BORNOLOGICAL STRUCTURES'

BY
SETH WARNER

Recently, several variations on a bornological theme have appeared (see
the examples below). The purpose of our remarks is to suggest in §1 a
framework sufficiently general to permit a unified treatment of these (and,
it is hoped, future) variations, to consider within this framework in §2 the
problem of when the Cartesian product of spaces having a certain bornologi-
cal property inherits that property and the relation of this problem with
Ulam’s measure problem, and finally to state in §3 some new results concern-
ing bornological properties of partially ordered locally convex spaces. In
particular we shall generalize in §3 the theorem that the topology of a Banach
lattice E is the finest locally solid topology on E. All vector spaces are as-
sumed to be over the reals, although our discussion in §1 does not require
this.

1. Structured spaces

A structure on a vector space F is a filter base U containing F of convex
equilibrated subsets of E such that for all V ¢ and all scalars N\, AV ¢V
(in particular, therefore, {0} € V). A structured space is a pair (E, V) where
U is a structure on E. If (E, V) and (F, ‘W) are structured spaces, we shall
say f is a structure homomorphism from (E, V) into (F, W) if f is a linear
transformation from E into F, f(V) € W, and f(W) € 0. Clearly the
composition of two structure homomorphisms is a structure homomorphism.
Topology 3 on E is compatible with structure U if 3 is a locally convex topol-
ogy on E, and if U contains a fundamental system of neighborhoods of zero
for 3; a structured locally convex space is a triple (E, U, 3) where U is a struc-
ture on E, 3 a topology on E compatible with U. When no confusion arises,
we shall denote a structured locally convex space (F, U, 3) simply by E.
There is always at least one topology on E compatible with any given struc-
ture, namely, the topology whose only open sets are £ and 0.

Let (E, U, 3) be a structured locally convex space, ® a class of subsets of
E. We shall say V is a ®-bornwore set if V €0, V is absorbing, and V ab-
sorbs each B e ®. (K, U, 3) is called a ®-bornological structure if each B e ®
is bound for 3, and if every ®-bornivore subset of E is a neighborhood of
zero for 3. Note that if (¥, U, 3) is B-bornological, and if W is a structure
on E weaker than U (i.e., if W C V) but with which 3 is compatible, then
(E, W, 3) is ®-bornological. A linear transformation f from E into locally
convex space F is ®B-bounded if f(B) is bound in F for all B € ®; f is ®-borno-
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logical if for every neighborhood W of zero in F, (W) contains a ®-bornivore
set.

Lxample 1. The collection of all nonempty convex, equilibrated subsets
of vector space F is a structure on E, which we shall call its linear structure.
Any linear transformation from one vector space into another is a structure
homomorphism with respect to the associated linear structures. Any locally
convex topology on F is compatible with its linear structure. Let E be a
linearly structured locally convex space. (a) If ® is the class of all bound
sets, then F is a ®-bornological structure if and only if E is a bornological
space [2, p. 10; 4, Exercise 12, p. 13]. (b) If & is the class of all convex,
equilibrated, bound, sequentially complete subsets, E is a ®-bornological
structure if and only if £ is an ultrabornological space [4, Exercise 11, p. 34]
(a uniform space A is sequentially complete if every Cauchy sequence in A
converges to a point of 4). (¢) If ® = @, F is a ®-bornological structure if
and only if the topology of £ is the finest locally convex topology on E.

Example 2. Let F be an algebra. The collection of all scalar multiples
of all nonempty convex equilibrated idempotent subsets is a structure on
vector space F, which we shall call the algebraic structure on E determined
by the given multiplication. Every algebraic homomorphism from ¥ into
algebra F is a structure homomorphism for the associated algebraic struc-
tures, but not conversely, in general. The topologies on E compatible with
its algebraic structure are precisely the locally m-convex topologies on algebra
E. Let E be an algebraically structured locally convex space (with respect
to some multiplication on £). (a) If ® is the class of all bound idempotent
sets, ' is a ®-bornological structure if and only if £ is an ¢-bornological
algebra [13, Proposition 5]. (b) If ® = @, then ¥ is a ®-bornological struc-
ture if and only if the topology of E is the finest locally m-convex topology
on algebra F.

