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1. Introduction

One of the useful tools for studying the structure of a loca.lly compact
group or Banach *-lgebra A is the "dual space" fi of all its irreducible rep-
resentations in Hilbert space (unitary in the case of groups, and involution-
preserving in the case of *-algebras). This dual space has a natural "hull-
kernel topology, first defined by Jacobson [6] in a general lgebraic context,
and later studied for C*-algebras by Kaplansky in [7], and for groups by
Godement in [3]. It is shown in [2] that, in the case of groups and of C*-
algebras, there are two equivalent definitions of this topology having quite
.different appearance--one in terms of the kernels of the representations, nd
the other in terms of positive functionals (or functions of positive type, in
the cse of groups). One of the obiects of this paper is to obtain yet nother
characterization of the hull-kernel topology of the dual of C*-lgebra A.
This is done roughly as follows" Let H be a Hilbrt space of dimension lrge
enough so that every element of fl can be realized s concrete representa-
tion cting in H (with perhaps a null space). One can introduce a natural
topology (derived from the wek operator topology) into the set 5 of all
concrete irreducible representations of A in H; and this in turn induces a quo-
tient topology in fl, regarded as the quotient space of 5 modulo the relation
of equivalence. We prove that the quotient topology and the hull-kernel
topology of fl are the same (Theorem 3.1).
But the main result of this paper is an application to Mckey’s concept of
"smooth dul" (see [8]). Mackey has shown that there is a wide class of

separable groups and C*-algebrs A whose representations cn be decom-
posed as direct integrals with respect to a measure over fi in the same natural
nd unique manner which we find in the cse of compact and Abelian groups;
this class consists of those groups and algebras which are (a) of Type I, and
(b) hve "smooth duals". The latter property means, roughly speaking,
that fl has a reasonably well-behaved structure of Borel sets. Now there
.re important classes of groups and algebrasfor example, the CCR C*-
algebras (see [7]), the semisimple connected Lie groups (see [5]), nd the
nilpotent connected Lie groups (see [1])which re known to be of Type I.
But the questions of which groups and lgebras have smooth duals is less
well understood. We show in this paper (Theorem 4.1) that a separable
C*-algebm A has smooth dual if fl is a T0-space, i.e., if no two distinct
irreducible representations of A have the same kernel. It follows that all
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CCR C*-algebras, and hence (see [4]) all semisimple connected Lie groups,
have smooth duals.

Finally, we want to say here that it was Mackey’s definition of the quotient
Borel structure on the dual space in [8] that suggested to us the corresponding
"quotient" definition of the hull-kernel topology.

2. The topology of concrete representations
Throughout this and the next section, A will be an arbitrary fixed C*-

algebra and H a fixed Hilbert space (of unrestricted dimension). By a con-
crete representation (of A in H) we mean a homomorphism T of A into the.
bounded operators on H which carries involution into the adioint operation,
and whose range contains something other than the zero operator. Such a
representation is well known to be norm-continuous; in fact T --< 1. De-
note by 3 the family of all concrete representations.

If T e 3, let HT be the closed linear span of the set of all Ta (a e A, H);.
equivalently, Hr is the orthogonal complement of l( e H ITa 0 for all
a in A}. We call Hr the essential space of T, and denote by pr the proiec-
tion onto Hr. If Hr H, T is nowhere trivial.
Two concrete representations T and T’ will be called equivalent (T T’)

if they are equivalent in the usual sense when restricted to their essential
spaces, that is, if there exists a linear isometry S of H r’ onto Hr such that.
S-1Ta S Ta for all a. They are unitarily equivalent (T T’) if there.

U Ta U T for all a. A concreteexists a unitary U on H such that -1

representation T is irreducible if there is no closed linear subspace of H, in-
variant under T, lying properly between Hr and /0}.

3 will now receive a topology. For each T in 3, let N(T) be the family of
all intersections of finitely many sets each of which is either of the form

Ma,,n,(T) {S( 311(Sa ) (Ta, 7)1 < }

or of the form

where aeA, , eHr, and i > 0. The N(T) satisfy the axioms for a
system of neighborhoods in a topology for 3; the verification of this is easy
and will be omitted. We always consider 3 as equipped with this topology.
A net {T} of elements of 3 co.nverges to an element T of 3 if and only if
T , ) ---> Ta , ?) and pT* 0 for all a in A, and all (, n in Ur.

