/pSe-ir/ps(sr-r)

and 2ss’ I (rood p).

(ii) If rsis even and p Is, let (rr q- 5)/(sr q- 8)ell(l) with > 0.
Then by (30), (38) we have

R1 e(irrfllp)a X(n+ra)(ra-l-hpl2+np)(41) f(r, X)
(--st + r)/ - (--1

where
t e--ir/pse--ir/ps(sr’-r),
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(iii) If rs is odd and (p, s) 1, we define a transformation

which belongs to H(1) and maps r/s onto r 1. For this purpose let , 8
satisfySr- /s 1 and definea r- tS, 3, s- 8. This determines8
only in a residue class modulo s, so let 8 be such that 3, 0 (mod 2p) and
8 > 0. Then (at + t) / (3,r + 8) H(1), and from (38) and (37) we have
after some simplification

fa(’, k) R1 (
(42)

where

i )1/2 e(irarl)ae(ir/4)XP
r

E --(2vi/p) (aa+kp/2) (n+pl2)u(2n+p)

v2riTIpse-2ri/ps(sr-r).

(iv) If rs is odd and p s, let 8r #s 1 and define a r f, 3, s 8.
Choose 8 such that 3, is even and 8 > 0. Then (r + #)/(3,r + 8) ell(l),
and since (3,, p) 1 we use (37) and (39). These give

where
e(irlp)be--(2ri/p) (b+Xp[2) (n+p/2)U(2n+p) 18

t e2ri pSe-2ri/ps(sr-r)

In order to simplify we sum first on b, noting first that

23,’8 + 1 --23,’(s- 3,) + 1 - -23,’3, + 1 -0 (mod.p).

The sum on b is thus
p-I -I

E erib2eOri/p)b(--4a’--2n--P) E
b=0 b=0

which is zero unless 2a3,’ + n -= 0 (rood p). The congruences 273,’ 1,
3’ 8, 8r l(modp) imply that 23,’ -r (modp). Thus writing
n ar+mpwehave

(43) E(-i

where

Thus the expansion of the functions fa(r, ) near rational points has been
determined. There remains the function

(r) O(r/p).
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But from (3) and (30) it follows that

(r) f0(r/p, 0)

so the expansions for (r) can be obtained from the preceding. It will be
sufficient for our purpose to find the order of the zeros of the function

at the rational points. If r approaches r/s, the variable rip approaches

r/ps R/S,

where (R, S) 1. In case rs is even, it follows from (40), (41) that the
function (st r)l(r) is regular and not zero at r/s. If rs is odd and
(p, r) 1, then S ps, so (43) shows that

(st r)l/(r) u/S{ao - "}
near r r/s where a0 0 and u is the local uniformizer. If rs is odd and
p lr, then (42), (43) show that (st r)l/(r) has a zero of order p/8 at
r r/s, that is,

(8 r)l/2(v) u/S{ao + ...},
where a0 0 and u is the local uniformizer.
We now find that the total numberof zeros of the functions r) fa(r,

at the vertices of the fundamental domain Dr(p). According to (20) the
vertices

/p, 0 < < p,

belong to different cycles of Dr(p), and every vertex r/s where p ls can be
mapped by r(p) into one of them. The (p 1)/2 vertices with odd
correspond to the cycle lip of D,(p), while the (p 1)/2 vertices with
even correspond to the cycle oo in D,(p). Each of the vertices

0, 1, 2, ..., 2p 1

of Dz(p) corresponds to (p 1)/2 distinct cycles of Dr(p) at vertices r/s,
(p, s) 1, and at the (p 1)/2 cycles r/s of Dr(p) corresponding to the
cycle a of D,(p) we have - rs (mod 2). Thus there are (p p)/2 cycles
r/s in Dr(p) in which rs is even and (s, p) 1, and the same number of cycles
for which rs is odd and (s, p) 1. The following table gives the order of
the zeros of the functions (st- r)lfa(r,,) and (st r)(r) at the various
vertices.

A(, 0)
A(, )
(T)

r/t, odd

(2ra p 2rip)
(2ra p 2rip)

,/,, even

(ra np)
(2ra "F P 2riP)

o

r/s, rs odd, (s, t)

if (p, r) 1,
p/8 if
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In each case n is to be chosen so as to minimize the term in which it occurs.
Also a 0 (mod p) in the case of the function fa(r, 1). In the case of the
vertices rip we have 0 < r p.
Then it follows that for each of the functions fa(r, 0), fa(r, 1), (r) we ob-

tain (p3 p)/16 zeros at the vertices of Dr(p). For consider a function
f(r, 0) where a 0 (rood p). At the vertices r/p, where r is odd, 0
write

2ra -t-p 2np r, -p "< p.

Then K, is odd, and is the order of the zero at this vertex. The numbers
K are distinct, for if there were another vertex rl/p in this set such that

2rl a

then r :i: r 0 (rood p), r r. Thus the total order of zeros at the vertices
r/p, rodd, O r p, is

-{1" + 3 - 5 -t- + (p- 2)} p(p- 1)(p- 2)/48.

For the vertices rip where r is even, 0 r p, write

ra np ,, -p/2 < < p/2.