Example 3. Let E be a partially ordered vector space. If a, b ¢ E, [a, b]
denotes the set of all © € £ such that a < x < b; subset A of E is order-bound
if there exist a, b ¢ £ such that A C [a, b]. A is order convex if for all
a,bed, a,b] C A, and 4 is o-convex [7, p. 570] if A is convex and order con-
vex. We shall call a subset of E positive if it is contained in the positive cone
of . The collection of all nonempty equilibrated o-convex subsets of E is a
structure on E, which we shall call the order structure determined by the given
partial ordering. KEvery positive linear transformation from F into a par-
tially ordered vector space F is a structure homomorphism for the associated
order structures. A topology on ¥ is compatible with its order structure if
and only if it is a locally o-convex topology [7, p. 570] (locally full and locally
convex in the terminology of [10]). Let F be an order structured locally
convex space (with respect to some partial ordering on F) in (a)—(c¢) below.
(a) If ® is the class of all bound subsets of E, F is a ®-bornological structure
if and only if E is o-bornological {7, Proposition 6.3]. (b) If ® is the class
of all positive bound sets, E is a ®-bornological structure if and only if F is
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P-o-bornological [7, Proposition 7.1]. (¢) If 8 = @, F is a ®-bornological
structure if and only if its topology is the finest locally o-convex topology on
E. (d) Let F be a partially ordered linearly structured locally convex space
(Example 1). If ® is the class of all order-bound subsets, then F is ®-
bornological if and only if its topology is the order-bound topology 3 (10, p.
20].

The above examples exhaust the bornological concepts hitherto introduced.
It is possible to give many others at once. For example, analogous to ultra-
bornologicity, one could in Examples 2 and 3 consider a variety of classes of
sequentially complete bound sets. If E is a partially ordered algebra (that
is, an algebra with a partial ordering whose set of positive elements is a con-
vex idempotent cone), the collection of all scalar multiples of all nonempty
o-convex, equilibrated, idempotent sets is a structure on F, and one can con-
sider classes of bound sets for topologies compatible with this structure. A
subset of a vector lattice E is solid [10, p. 37] if x e Sand |y | £ | x| imply
y € S. The class of all nonempty convex solid sets is a structure on E, and
we shall say a topology is locally solid if it is compatible with this structure
(our terminology differs slightly from that of [10, p. 40] in that we require a
locally solid topology to be locally convex). A locally solid topology is al-
ways locally o-convex [10, Theorem 8.1].

ProrosiTioN 1. Let E and F be structured locally convex spaces, f a linear
transformation from E into F, ® a class of bound subsets of E. If fis continuous,
f s ®-bornological. If f is ®-bornological, f is B-bounded. If f is a structure
homomorphism, then f is ®-bornological if and only if f is ®-bounded.

The proof is similar to an argument given in [13, p. 203].

ProrosirioNn 2. Let (E, U, 3) be a structured locally convex space, ® a
class of bound subsets of E. The class of all ®-bornivore subsets of E is a funda-
mental system of neighborhoods of zero for a topology 3* on E compatible with
V, finer than 3, and for which each B € ® is bound. (E, U, 3) is ®-bornological
if and only if 3 = 3*. Further, if f is a structure homomorphism from E into
any structured locally convex space F, then f is ®-bounded from (K, 3) into F
if and only if f is continuous from (E, 3*) into F.

Proof. The first two assertions are evident, and the third follows from
Proposition 1.

ProposiTioN 3. The topology generated by a family of topologies compatible
with a structure U on E is again compatible with 0.

Proof. The assertion follows at once from the fact U is a filter base.

ProrositioN 4. Let E' be a total subspace of the algebraic dual of E, and
let U be a structure on E. If there exists a topology on E compatible with O
and the duality between E and E', there exists a finest such topology; in this
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case the collection of all members of U which are neighborhoods of zero for the
Mackey topology v(E, E") is a fundamental system of neighborhoods of zero for
that finest topology.

Proof. The collection of all members of U which are neighborhoods of
zero for the Mackey topology is clearly a fundamental system of neighbor-
hoods of zero for a topology 3 on E compatible with 0. 3 is finer than the
given topology, and so its dual contains £’; 3 is weaker than 7(E, E'), and
o0 its dual is contained in E’. Clearly every topology on £ compatible with
U and the duality between E and E’ is weaker than 3.

The class of all absorbing members of structure U is clearly a fundamental
system of neighborhoods of zero for a topology compatible with U and finer
than all other compatible topologies; it is therefore the finest topology on
F compatible with ©.

Prorosrrion 5. Let (E, U, 3) be a structured locally convex space, E' the
dual of (K, 3), ® a class of bound subsets of E. The following conditions are
equivalent: (1) E vs a ®-bornological structure. (2) Every ®-bornological
linear transformation from E into any locally convex space is continuous. (3)
Every ®-bounded structure homomorphism from E into any structured locally
convex. space is continuous. (4) If 8 is any topology on E compatible with O such
that the identity map from (E, 3) into (E, 8) 1s ®-bounded, then it 1s continuous.
(5) 3 1s the finest of those topologies on K compatible with U and for which each
B ¢ & is bound. If in addition 3 is separated, the following condition 1s equiva-
lent to the preceding ones: (6) 3 is the finest of those topologies on E compatible
with U and the duality between E and E', and every ®-bornological linear form
on E 1s continuous.

