STRUCTURE OF CLEFT RINGS |

BY
Joux H. WALTER!

I. INTRODUCTION AND PRELIMINARIES
1A. Introduction

Let R be a ring with radical N and identity element 1. Throughout this
paper, we assume that R satisfies the minimum condition on left ideals.
Furthermore, we assume that R is a cleft ring; that is, as an additive group
R = S ® N where S is a semisimple ring isomorphic to R/N. This decom-
position is called a cleaving.

Any cleft ring may be considered to be a direct sum of algebras (Proposition
1.1). We assume, therefore, that R is actually an algebra over a field K.
We associate with cleaving B = S @ N a concept called a structure which
determines the “structure’” of the ring R in the ordinary sense. The concept
of a structure is developed out of the concept of a structure of an R-module X.

Let Fy, Fo, - -+, F, be a complete set of nonisomorphic irreducible R-mod-
ules. Of course, these are irreducible S-modules as well. Let X be an
R-module. Then X is naturally a completely reducible S-module. To each
pair f*, f where f* is an S-homomorphism of X onto F; and f is an S-isomor-
phism of F; into X, we will define in the following manner a function ¥(a),
a in R, whose values are in the module Homg(F;, F;) of K-linear transforma-
tions of F,; into ;. For x in F;, we set ¢(a)x = f*ar fr where a,, denotes
left multiplication by « in B. The element () is called a structural element
of R; it belongs to the module

H;; = Homs,s (R, Homx(F:, F;)),
which we call a structural module.

A structure of an R-module X is the set of functions which describe the
dependence of the structural elements on the homomorphisms f* and f.
Theorem 1 shows that if the structures of two R-modulesarerelatedin a certain
manner, then the modules are isomorphie.

We go on to study the significance of the structural modules themselves.
For this purpose we introduce in Part III the concept of a representation
module. We show that each element of Hj; is a structural element of a par-
ticular R-module which is isomorphic to an indecomposable left ideal of R.
This leads us to introduce the concept of a structure (R, S) of a cleft ring
which is defined from the structures of the indecomposable left ideals.

Our principal theorem (Theorem 3) obtains necessary and sufficient condi-
tions for an isomorphism 7o: S — 8§’ of the semisimple components S and S’
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of cleft rings R and R/, respectively, to be extended to an isomorphism
I:R — R’. These conditions are given in terms of the structures Z(R, S)
and Z(R', §').

In case R/N is a separable algebra of finite rank over a field, it follows from
the Wedderburn Principal Theorem that R is a cleft ring. Furthermore, if
R=8S®Nand R = 8 @ N are any two cleavings for R, it follows from
Malcev’s Theorem [4 or 8] that there is an inner automorphism I:R — R
such that 7: 8 — §’. In this case, the structures themselves characterize the
rings up to isomorphism. We also study extensions of anti-isomorphisms
and characterize commutative algebras in terms of their structures. In a
subsequent paper, we will investigate an extension of the Malcev theorem
stated above.

Certain authors [2, 9, 10, 11] have developed a theory of nonsemisimple
algebras in which a basis for the algebra is chosen which exhibits the regular
representation in a particularly nice form. Then when the algebra is cleft,
certain additive subgroups of R are distinguished. These additive subgroups,
called elementary modules when the algebra is of finite rank over an alge-
braically closed field, may be identified by means of the structural elements
of R. The structural elements that we introduce can be used to give an
invariant characterization of these modules and enable us to advance the
theory. The concept of a structure provides a more flexible technique for
handling the structural elements than those used to handle the elementary
modules. The concepts of structural modules and representation modules
enable us to obtain a more complete theory in the general case of cleft
rings, and to study the structural elements independently of the structures
and the ring itself.

Our theory extends immediately to rings which are semiprimary in the
sense that R is a ring with nil-radical N such that N, N* = 0 and R/N"
is a ring with minimum condition on its set of left (or right) ideals (with
the exception of §4C and §4D). More details on this extension will be given
in a subsequent paper.