In case A has a unit element 1, then P,(T) M,,,.(T), so that the
P,(T) can be omitted from the description of the topology.

It is easy to see that 3 is a T0-space (i.e., open sets separate points) but
need not be a Tl-space (i.e., points need not be closed). However, the sub-
space of nowhere trivial representations, with the relativized topology, is a
Hausdorff space; in fact, its topology is the smallest for which all the func-
tions T (T(, ) (aeA, , eH) are continuous.
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How small a eardinality can a base for the open subsets of 5 have? Sup-
pose that DA and Da are dense subsets of A and H respectively, that B is a
countable base for the open subsets of the complex plane, and that E is the
set of all positive rationals. We verify without difficulty that finite inter-
sections of sets of the form {Te 5 (Ta , rt) W} and/T III P’ < t
(where a e D., ti, "o edit, WeB, and ti e E) form a base for the open
sets in 5. From a simple reckoning with cardinals we now get the following
lemma:

LEMMA 2.1. Let a be the smallest cardinal number of a dense subset of A,
the smallest cardinal number of a dense subset of H, and " the larger of
Then 5 has a base for its open sets of cardinality no greater than

Our next concern is the connection between the topology of 5 and the re-
lations of equivalence and unitary equivalence. If $ c 5, let

8 {Te51 TS for someSin

su {Te51T__S for someSin$},

and let C1 g be the closure of $ in 5. Evidently $ c Su c

LEMMA 2.2. (C1 g) C1

Proof. Let T be in (C1 S). Pick a, ..., a in A, (,
in Hr, and ti > 0. We shall prove that there exists an R in Su such that, for
all i,

(1) R e iai,i’,ni’ ,( T), Re. P,,( T).

Let S be an element of Cl$ such that T S. Then there is a linear
isometry F of HT onto Hs such that

(2) FT Sa F (a e A, e Hr).
Define (: F(, Fn. Since S e C1 g, there is a Q in belonging to all
Mai,(i,,,;,$(S) and P.(S). Now there exists a unitary operator U on H
which coincides with F on the (finite-dimensional) space spanned by the, ,andTa i 1, n By (2),

(3) U , Uv n, UT Sai i.
Let us define R by R U-1Qa U; then R e $u. We have by (2) nd (3)

and
R

so that (1) is proved.
Now (1), together with the arbitrariness of the a, , v, ti, shows that

7’ e C1 g. Since T was an arbitrary element of (C1 S), the lemma is proved.
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COROLLARY 1. If c 5, (C1 $)e c C1 e, and (CI $)u C1

COROLLARY 2. If $ 5, C1 8 C1 .
Proof. Replacing by in the lemma, we get

(ClsU) C1 (3)u C1 .
Hence, by taking closures, C1 C1 3u. The reverse inclusion is obvious.

COROLLARY 3. Let 5, where ’ is open relative to
then 8,u is open relative to 8; if $ $, then ’ is open relative to

Proof. Assume 3u. By Corollary 1,

(C1(8- 8’u)) C1(8- 8,u) C1(8- 8’u) C1(8- 8’).

Since Cl(8 8’) n 8’ A, this gives

(c1 ( ’)) n ’ h.
But this implies that

Cl(s ’) n s,u A;

thut is, 8’u is open relative to 8.
The other part of the corollary is proved similarly.

COROLLARY 4. If 8 is an open subset of 5, then 8 and 8 are open.

COROLLARY 5. If 8 5 and 8 8u, then

(ClS)U (ClS)e C .
Proof. Using the lemmu yields

CI$(Cls)U (Cls),Cls CI.

3. The quotient topolo9y
If T e 5, let Eq T be the equivalence class of the relation to which T

belongs. If $ 5, Eq will be the set of all Eq T, where T e 8;in particu-
lar, Eq 5 is the set of all equivalence classes Eq T. We topologize Eq 5
with the quotient topology obtained from 5: A subset W of Eq 5 is open if
and only if {T e 5Eq T e W} is open. By Corollary 4 of Lemma 2.2, the
natural map T Eq T is open and continuous on 5.