Proof. (1) insures that every ®-bornivore set is a neighborhood of zero,
and so implies (2). (2) implies (3) by Proposition 1, and clearly (3) im-
plies (4). (4) implies (5), for if 8 is a topology on E compatible with ©
and for which each B e ® is bound, the identity map from (E, 3) into (K, 8)
is ®-bounded and thus continuous by hypothesis; hence 3 is finer than 8.
(5) implies (1), for by Proposition 2, 3* is compatible with U, and each B ¢ ®
is bounded for 3*; hence as 3 € J*, by hypothesis 3 = 3* and so F is ®-
bornological. Henceforth, assume 3 is separated. (2) and (5) imply (6):
If 8 is a topology on E compatible with U and with the duality between E
and E’, every B ¢ ® is bound for 8 by a theorem of Mackey [4, Theorem 3,
p. 70], and so by (5) 3 2 8; on the other hand (2) implies every ®-bornolog-
ical linear form on E is continuous. (6) implies (1): 3* is compatible with
and is finer than 3. By the second part of (6) and Proposition 1, 3* is com-
patible with the duality between E and E’. By the first part of (6), 3 = 3%,
and therefore (E, 0, 3) is ®-bornological by Proposition 2.

Prorosition 6. Let E be a locally m-convex algebra [locally o-conver par-
tially ordered space], ® a class of bound subsets of E. Then E, with its asso-
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ciated algebraic [order] structure, is a ®-bornological structure if and only if
every ®-bounded algebraic homomorphism [positive linear transformation] from
E into any locally m-convex algebra [locally o-convex space] is continuous.

Proof. As every algebraic homomorphism [positive linear transformation]
is a structure homomorphism for the associated algebraic [order] structures,
the condition implies (4) and is implied by (3) of Proposition 5.

Let (Ko)«ea be a family of structured locally convex spaces, (&, V) a struc-
tured space, and for each a € A let g, be a structure homomorphism from £,
into E. The finest topology on E compatible with U for which each g, is
continuous is called the structure inductive limit topology defined by the struc-
tured locally convex spaces (F,.) and structure homomorphisms (gq).

If each structure considered in the preceding definition is the linear [re-
spectively, algebraic, order] structure, the structure inductive limit topology
is simply the (linear) inductive limit topology [3, pp. 60-62] [respectively,
the algebraic inductive limit topology [13, p. 193], the o-inductive limit topol-
ogy [7, p. 573]].

ProrosiTioN 7. Let 3 be the inductive limit topology on structured space
(E, V) with respect to structured locally convex spaces (E.) and structure homo-
morphisms (go). Then V €U is a neighborhood of zero for 3 if and only of V
is absorbing and gz (V') is a neighborhood of zero in E, for all a e A. If f s
any structure homomorphism from E into any structured locally convex space,
then [ is continuous if and only if f o g. ts continuous for all a e A.

The proof is similar to that of [3, Proposition 1 and Corollary, p. 60].

ProposiTioN 8. Let E be the structure inductive limit of structured locally
convex spaces (E,) with respect to structure homomorphisms (g.). If E. is
®o-bornological for all o and if ® s a family of bound subsets of E containing
U, 9o(®.), then E is ®-bornological.

The proof is similar to that of [13, Proposition 6]. The proposition clearly
yields as a special case the fact that the linear inductive limit [algebraic in-
ductive limit, o-inductive limit] of bornological spaces [{-bornological alge-
bras, o-bornological or P-o-bornological spaces] is again bornological [¢-borno-
logical, o-bornological or P-o-bornological].

2. Cartesian products of structured spaces

Let ((Eo, Qa, 3a))aca be a family of structured locally convex spaces,
E./ the dual of (., 3,) for all e e A. Let E = J]. E., let 3 be the Car-
tesian product topology of E, and let £’ be the dual of (£, 3). For each
aeA let 1, be the canonical injection mapping from K, into E. Clearly
[V C E:V is convex and equilibrated, and ;' (V) €V, for all o] is a struc-
ture on K, which we shall call the Cartesian product structure on E determined
by the structured spaces ((Es, Va))aea -
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The linear structure on E, for example, is the Cartesian product structure
of the linear structures on the £, . If each U, is the algebraic [order] struc-
ture on K, defined by a given multiplication [partial ordering] on £, , these
multiplications [partial orderings] induce a multiplication [partial ordering]
on K whose associated algebraic [order] structure is weaker than the Cartesian
product structure determined by the U, .

ProposiTioN 9. For all a € A, i, 1s a structure homomorphism from I,
wnto E.  The Cartestan product topology 3 on I ts compatible with its Cartesian
product structure V.

Proof. By definition of U, i, (V) < UV, for all a. For any
V eUVa, i5 (1a(V)) = {0} €Vpif B # a, and 75 (4a(V)) = V €V, ; hence
1o(V) € V. Thus 1o(V.) € U, s0 2 is a structure homomorphism. If V =
II. V. is a neighborhood of zero for 5 where each V, € U, then i3 (V) =
VeV, forall @, 50 Ve. Hence 3 is compatible with .