1B. Definitions and conventions

A ring R will always be considered as having an identity and as possessing
the minimum condition on its left ideals. We will further assume that R is
cleft with cleaving R = S @ N. We will further assume that R is an algebra
of possibly infinite rank over a field K. Then all R-modules will be K-mod-
ules. We then assume all module and ring homomorphisms are K-homo-
morphisms. This is not an essential restriction for the following reason.

ProrositioN 1.1.  Every cleft ring s a direct sum of algebras over prime fields.

Proof. Let R = @,-1 R, be the decomposition of R into indecomposable
ideals.” Let S = @%-; S; be the decomposition of S into simple ideals. Then

2 By the term ideal we mean a two-sided ideal.
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the projection p: R — R, is such that pS; = 0 or p is an isomorphism of S;.
In the latter case, S;n R, = 0, u 5 po. On theotherhand, 1 = X s\,
where N, € R, is the identity of B,. Since M, S; & Ru, N\ S; = 0, u # o and
Mg Si # 0. As 18; = 8i, Ny Si = S;. Hence S; & R,,. Thus every
simple ideal S; of S is contained in some indecomposable ideal R, of R.
From this one may see that S = @, T, where R, = T, @ N, is a cleaving
for R, with semisimple component 7T, and radical N,, and each T, is a
sum of some of the ideals S;. On the other hand, S; = Se; where e; is an
idempotent in the center of S contained in S;. But S; and S; are contained
in the same indecomposable ideal of R if and only if Re; and Re; are con-
tained in the same indecomposable ideal. But if this is the case, e; Ne; = 0
[1, p. 107).2

Now if the additive orders p of e; and ¢ of e; are finite, they are the char-
acteristics of the fields which are centers of the simple rings S; and S; inas-
much as e; is the identity of S; and e; is the identity of S;. Thus p and ¢
are prime integers. Suppose p # ¢. Let ¢ and b be integers such that
1 = ap + bg. Then e;Ne; = (ap + bg)e; Ne; = 0. Hence Se; and Se;
belong to distinct indecomposable ideals. Let the additive order of, say, e;
be infinite, and let the additive order of ¢; be a prime p < «. Then

e; = p(il-))e ; because e; is contained in a field of characteristic zero which is the

center of S;. Thus ¢; Ne; = pe; N (% e;) = 0, and again Se; and Se; belong

to distinet indecomposable ideals of . Hence all simple ideals S; belonging
to an ideal 7, of S may be regarded as algebras over isomorphic prime fields.
Then T, may be regarded as an algebra over a prime field D, . Furthermore,
the identity element A\, of R, is contained in D, .

We must show that D, is in the center of B, . If D, is finite, it is generated
as an additive group by A,. So in this case, the result follows. If D, is
isomorphic to the rational numbers, its elements may be represented in the

form %)"‘ where a and b are integers and b # 0. Let a e R, ; set

= ()

and suppose 3 # 0. Then

B = (%M)ﬂ - (%)»,.)bﬂ = 0.

Hence b8 # 0. Thus aa — aa # 0; but then a(A\, @ — a\,) # 0, which is a
contradiction. Thus in this case also D, is in the center of R, , and R, is an
algebra over D, .

3 Actually the result in [1] is stated with primitive idempotents. However, every
central idempotent is a sum of primitive idempotents, so the result applies here also.
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All modules which we consider will be unitary and (except for K-modules)
will have a finite composition series. In general, when we do not otherwise
specify, a module will be a left module for the ring being considered. Let X
and X’ be, respectively, a C-module and a C’-module for rings ¢ and C’. Let
I:C — C’ be a homomorphism. A homomorphism ¢:X — X’ of additive
groups such that ¢(az) = a’e(z) will be called an 7-homomorphism. If
C = (' and [ is the identity, then we say that ¢ is a C-homomorphism or just
a homomorphism.