If 8 5, we can equip Eq $ with u topology in two natural ways, either
(i) by relativizing the topology of Eq 5 to Eq 8, or (ii) by relativizing the
topology of 5 to 8, then taking the quotient topology of Eq 8 obtained from
the relativized topology of 8. Clearly topology (i) is contained in topology
(ii), but in general they are not equal.

LEMMA 3.1. If , topologies (i) and (ii) for Eq 8 coincide.

Proof. We will show that in this case topology (ii) is contained in topol-
ogy (i). Let W be subset of Eq8 closed in topology (ii); and put
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W’ {T esIEq T e W}. Then W’ is closed relative to S, i.e.,

(4) (c w’) w’.

Put Z (C1 W’)e. Since 8 8, we have also W’ W’U; so, by Corollary
4ofLemma2.2, Z C1W’. This and (4) giveZn8 W’;whence

z (w’) .
This equation, together with the fact that Z is closed and Z Ze, shows that
W (= Eq W’) is closed in Eq in topology (i). Thus topology (i) contains
topology (ii).

If S c 3, , either of the two identical topologies (i) or (ii) will be
called the quotient topology of Eq .
COROLLARY. If $ c 3, S Su, and T T’ whenever T and T’ are in 8

and T T’, then the map T ---> Eq T is open on $; that is, if $’ is a subset of
$ open relative to $, then Eq 8’ is open relative to Eq $.

Proof. Let 8’ be a subset of 8 open relative to 8. By Lemma 3.1, we
need only show that S’e n 8 is open relative to 8. But, by hypothesis, ’ n $

S’"; and this is open relative to 8 by Corollary 3 of Lemma 2.2.

In a recent paper [2] we discussed the so-called hull-kernel topology for
the dual space fi (i.e., the set of all unitary equivalence classes of irreducible
*-representations) of A. In order to describe it, we remind the reader that
a nonzero positive functional on A is associated with a *-representation T
of A if, for some in the space of T, (a) (Ta , ) for all a in A. Let
W c fl, T e fi. It is proved in [2] that T belongs to the hull-kernel closure
of W if and only if some positive functional on A associated with T is a
weak* linit of positive functionals ,, each of which is associated with some
S in W, and such that , II. For the purpose of the present paper,
this may be taken as the definition of the hull-kernel topology of A.

Let us denote by 3
o the family of all irreducible concrete representations

of A in H. Then Eq 30 can be identified with the subset of fl consisting of
those elements whose dimensions are equal to or less than that of H; and the
hull-kernel topology relativized to Eq 30 will be called the hull-kernel topol-
ogy of Eq 3.
THEOREM 3.1. The hull-kernel and quotient topologies of Eq 30 coincide.

Proof. Part I. Let8 3, 8 8e, EqS W, and assume W closed in
the hull-kernel topology of Eq 3. If T e (C1 ) 3, there exists a net of
elements {T} of 8 with T-- T; so, if 0 e Hr,

i(a) T , ) ----> Ta , ) (a)

for all a, where and are associated with T and T respectively. But
this implies that Eq T --- Eq T in. the hull-kernel topology (see [2]), so
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that Eq T e W, T S. Thus S is closed relative to 5, which implies that
W is closed in the quotient topology of Eq 3. Since W was an arbitrary
subset of Eq 3 closed in the hull-kernel topology, we have shown that the
hull-kernel topology is contained in the quotient topology of Eq 3.

Part II. Let W be a subset of Eq 3 closed in the quotient topology; we
will show that W is closed in the hull-kernel topology of Eq 3. Define

0 W}.$= {T IEqT
If A has a unit, let A1 A; if not, let A1 be the C*-algebra obtained by

djoining unit 1 to A. Ech T in 5 cn be extended to concrete repre-
sentation T of A by setting T[ p T. Let S be n element of 30 such
that Eq S belongs to the hull-kernel closure of W. Then it is known (see for
example Lemm 1.8 of [2]) that the equivalence class of S belongs to the
hull-kernel closure of W {Eq TEq T W}. So, by our description of
the hull-kernel topology, there is net {Tx} of elements of $, vector in
Hr, nd, for each h, vector x in Hrx such that

(5) (T k, k) (Sa , ) for all a in A.
(Here, for simplicity of notation, we hve written S, T instead of S, (TX)).
Let F be fixed finite subset of A containing 1; nd put

m(F, h) infu mXae F T x Va
where the infimum is tken over ll unitary operators U on H. We shall
prove that, for fixed F,
(6) limx m(F, X) O.