Using the fact that if 3, is the Mackey topology 7(E,, E.') for all « then
3 is the Mackey topology 7(H, E’) [5, §2, Corollary of Theorem 2; 4, Exer-
cise 6a), p. 80], we shall extend it to Cartesian products of structured locally
convex spaces.

ProrositioN 10. If for all « € A, 3, is separated and is the finest topology
on E. compatible with U, and the duality between E. and E, , then 3 is the
finest topology on E compatible with U and the duality between E and E'.

Proof. 1t suffices by Proposition 4 to show that if W is a neighborhood of
zero for 7(E, E'), and if W ¢, then W is a neighborhood of zero for 3. Since
7(E, E') is the Cartesian product topology on £ determined by the topologies
7(E., E.), there exists a finite subset B of A such that for all (z,) € E, if
2o = 0 for all « € B, then (z,) e W. Let n be the number of elements in
B. Let Vo= '((n+ 1)"'W)forallaeB,let V, = E,foralla e A — B,
and let V = [J. V.. Foreach aed, V,eUa, and V. is a neighborhood
of zero for 7(E,., E.'), whence V, is a neighborhood of zero for 3,. Thus V
is a neighborhood of zero for 3. It remains to show V C W: Let (z,) e V.
Lety, =0if a eB, Yo = 2oif e € A — B. Then(z,) = (¥a) + D gen t5(2s).
Since ((n 4+ 1)ya) ¢ W, we have (yo) ¢ (n+1)"'W. For 8 ¢ B,
is(xs) e (n + 1)7'W. Hence as W is convex, and as (z,) is the sum of n + 1
members of (n + 1)7'W, (2,) e W. Thus V C W, and the proof is complete.

CororLLARY. Under the hypotheses of Proposition 10, if W s any structure
on E weaker than the Cartesian product structure O but with which the Cartesian
product topology s compatible, then 3 is the finest topology on E compatible
with W and with the duality between E and E'.

The proof follows at once from the observation that if U and W are two
structures on a vector space such that W C U, any topology compatible with
W is also compatible with 0. The corollary is applicable of course, to the
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case where the structures considered are all algebraic structures or are all
order structures.

ProrosirioN 11. Let A be finite. For all o € A let B, be a class of bound
subsets of B, , and let & be a class of bound subsets of E containing U, 1,(B,).
If E, is ®s-bornological for all a € A, then E is ®-bornological.

Proof. Let f be a ®-bounded structure homomorphism from £ into a
structured locally convex space F. As® D 1,(Bs), fa = f ¢ tai8a B,-bounded
structure homomorphism from £, into ¥ and hence is continuous. But then
a8 f((2a)) = D aea fa(a), f is clearly continuous. Hence by Proposition 5,
I is ®-bornological.

Henceforth, therefore, we may assume A is infinite. Bach ¢ = (2.) e £
defines a continuous linear mapping z+: (Ae) — (Aa o) from R*, the Car-
tesian product of a family of real lines indexed by A, into £; we shall show
that the question of when E inherits bornological properties from the E,
can be reduced to a set-theoretical question about A and a question concern-
ing the maps x~. Recall that the collection of all convex equilibrated sets
absorbing every order-bound set is a fundamental system of neighborhoods
of zero for the order-bound topology on a partially ordered vector space
(Example 3(d)). A theorem of Mackey [8] implies that the Cartesian
product topology of R* is the order-bound topology of R* (regarded as a
lattice) if and only if A admits no Ulam measure: By (6) of Proposition 3,
Proposition 10, and Proposition 1, the Cartesian product topology of R* is
the order-bound topology if and only if every linear form on R* which is
bounded on the order-bound subsets of R* is continuous, or equivalently [4,
Proposition 10, p. 75] is in the linear subspace of the algebraic dual of R*
spanned by the projection mappings; Mackey’s theorem asserts that the
latter condition is equivalent to the assertion that 4 admits no Ulam measure.
(This also follows from the more general result of Nachbin (contained in the
proof of [9, Theorem 2]) that the partially ordered space €(A) of all con-
tinuous real-valued functions on a completely regular space A, equipped with
the topology of compact convergence, has the order-bound topology if and
only if A is a Q-space (this theorem is due also to Shirota [12]). Applying
this result to the case where 4 is discrete and therefore €(4) = R*, we see
that the Cartesian product topology of R* is the order-bound topology if
and only if discrete space 4 is a @-space, which in turn is equivalent to the
assertion that there exist no Ulam measures on A (see the discussion in [13,
pp. 206-208]).)

ProrosiTioN 12. Let A be a set admitting no Ulam measure. For each
aeA let By be a family of bound subsets of E, , and let ® be a family of bound
subsets of E containing U, 1,(®B,). If E.1s a separated ®,-bornological struc-
ture for all o € A, and if for all x ¢ E and all positive v e R* every ®-bornivore
subset of E absorbs x~([—v, v]) (equivalently, the inverse image under x+ of every
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®-bornivore subset of B absorbs every set of the form [—v, v]), then B = ]+ E.
18 B-bornological.