A double module X over rings C and D will be an additive group X which
is a left C-module and right D-module such that (yz)é = y(x8) for z ¢ X,
vyeC,and § e D. Let X be a (C, D)-module and X’ a (C’, D’)-module, and
let 7:C — C’ and J:D — D’ be ring homomorphisms. A homomorphism
¢:X — X' of additive groups such that o(y28) = v (¢x)é” is called an (I, J)-
homomorphism. Againif C = ¢',D = D',and I = J = 1, we say that ¢ is
a (C, D)-homomorphism. We denote the group of such homomorphisms by
Hom(c,p)(X, XI).

A left bimodule X over rings C and D will be an additive group X which
is both a left C-module and left D-module such that v(é6x) = 6(vyx) for v € C,
deD,and x e X. We designate homomorphisms in the usual manner.

We will make use of the concept of a projective module [3] as well as of the
elementary properties of the functor Homg(X, Y) [3, Chapter II]. A homo-
morphism ¢: X — Y of modules X and Y over a ring C will be called a mono-
morphism if it is one-to-one and an epimorphism if X = Y.

Let 8 = ®%.; 8;, where S; is a simple ideal. Let Fy, Fy, --- Fx be a
complete set of irreducible R-modules; that is, we take this set of modules so
that no two are isomorphic and such that every irreducible R-module is iso-
morphic to one of them. They also form a complete set of irreducible S-mod-
ules. Let K;,7 = 1,2, ---, k denote the endomorphism fields of F;, ¢ =
1,2, ---,k. ByU:,7i= 1,2, ---,k, we mean left principal indecomposable
modules of B. By definition, U; is isomorphic to an indecomposable left
ideal of R. It is well known [1, pp. 98-99] that U;/NU, is irreducible, that a
principal indecomposable module U; is determined up to isomorphism by its
irreducible factors, and that every irreducible module F'; is isomorphic to an
irreducible factor of some principal indecomposable module. Thus we may
and will assume that the modules U, are chosen so that U;,/NU; is isomorphic
to F i

As in the proof of Proposition 1.1, let e, e, -+, e denote the
central idempotents of S which are contained in the respective simple ideals
Si, 82, -+, 8. Then set e,;Re; = Rij, 4,5 = 1, 2,---, k. We have

R = @} ,aRi;

because 1 = 2% e; and the idempotents e; belong to an orthogonal family.
The modules R;; are (S, S)-modules, of course. Since S; RB;; = 0 and
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Ri; S, = 0for & £ ¢ or n # j, R is isomorphic to R;; as an (S, S;)-module.
We will call these modules Cartan submodules.

1C. Direct families of homomorphisms

Of fundamental importance in what follows is the representation of a direct
decomposition of an S-module by means of homomorphisms. We will review
this in order to establish our terminology and to adapt the concept to our
needs.

We form the right K,-modules Homg(F;, X) and the left K,-modules
Homy(X, F,),1=1,2, --- , k. Becausef— f*fis, for each f* e Homs(X, F,),
an element of the dual module Homg*(F;, X) of Homg(F;, X), we identify
Homg*(F;, X) and Homy(X, F;). The elements fe Homg(F;, X) are
monomorphisms, which we call ¢njections, and the elements f* ¢ Hom ¢*(F,; , X)
are epimorphisms, which we call projections.

A direct family of homomorphisms representing X as the S-direct sum of the
modules Fy, F,, ---, Fi is a family of homomorphisms {f,*, f. |u = 1, 2,
-+, t} with f,* e Homg*(F;, , X), fu e Homs(F;, , X), and

(Ll) fu*fv =0, u#vy fu*f# = 11"5,, 5 Zfﬁmlfufu* =1

where 1, is the identity endomorphism of the corresponding module M.