Indeed, let w, v, be n orthonorml set of vectors spnning the sme
spce s the Sa , a e F; nd let r, s be complex numbers such that

We define for ech h nd ech i 1, ..., n

Then by (5) and (7)

(8)

OW

Applying (5), (7), and (8), we see that the first, second, and third terms of
the right side of this equation approach Sa 2, a 2, and -2 Sa
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respectively; so that, for any a in F,

o.
Now, in virtue of (8), the .x, ..., x are linearly independent for Ml

lrge enough k;in fct, one can choose for M1 lrge enough n orthonormM
set of vectors , r. nd complex coefficients w such that

and

(10) w --x tiij for i, j 1, n.

Let us define U to be a unitary operator on H for which UXv r for
i 1,...,n. Then, by(7) and (10),forainF,

Combining this with (9), we have for a in F

(11) TXa u o.
Putting a 1 in (11), and combining the result with (11) again, we obtain

T Ux / U S /[[---x O,
or

(12) t’-Xa t-a 0,

where S Ux -1 x UX.eS, Sa Ta
Equation (12) shows that, for each finite subset F of A1--and, in particu-

lar, of A--and each > 0, there is a T in $ such that

(13) Ta Sa < for all a in F.

To show that S e C1 $, it must be proved that, for each 1, "’, r in Hs,
each al, ar in A1, and each > 0, there is a T in $ such that

(]4) I(Sai i, i) (Tai i, i)l < .
Since the Sb are dense in Hs, it is sufficient to show (14) under the assump-
tion that Sb , b e A. But then (14) becomes

(].5) Sbi*aibi , ) (Tai b , Sb )l < "
It is easy to see that (15) will be satisfied if we choose T in $ so that the

bi,aibi Sbi*aib and V S are sufficiently small; and
this is possible by (13).
Thus S e Cl$. Since W Eq $ is closed in the quotient topology of

Eq5, $ must be closed in 5. Therefore Se$, or EqSeW, But EqS
was an arbitrary element of the hull-kernel closure of W. Therefore W is
closed in the hull-kernel topology of Eq 5. This completes the proof.

Let us denote by 5v the family of nowhere trivial representations in 5. If
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T, T’ e 3", then T T’ implies T--- T’. Hence, combining Theorem 3.1
with Lemma 3.1 and its corollary, we get

COROLLARY. Let H denote the family of those T in , whose dimension is
equal to that of H; and equip with the relativized hull-kernel topology. Then
the natural map of 5 n o onto is continuous and open.

THEOREM 3.2. If is the smallest cardinal number of a dense subset of A,
then A has a base for its open sets which is of cardinality no greater than

Proof. First we remark that every T in fi has dimension equal to or less
than a. Indeed, let D be a dense subset of A of cardinMity
irreducible representation of A acting in K. If 0 e K, the set
Ta la D} is dense in H and of cardinMity no greater than
Let H be of infinite dimension a. Then by the preceding remark fl

Eq 30; so that fl is a topological subspace of Eq . By Lemma 2.1,
base B of open sets of cardinMity _<_ a. Since T -- Eq T is a continuous open
map of onto Eq (Corollary 4 of Lemma 2.2), the set of Eq W, where
W e B, is a base for the open subsets of Eq 3, and of cardinMity =< a. Since
Eq 3 has a base of open sets of cardinMity =< a, so does its subspace

COROLLARY. If A is separable, has a countable base for its open sets.

4. The Mackey Borel structure

We recall some definitions from [8] about Borel structures. Let X be a
set. A Borel structure B on X is a nonvoid family of subsets of X closed
under countable unions and complementation with respect to X. A set X
and a Borel structure B on X define a Borel space; the elements of B re the
Borel subsets of X.

Let X, B be a Borel space. A subfamily B’ of B is separating family if,
for any two distinct points x and y in X, there is an A in B’ such that x A,
y e A; it is a generating family if B is the smallest Borel structure on X con-
taining B’. We say X, B is separated if B is a separating family; it is count-
ably separated if there is a countable separating subfamily of B; it is countably
generated if it is separated and there is a countable generating subfamily of B.