Proof. By (6) of Proposition 5 and Proposition 10 it suffices to show every
®-bornological linear form on E is continuous. Slight modifications in the
argument of Lemmas 2—4 of [13] furnish the desired proof. (Use is made of
the fact that the Cartesian product topology of R* is the order-bound topol-
ogy in modifying Lemma 2 and Lemma 4, and use is made of Proposition 11
in modifying Lemma. 3.)

Let us apply Proposition 12 to the examples of §1; for each example we
shall assume that both & and the collections &, are of the type described.
Then in all examples, U, 7.(B,) S ® For Example 2 [Example 3], if ‘W
is the algebraic [order] structure of E, to show (E, W, 3) is ®-bornological,
it suffices to show (¥, U, 3) is B-bornological by remarks following the defini-
tion of ®-bornologicity and the definition of the Cartesian product structure.
Now let z ¢ E. For any » = 0 in R*, [—v, ] is compact, convex, and equi-
librated, so z~([—wv, v]) has the same properties; hence in Examples 1(a),
1(b), and 3(a), the condition concerning z+ is satisfied. As shown in [13,
Lemma 1], z» has the desired property in Example 2(a) if each K, has an
identity. Next, suppose each E, is a partially ordered space whose cone P,
of positive elements generates £, . Then the positive cone of E is generating,
so there exist y = 0,2 = 0in E such that xt = y — 2. Forany» = 0 in
R*, [—v, 0] [0, v] + (=0, »]), and y~([0, »]) and z~([0, v]) are positive
order-bound subsets of E; hence as

z2([—v, 2]) S y~([0, v]) + (—2~([0, v])) + (—y~([0, 2])) + 2([0, 2]),

x~ has the desired properties in Examples 3(b), 3(¢), and 3(d). In summary,
we have

ProrosiTioN 13. Let A be a set admitting no Ulam measure. For each of
the seven following types, if each member of a family of separated spaces indexed
by A s of that type, the Cartesian product of that family is also. (1) Borno-
logical space. (2) Ultrabornological space. (3) i-bornological algebra with
identity. (4) o-bornological partially ordered space. (5) P-o-bornological
partially ordered space whose positive cone is generating. (6) Partially ordered
locally o-convex space whose positive cone ts generating and whose topology s
the finest locally o-convex topology. (7) Partially ordered locally convex space
whose positive cone s generating and whose topology s the order-bound topology.

(1) is a theorem of Donoghue and Smith [5, §2, Theorem 7 and Corollary
of Theorem 2], (2) generalizes [4, Exercise 11 e), p. 35], and (3) is [13, Theorem
6]. The hypothesis concerning the positive cone in (5), (6), and (7) can-
not be removed without other restrictions. For if we choose equality as the
partial ordering of R, the positive cone of R* is {0}, and thus R* is P-o-
bornological or has the finest locally o-convex topology or has the order-
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bound topology if and only if R* has the finest locally convex topology. But
if A is infinite, the algebraic dual of R* strictly contains the topological dual
of R* for the Cartesian product topology, and hence that topology is not the
finest locally convex topology.

3. Partially ordered locally convex spaces

A partially ordered vector space E has the decomposition property (10, p.
27 if forallz,y = 0, [0, z] + [0, ] = [0, z 4+ y]. Every vector lattice has
the decomposition property [10, Lemma 7.2], though not every partially
ordered space with the decomposition property is a lattice. For our next
results, we need the following algebraic lemma:

LemMA.  Let E be a partially ordered vector space having the decomposition
property, let P be its positive cone, and let Ey, = P + (—P). For any convex
equilibrated subset W of E, there exists an equilibrated o-convex subset U of E
such that U T 3Wn Eyand Un P = [z = 0: [0, 2] & W). If in addition
E is a lattice, then for each w e U, u™ ¢ W.

Proof. LetV =[xz 0:[0,z] CW|C FEy. Ifz,yeVandif0 £ « =1,
by the decomposition property

0, az + (1 — @)yl = [0, az] + [0, (1 — a)y]
=a0,zl+ (1 -a)0,y) SaW + (1 -a)W =W,

soax + (1 — a)yeV. ThusV isconvex. Clearly V u (—V) isequilibrated,
so the convex envelope Z of V u (—V) is also equilibrated and contained in
Ey. AsVisconvex, Z = A — (1 —Ny:z,yeV and 0 = N < 1] by
[3, Proposition 8, p. 45]. Clearly Z n P D V; on the other hand, if z ¢ Z
and if z = 0, there exist =, y ¢ V and X €[0, 1} such that 0 = z =
Me— (1 =Ny £ M £2,500(0,2] S [0, 2] C W, and therefore z ¢ V. Hence
ZnP = V. Let U be the order-convex envelope of Z, that is, the union
of all sets of the form [v, w] where v, w ¢ Z and v £ w. As Z is convex
and equilibrated, U is o-convex and equilibrated. Suppose u ¢ U. Then
there exist @, 4, z,weV and a, B €[0, 1] such that ax — (1 — o)y <
u B8 — (1 —Bw. Letv =u— ar+ (1 — a)y. Then

0=v=p+0—-ay—(1—-pw—oar
S+ A —a)yszt+yeV4+V=2V.
Therefore v ¢ 2W n Ey. Since z, ye V € W n E,, we have
u=v+ar— (1 —a)ye2W +aW + (1 —a)W]nE,=3WnkE,.