If {f*|w=1,2 ---, 1t is a family of projections belonging to a direct
family, we say that {f,*} is a direct family of projections. Similarly, we define
a direct family of injections. The direct family of injections and the direct
family of projections which belong to a given direct family of homomorphisms
will be said to be complementary. Of course, given any direct family of homo-
morphisms { f.*, f.} representing a module as the S-direct sum of the modules
Fy, Fy, -, Fr, we have the direct decomposition X = @, f, Fi, .

ProposiTioN 1.2, Let {fu|u = 1,2, ---, t} be a family of injections with
fueHomg(F; , X). Then fu is a direct family of injections if, and only f,
those elements f, which are in a given module Homy(F; , X) form a K-basis for
Homy(F;, X).

Proposition 1.2’ is the dual proposition which may be stated for families of
projections. We will prove only Proposition 1.2.

Proof. Necessity. Let fu, , fus, + -+, fu, be the elements of a direct family of
injections which belong to Homs(F;, X) for some arbitrary ¢ = 1,2, --- , k.
Let {f*|u = 1,2, - -+, &} be the complementary direct family of projections.
Suppose f ¢ Homs(F;, X). Thenf = > i fu(f.*f), and

f*f e Homs(F;, Fi) = K;.

So o, = f.*f = 0, unless F;, = F; ; then o, ¢ K; and f, ¢ Homs(F,, X).
Hence f = 2 i=1fu; 0u; where f,, e Homg(F;, X). If D ioifu;ou = O,
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multiplying by any projection f,;* of the complementary family, we obtain
that o,; = 0. This proves the necessity.

Suﬁmency Let {f“l ’ fuz [ fl‘a} be a K-basis for Homs(Fi: X).
Then the modules f., Fi, fu, Fi, -+-, fu, F: are S-irreducible, and we may
suppose that fu, Fi, fus Fiy <+, fu, Fi, v < s, form a maximal independent
set of irreducible modules.*

Should » < sand x eF;, fu, ., @ = Z§=1fu,~ x; where x; ¢ F'; is uniquely
determined by . Then ¢;:z — x; = ¢;2 may be verified to be in K;. This
means that f,.,, = D jm fu; o, which is a contradiction. Thus

X = Z§=lfui F; = @;'=1fy,~ F;.

Now X is the homogeneous component’ of X corresponding to F;. Further-
more, one may find a complementary family {f,,* |j = 1,2, - -+, s} of projec-
tions to {f,;}. Then from all the homogeneous components of X, we may
obtain direct families of homomorphisms which together yield a direct family
{f#*yfﬂl/-" = 1’ 2, -, t} for X.

II. STRUCTURES OF MODULES
2A. Isomorphisms of modules

Let X be a given left R-module. Then if f* ¢e Homs*(F;, X) and
feHomg(F;, X), 4,5 =1, 2,---, k, we define the function

YIf*, f1:R — Homk(F:, F;)
by
(2.1) Y% fl(e) = fraf

for f* e Homg*(F;, X), fe Homg(F;, X), 4, = 1,2, ---, k, and a e R;
a;, designates left multiplication by o ¢ R. We will call these the structural
elements of the module X. Of course, similar definitions hold for right
modules.

The modules F; are (K; — S;)-modules as well as (K; — S)-modules.
Hence Homg(F;, F;) is a (K; — S;, K; — 8;)-module as well as a
(K; — 8, K; — S)-module. But then

(2.2) Hj; = HOm(s,s)'(R, HomK(Fi’ F.‘i))

is a (K;, K;)-module. But as S, Homg(F;, F;) = Homg(F;, F;)S, = 0
for u # j and » # ¢, Homg,5 (R , Homg(F;, F;)) = 0 for u # jor v # 3.
Hence we may identify H;; with

Hj; = Homs;,s;)(Rj: , Homg(F;, Fj)).

¢ By an independent set of modules, we mean a set of submodules Xi, X, -+ , X, of
a module X such that if X’ is generated by the elements of all the modules X;,7z = 1,
2, ,8 X' = ®ia X,.