If X is a topological space, the smallest Borel structure B on X containing
all the open sets is said to be generated by the topology. A complex-valued
function f on a Borel space X, B is a Borel function if f-(A B for each
open subset A of the complex number system.
We now fix separable C*-Mgebra A. The Borel structure of fi generated

by the hull-kernel topology of fl will be called the topological Borel structure
of ft.. Mackey in [8] has also defined a Borel structure on fl independently
of the topology, as follows"

Let fi be the subset of fi consisting of those T whose dimension is
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n (n 1, 2, 0); and, for each such n, fix a Hilbert space H, of dimen-
sion n. Denote by 5r the family of all concrete irreducible representations
acting nowhere trivially in H,. We give to n the smallest Borel structure
in which all the functions

T--->(Ta, )

(a e A, , H) are Borel functions; or, equivalently, the Borel structure
generated by the topology defined on in 2. Now the natural map which
assigns to each T in its equivalence class Eq T under unitary equivalence
carries 3 onto fir We give to fl. the quotient Borel structure;i.e., a sub-
set W of fi is a Borel set if IT Eq T W} is a Borel subset of .
By the argument of the proof of Theorem 3.2,

i ti (n 1, 2, ..., 0).

We define the Maclcey Borel structure of fi as the family of all subsets W of fl
such that, for alln 1,2, --., 0,WnflisaBorelsubsetoffl. (This
is equivalent to Mackey’s definition by Theorem 8.3 of [8].)

LEMMA 4.1.
structure.

The Mactey Borel structure of contains the topological Borel

Proof. It is sufficient to show that for each open subset W of fl, and each
n 1, 2,.-. 0, W n fi is a Mackey Borel set. But this follows from
the continuity statement in the Corollary to Theorem 3.1.
We shall say that is smooth, or A has a smooth dual, if the Mackey Borel

structure of fl is countably separated. This concept has important impli-
cations in the theory of representations of groups and algebras (see [8]).

THEOREM 4.1. If A is a separable C*-algebra, and is a To-space with
the hull-kernel topology (or, equivalently, if no two distinct elements of have
the same ]cernel), then is smooth, and the topological and Mackey Borel struc-
tures of coincide.

Proof. By the Corollary to Theorem 3.2, fi has a countable base C for
its open sets; thus C is a countable generating family for the topological
Borel structure. Since fl is a T0-space, its topological Borel structure is
separating; hence C is a countable separating family. From this it follows
by Lemma 4.1 that C is a countable separating family of Mackey Borel sets.
Therefore fi is smooth.

Since fl is smooth, its Mackey Borel structure is analytic (see Theorem
8.4 of [8]). We have seen that the topological Borel structure of fl is a
countably generated and separated sub-Borel structure of the Mackey Borel
structure. Now apply Theorem 4.3 of [8] to conclude the identity of the
two structures.
A C*-algebra A is said to be CCR if all the elements of fi are completely
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continuous. In that case fl is a T0-space--in fact, even a Tl-space (see Lemma
1.11 of [2]). We therefore conclude:

COROLLARY. A separable CCR C*-algebra has a smooth dual.

Added June 23, 1959. It has been pointed out to the author by J. Dix-
mier that this corollary is valid for GCR algebras. A GCR algebra (see
[7]) is a C*-algebra A in which there exists an ascending well-ordered set
{I,} (a running over all ordinals equal to or less than a0) of closed two-sided
ideals of A such that (i) if a is a limit ordinal, then I, is the closure of [is<, 18
(ii) the quotient 1,+1/1, is CCR for each a < s0 (iii) I0 {0}, I, A.

LEMM 4.2. The dual space of any GCR algebra is To in the hull-kernel
topology.

Proof. Let A be a GCR algebra, and /I,l the appropriate well-ordered
set of ideals. Suppose that T and T’ are two irreducible representations of
A having the same kernel K; and let a be the smallest ordinal such that I,
is not contained in K. Evidently a -t- 1, where 18 c K. Thus T and
T induce irreducible representations (also called T and T’) of A/Is, whose
restrictions S and S to I,/I do not vanish. Now S and S’ are irreducible
and have the same kernel. Since I/I8 is CCR, this implies that S and S’
are equivalent. Therefore T and T are also equivalent; and the lemma is
proved.

COROLLARY. A separable GCR algebra has a smooth dual.

Proof. Combine Theorem 4.1 with Lemma 4.2.
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