Thus U € 3W n E,. Clearly Un P D ZnP = V. SupposeueU and
u = 0. Then there exists b ¢ Z such that 0 < v < b, whencebeZnP =V,
and thus [0, u] € [0,b] & W, that is, w e V. Therefore UnP = V. Sup-
pose further that E is a lattice, and let u e U. Then there exist x, y ¢ V and
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€[0, 1] such that v < Az — (1 — Ny = Az = 2. Consequently as x = 0,
< u" £ 2, so by the definition of V, u™ ¢ W.

Let us call a partially ordered locally convex space p-bornological if every
convex, equilibrated, absorbing set absorbing all positive bound subsets of £
is a neighborhood of zero. (¥ is thus p-bornological if and only if the asso-
ciated linearly structured locally convex space is a ®-bornological structure,
where ® is the class of all positive bound sets. As for Examples 3(b), 3(c),
and 3(d), Proposition 12 implies that if (Fa) 4 is a family of p-bornological
separated spaces each with a generating positive cone, and if 4 admitsno Ulam
measure, then [ [ B, is a p-bornological space with generating positive cone.)

If 3 is a locally solid topology on lattice E, and if B is a bound subset for
3, then BY = [2":z ¢ B] is clearly bound as zero has a fundamental system
of solid neighborhoods; hence B € B" — (—B)™ and so is contained in the
difference of two positive bound sets. Consequently, 3 is a bornological
topology if and only if it is a p-bornological topology, and 3 is an o-borno-
logical topology if and only if it is a P-o-bornological topology.

In general, a p-bornological space is clearly bornological, and the order-
bound topology 3, on any partially ordered vector space converts it into a
p-bornological space. Since T, is not always locally o-convex [10, p. 21], a
p-bornological space need not be locally o-convex. However, it is clear that
a p-bornological locally o-convex space is P-o-bornological, and the converse
holds in the presence of the decomposition property:

A
0

PropositioN 14.  Let E be a partially ordered locally convex space with the
decomposition property. The following are equivalent: (1) E is P-o-bornologi-
cal; (2) E s p-bornological and locally o-convex. If in addition E is a lattice,
then the following condition is equivalent to the preceding ones: (3) E is borno-
logical and locally solid.

Proof. As remarked above, (2) implies (1), and if ¥ is a lattice, (3) im-
plies (2). We shall show (1) implies (2) and also their conjunction implies
(3) if E is a lattice. Let W be any convex equilibrated absorbing set absorb-
ing all positive bound subsets of E, and let By = P + (—P) where P is the
positive cone of E. By the lemma, there exists an o-convex equilibrated set
U such that U S 3WnEyand UnP = [z =2 0:[0, 2] C W]. U absorbs all
positive bound sets: If not, there exists a positive bound set B such that
B Q; n*U for all n = 1. Let z, ¢ B be such that z, ¢n’U. Then

n 2, e UD UnP,
so there exists y, such that 0 < y, < n "z, and y, ¢ W. Therefore
0 < ny, < n'x,,

and as {Z.}nz1 € B, n w, — 0. Hence as the topology of E is locally o-con-
vex, ny, — 0, 80 {nY.}.2>1 is a positive bound set. But as ny, ¢ nW, W does
not absorb all positive bound sets, a contradiction. Hence U absorbs all
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positive bound sets, and in particular, therefore, all points of E,. Let
V =U+ (Wn E,) & 4W where E, is an algebraic supplement of E, in F;
then V is absorbing and also convex and equilibrated. V is o-convex: Sup-
pose w + wy < Uy + w, where u;, e U and wy, woe WnE;,. If

z = (w, — wi) + (ue — w),

then 2 = 0, s0 z € By, and hence we, — wy = 2 — (U2 — 1) e £y. Therefore
w. — w; = 0, and so

g + wy, ue + wo] = w4+ [ug,u] S (WnkEy) +U=1V.

By hypothesis, therefore, V is a neighborhood of zero. Thus as W contains
47'V, W itself is a neighborhood of zero, and we have shown (1) implies (2).
Now suppose F is a lattice satisfying (1) and hence (2), and let W be a
convex equilibrated neighborhood of zero. Then By = E and V = U, a
neighborhood of zero by the preceding. By the lemma, u e U implies u™ ¢ W,
so by (ii) of [10, Theorem 8.1], E is locally solid. Consequently as E is
p-bornological, E is bornological, and thus (3) holds.