5 Cf. [7, p. 63].
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The (K;, K;)-module H;; will be called a structural module for R and will be
studied in Part III. The structural elements Y[f*, f], f* e Homs*(F;, X),
and f e Homg(F,;, X) all belong to H ;.

A structure | ¢ | is the set of bilinear mappings ¥ defined for each pair of
indices ¢, 7 = 1,2, -+, k

J:Homs*(Fj, X) X HOlTls(F:;, X) —>ij

defined by (f*, f) — ¥[f*, f]. Actually the bilinear mappings ¥ should be
indexed by the indices ¢ and 7, but no confusion will result from our dropping
these indices, for we may make the necessary distinction by designating the
modules Homg*(F;, X) and Homg(F;, X) to which f* and f belong.

THEOREM 1. A necessary and sufficient condition for two R-modules X and
X' with structures | ¢ | and | §' |, respectively, to be tsomorphic is that there exist
K ~isomorphisms ¢ and ¢*, which are contragredient’ to each other, such that for
1=12, .-,k

¢:Homg(F;, X) — Homg(F,, X'),

(2.3) .

¢* :Homg*(F;, X) — Hom*(F;, X'),
such that
(2.4) VI, £l = o™, of]

for f* e Homg*(F;, X), f e Homs(F., X), 4,5 =1,2,---, k.

Remark. Again we shall suppress the subscripts on the isomorphisms ¢
and o*.

Proof. Necessity. Let ®:X — X’ be an R-isomorphism. Then for each
indexi = 1,2, -, k, ® induces a K-isomorphism ¢ of (2.3), and ™" induces
the contragredient K -isomorphism ¢* given by of = ®f and o*f* = f*™" for
f e Homg(F;, X) and f* e Homgs*(F;, X). Now we have

YU, fl(@) = frauf = & e = Vie*f*, ¢f1(a)

for f* e Homg*(F;, X), f e Homs(F;, X), and « ¢ R. Thus (2.4) is valid.

Sufficiency. Let ¢ and ¢* be given as in the hypothesis. Let
(£ fulw = 1,2, ---, t} be a direct family of homomorphisms representing
X as the S-direct sum of the modules Fy, Fa, ---, Fr. Let g,* = ¢*,* and
gu = ¢fs. Since ¢ and ¢* are contragredient, {g,*, g. |n = 1,2, ---, #} isan
orthogonal family for X’. Since ¢ is an isomorphism, one may obtain from
Proposition 1.2 that {g.|x = 1, 2, ---, #} is a direct family of injections.
Hence {g.*, g.} is a direct family of homomorphisms.

Define #: X — X’ by setting

(2.5) B(2) = Dpm1 Gufu*x

¢ Here, of course, we need only to assume the existence of one isomorphism ¢ or o*
and specify the other to be its contragredient. However, it is slightly more convenient
to assume that both exist.
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for x ¢ X. Then for 2’ ¢ X', we set
(@) = 2 fugs.
Since ® and &' are inverse to each other, ® is an S-isomorphism. Now, if « ¢ R,
®(ax) = D ur gufi*ar = Do gu(fiaf)f 2.
Using (2.4), we obtain
®(ar) = Dp gu(gag)f*e = D iag for = ad(z).

This proves the theorem.
‘We note here an important formula for a structure of a module.

ProposiTioN 2.1. If a,BeR and {f.* fulu = 1,2, ---, t} 4s a direct
family representing X as the S-direct sum of the modules Fy, Fy, -+ - | Fy, then
(2.6) I, F1(aB) = 2 = ¥If* Sl (YIS, £1(8)

for f* e Homg*(F;, X) and f e Homg(F;, X).
The proof is immediate from the definition of structures and direct families.