Then the order of the zero is , and one shows that the (p 1)/2 numbers
2
r are distinct and r 0. Thus the total order of the zeros at these vertices is

1 -P 22 -t- 3 -[- -P ((p- 1)/2) p(p2_ 1)/24.

Thus for the function f(r, 0) where a 0 (rood p) the total order of zeros
at all parabolic vertices is

p(p 1)(p 2)/48 -t- p(p2 1)/24 -t- (p p)/16 (p3-- p)/16,

and likewise for the functions f0(
Tow

fo(r, O) O(pr)

It can be shown by considering the integral

around the fundamental domain of the group H(1) that the only zeros of
O(r) in the fundamental domain of H(1) are at the vertices r :t:1. [Ref-
eree’s remark. This is evident also from the infinite product

0(r) I]{ (1 e(+)) (1 / e(+)’)-}.]

Thus (r) has no zero in Im(r) > 0, and sof0(r, 0) has no zero in Im(r) > 0.
But (31) shows that the function f(r, 0)/f0(r, 0) is automorphic under the
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is the genus of Dr(p).
note that the functions

group r(p), so fo(r, 0) and f0(r, 0) have the same number of zeros in Dr(p).
Thus fa (r, O) has no zeros in Dr(p) except those at the parabolic vertices.
The function

is automorphic under the group r(p), so re(r, 1) has the same number of
zeros in Dr(p) as doesf0(r, 0). Thus the only zeros offa(r, 1) in Dr(p) are
at the vertices. This could also be proved by considering the representation
of fa r, X) as an infinite product.

IV. The divisors
We prove first that the functions (r, x) defined by (1) transform in H(p)

according to (8), where x(n) is a Dirichlet character function modulo p with
x(- 1) 1. For this purpose we note that

:p--1 (p--l)/2

(r, X) x(a)fa(r, O) 2 _, x(a)fa(r, 0).
a=l a=l

Then (31) shows that for transformations in H(p) we have

@-4 q- X R,(yr + 8)l=x()(r x).

But R S’ for transformations in H(p) if is even, so (8) follows.
The functions (r, x)/(r) where x(-1) 1 re utomorphic under

F(p). Ech of them hs pole of order (p= 1)/8 t ech of the cycles

(44) p/s, s 1, 3, 5 ..., (p 2).

Thus let Q’ be divisor which has poles of order (p= 1)/8 t ech of these
(p 1)/2 cycles. Then the (p + 1)/2 functions (r), (r, x) re a complete
set of linearly independent functions satisfying (9), (10) if nd only if the
(p + 1)/2 functions 1, (r, x)/(r) re complete set of linearly inde-
pendent multiples of Q’.
The order [Q’] of Q’ is (p= 1)(p 1)/16 which, when p > 3, is less

thn 2g 1, where
g= (p-4p=-p+2)/s
To define divisor Q of order ]Q 2g 1, first

are automorphic under r(p).

(46)

(45) F(r) f(r, 1)
1 < a < p- 1

f(r, 1)
The poles of these functions lie at the cycles

r/p, r- 1, 2, 3,..., (p- 1).

Now f,(r, 1) has zeros of total multiplicity (pa 3p" q- 2p)/16 at these cy-
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cles. At each of the cycles rip there is an a such that fa(r, 1) has a zero of
precise order in case r is odd, and a zero of precise order in case r is even.
Thus all the functions Fa(’) are multiples of a divisor having poles at the
vertices (46) of total multiplicity

(p3 3p2 P -t- 3).
Define

and write

o() A(, 0)
()

1 <_- a _-< (p- 1)/2,

0(r) 1.

Then the functions a(r) are multiples of a divisor having poles of order
(p 1)/8 at each of the vertices (44). This divisor then has poles of total
multiplicity

-g(p2 1)(p- 1).
Now consider the functions

(47) Fa(-)Fb(-)o-c(-), 1 <__ a <-_ b <= (p- 1)/2, 0 _-< c =< (p- 1)/2,

and

(48) Fa(’)O’b(’)(c(’), 1 <= a <= (p--1)/2, 0--<_ b __< c _-< (p- 1)/2.

Each of them is automorphic under r(p), and each is a multiple of a divisor Q
Which has poles at the vertices (44), (46). The order Q of Q is

IQI (p3- 3p2- p- 3) -t--(p- 1)(p- 1)

(p3_ 2p. p

_
2) (p 1)(p 2).

Then Q > 2g 2 so it follows from the Riemann-Roch theorem that there
are precisely

QI- g-l- 1 (pa- p)/8
linearly independent multiples of Q.
There are

(p- 1)(p-t- 1)
functions (47), and

(p 1)(p + 1)(p -t- 3)

functions (48). However F1 z0 1, so there are

1 p2( 1)

functions common to the two sets. The total number of functions (47), (48)
is then

g(p p).
If they are linearly independent, then they are a complete set of linearly inde-
pendent multiples of Q.
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The poles of Q’ are among the poles of Q, so if there are (p8 p)/8 linearly
independent functions among (47), (48) then the multiples of Q’ are linear
combinations of the functions (47), (48).
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