The author is indebted to H. Schaefer for pointing out that a hypothesis
in the author’s original version of Propositions 14 and 15 was unnecessary.

PropositioN 15.  Let E be a partially ordered vector space having the decom-
position property. Then the order-bound topology 3, of E s locally o-convex and
hence s the finest locally o-convex topology on E. If E is a lattice, 3y is locally
solid and hence s the finest locally solid topology on E.

Proof. Again, let B, = P 4 (—P) where P is the positive cone of E.
Let W be any convex equilibrated set absorbing all order-bound subsets of
E. By the lemma, there exists an o-convex equilibrated set U such that
UC3WnEiand UnP = [z = 0:[0,z] £ W]. For any x = 0, U absorbs
x: If not, there exists z ¢ P such that « ¢ nU, and thereforen 2 ¢ U D Un P
for all n = 1. Hence there exists 3, such that 0 < y, £ n 'z and Yn £ W.
Then ny., € [0, z] for all n = 1, but ny, ¢ nW, so W does not absorb [0, z], a
contradiction. Consequently U absorbs all points of F,. Let

V =U-++ (WnE,) C4W,

where K is an algebraic supplement to K, . Asin the proof of Proposition 14,
¥ is an absorbing o-convex equilibrated set and therefore absorbs all order-
bound subsets of . Thus 47'V is an o-convex neighborhood of zero for 3,
contained in W; hence 3J; is locally o-convex. But then if F is a lattice, J is
also locally solid by Proposition 14.

The first assertion of Proposition 15 was essentially proved by a different
method by Schaefer (14, Theorem (4.9)]; his argument may be modified to
eliminate the hypothesis made in his theorem that F admit a separated
locally o-convex topology. The second assertion of Proposition 15 was
proved by Namioka [10, Theorem 8.5].
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In view of Proposition 14 it is natural to ask if a bornological, or more
specifically a normed locally o-convex lattice E is necessarily locally solid.
The answer is no, as the following example shows.

Let L be the real Hilbert space of all square-summable sequences indexed
by the positive integers, and let E be the subspace of all sequencesa = (ax)rx1
in L such that oy = 0 for all but a finite number of indices &, equipped with
theinduced norm || « || = (D ak)".  Let P be the set of all sequences (o) € B
such that ax = karyy = Oforallk = 1. It is easy to verify that P is an anti-
symmetric cone and is further closed in prehilbert space F since the projec-
tions (ax)rz1 — an are all continuous. FE with the associated partial order-
ing is a lattice: It suffices to show that for any a = (a) in E, o™ exists
[10, Lemma 1.2]. Let p be the largest of those indices j such that o; # 0;
let B, = 0 if & > p, and by induction let

Bp—r = max {(p — 7)Bprt1, tpr + (D — 1) (Bpri1 — apry1)}, 0 = 7 < p.
One may then verify that (8:) = a*, so E is a lattice. If
0=2a= () =B = (B

where 8 is in the closed ball of radius ¢, then 0 < o < B for all £ = 1 and
hence || o || < || 8| £ ¢; consequently [10, Theorem 4.8], E is locally o-con-
vex. But E is not locally solid: Suppose W is a solid neighborhood of zero
contained in the closed ball of radius 1. Then for some ¢ > 0, W contains
the closed ball of radius . Let p > 1 be such that (p — 1)! e > 1, and let
a = (ax) where ap = ¢ and o = 0 for & # p. Then || al =¢, s0o aeW.
But if a* = (8:), by the preceding 8,1 = (p — 1)&, and by induction
BprZz(p—r)(p—r+1) ---(p—1e for 0=r <p. In particular,
Bi=(p— Dle>1 50| a"| > 1, and thus o ¢ W, a contradiction.

By Proposition 14, therefore, the preceding is an example of a bornological
(indeed, prehilbert) locally o-convex lattice which is neither p-bornological
nor P-o-bornological. In contrast, any complete metrizable locally o-convex
lattice is locally solid [10, Theorem 8.2] and thus both p-bornological and
P-o-bornological. Note also that the closure P~ of P in L is an antisym-
metric cone but does not convert L into a lattice. Indeed, o = (k™ )rz1 is
not majorized by any element of P, for if 3 = (8:) ¢ P~ and if B8 = «, then
8= (p— 1)!ptforallp = 1.

Let us call a partially ordered uniform space A monotonically sequentially
complete if every increasing Cauchy sequence in A converges to a point of 4.
Modifying a proof of Goffman [6, Theorem 2], Kist [7, Proposition 7.2] has
shown that if E is a separated sequentially complete P-o-bornological space
whose positive cone is closed, the topology of E is the finest locally o-convex
topology on E. A trivial modification of Kist’s argument yields the follow-
ing more general result, but for completeness we shall give the entire proof.

ProrosiTioN 16. Let E be a separated partially ordered locally convex space,
V a convex equilibrated set absorbing all order-bound subsets of E. Then V also
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absorbs all convex, positive, monotonically sequentially complete, bound subsets
B of E containing zero. If further E is monotonically sequentially complete, and
if the positive cone of E is closed, then V absorbs all positive bound subsets of E.

Proof. If not, there exists a sequence (&,)»z1 in B such that z, ¢ 2V
thus if ¥u = D 1<i<n 2@k, (Yn)nz1 is an increasing Cauchy sequence con-
tained in B and hence converges to a point y e B. But also if
m = Ny Y — Yo € B, and thus (¥m — Ya)mzn 18 an increasing Cauchy sequence
contained in B; hence ¥y — ¥, = liMuysw(yn — Ya) € B and therefore y = y. .
By hypothesis there exists p such that [0, y] & 2°V. Then as

02", 2y, =, 27"z, € 2°V,

so 2, € 27V, a contradiction. Suppose now that the positive cone of E is
closed and that F is monotonically sequentially complete. The former con-
dition insures that the closure of every positive bound set is a positive bound
set, and the latter insures that every closed positive bound set is monotoni-
cally sequentially complete. Hence by the preceding, V absorbs all positive
bound subsets of Z.

ProposirioN 17. Let 8 be a separated, monotonically sequentially complete,
locally convex topology on partially ordered space E for which the positive cone
1s closed. Then for any locally convex topology 3 on E finer than 8, the following
are equivalent: (1) (E, 3) s p-bornological, and every order-bound subset of
E is bound for the topology 3. (2) The topology 3 is the order-bound topology
Jp .

Proof. Clearly (2) implies (1). (1) implies (2): The second part of
(1) implies 3 € 3,. Let V be any convex equilibrated set absorbing all
order-bound subsets of K. By Proposition 16, V absorbs every positive
bound subset of (E, 8). As 8 C 3, V therefore absorbs every positive bound
subset of (¥, 3) and hence by hypothesis is a neighborhood of zero. Thus
ID8.

ProrosiTioN 18. Let E be a partially ordered vector space having the de-
composition property. Let 3 be a locally convex topology on E finer than some
separated, locally convex, monotonically sequentially complete topology for which
the positive cone 1s closed. Then the following are equivalent: (1) 3 s the
Jinest locally o-convex topology on E. (2) 3 is the order-bound topology of E.
(3) (&, 3) zs p-bornological, and every order-bound subset of E is bound for
topology 3. (4) (KB, 3) is P-o-bornological. If in addition E is a lattice, the
following condition is equivalent to the preceding four: (5) 3 s the finest
locally solid topology on E.

Proof. (1) and (2) are equivalent, and if E is a lattice, (1) and (5) are
equivalent by Proposition 15. (1) clearly implies (4), (4) implies (3) by
Proposition 14, and (3) implies (2) by Proposition 17.
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CoroLLARY 1. Let E be a vector lattice, 3 a locally solid topology on E finer
than some separated, locally convex monotonically sequentially complete topology
for which the positive cone is closed. The following are equivalent: (1) 3 4s
the finest locally o-convex topology on E. (2) 3 is the order-bound topology of
E. (3) (FE, 3) s bornological. (4) (E, 3) s o-bornological. (5) 3 1s
the finest locally solid topology on E.

Corollary 1 is essentially {7, Proposition 8.1] and generalizes the theorem
[1, Theorem 10, p. 248; 6, Theorem 2] that the topology of a Banach lattice
is the order-bound topology and hence the finest locally solid topology, for
the topology of a Banach space is bornological and complete.

It is easy to see that the topology of a bornological locally solid lattice need
not be the order-bound topology in general. Indeed, let £ be the vector
space of the example following Proposition 15, equipped with the lattice
ordering defined by the cone P = [(ax):ar, = 0 for all & = 1] and the locally

solid topology defined by the norm || (ax) || = max { | ax | }iz1. If
Vo= [(ow):| | < k" forall kb = 1],

V is an absorbing, convex, solid subset of £ which is not a neighborhood of
zero. Consequently the topology, though locally solid and bornological, is
not the finest locally solid topology on E.

We also obtain from Proposition 18 the following result [11, Theorem 3]:

CoROLLARY 2. Let (E, 3) be a separated, locally solid, monotonically se-
quentially complete lattice. Then every linear form on E which is bounded on
all order-bound subsets of E vs bounded for topology 3.

Proof. As 3 is locally solid, the positive cone of E is closed for 3. A sub-
set of E is bound for 3 if and only if it is bound for the bornological topology
5% associated to 3; consequently, every bound subset of (£, 3*) is contained
in the difference of two positive bound subsets of (E, 3*), so 5* is a p-borno-
logical topology on E. By Proposition 18, therefore, as every order-bound
set is bound for 3 and hence for 3%, 3* is the order-bound topology. Thus
if f is a linear form bounded on all order-bound sets, f is continuous for 3*
and hence bounded for 3.
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