2B. Homomorphisms of modules

Let X and X’ be R-modules, and let ®: X — X’ be an R-homomorphism.
Then ® induces a K;-homomorphism ¢':Homg*(¥#;, X’) — Homgs(F;, X)
where ¢’'g = g® for g e Homg*(F;, X) = Homg(X, F;). The kernel of ¢’ is
the K;-module Homs*(F;, X'/®X) = Homg(X’'/®X, F;) consisting of those
homomorphisms which vanish on ®X. We remark that if ® is an epimorphism
[monomorphism], then ¢’ is a monomorphism [epimorphism].

Similarly, ® induces a K,-homomorphism ¢: Homg(F;, X) — Homg(F;, X)
defined by ¢f = ®f for f e Homg(F;, X). The kernel of ¢ is the K;-submodule
Homg(F;, X"") of Homg(F;, X) where X"’ is the kernel of ®. Again if ® is
an epimorphism [monomorphism], ¢ is an epimorphism [monomorphism].

ProrosiTioN 2.2. Let X and X’ be R-modules, and let ®:X — X’ be an
R-homomorphism. Let y and y' be the structures of X and X', respectively. If
¢ and ¢’ are the homomorphisms induced by ® as above,

(2.7) Vg*, of] = ¥le'g™, f]
for g* e Homg*(F;, X) and f e Homg(F;, X), 7,7 = 1,2, --- , k.
Proof. The proof is immediate from the equation
Vig* ofl(a) = g*a ®f = g*@arf = Yl¢'g* fl()

for a € R.
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ITII. REPRESENTATION MODULES
3A. Isomorphisms of double modules
We introduced the structural modules

(3.1) Hji = Homs,,s)(Rji, Homg(Fs, F;)).
Now we propose to study the (K;, K;)-modules
(32) M(T) = Hom(gi,s‘-)(T, HomK(Fi y F]))

associated with a given (S;, S;)-module 7. We shall call M(T) the repre-
sentation module for the (S;, S;)-module T'.

The following properties give the principal properties of representation
modules.

ProrosiTioN 3.1. Let xy be an arbitrary nonzero element of F;, and let ¢
be a primitive idempotent of S; such that exo = xo. Let Y e M(T). Then the
mapping w:M(T) — Homg,;(Te, F;) defined by e (a) = (ac)ro = (o)
is a K;-isomorphism. In particular, dims; Te = dimg; M (T).

Proof. By definition, M (T) = Homgs;,s,(T, Homg(F;, F;)). Using
the associativity isomorphism of functors [3], we obtain that M (T) is iso-
morphic to Homs;,x)(T ®s; F:, F;) = Homgs,(T ®s, F:, F;) where to
Y e M(T) corresponds the homomorphism defined by @« ® z — ¢(a)z for
ael,xeF;.

Let xo and ¢ be given as in the hypothesis of the theorem. Then form the
sfield K;* = &S, ¢, which is anti-isomorphic to K;. We may identify the
S;-modules T ®g, F; and Te ®x;+ K;*ro because for o, e T and xz, ¢ F;,
p=12 ---,n we have

n n n
Z»=l ay ®g; Ty = Zu=l oy ®g; Buo = ZM=1 ay By ® 5, Xo
where z, = B, %o = By &xo for B, ¢ S;. Furthermore,
n n
Zn—ﬂ a, g N o — Zu=-1 My, N e K,

determines an S;-isomorphism of Te ® g+ K*xo and Te. Then we obtain
the isomorphisms

HomSj(Te ®Si F’i ) F]) g HomSj(Tg ®K,'* Ki*xo 1) F]) - Homsj(TEJ FJ)'

Composing these with the associativity isomorphism, we obtain the desired
isomorphism.

The remainder of the proposition is immediate.

ProposiTioN 3.2. Let M(T) be a representation module of an (S;, S;)-
module T. Then given any K ;-basis Y1, ¥z, + -+, Yo;; for M(T), any K-basis
Xy, Lo,y &ng for Foyand yu, y2, -+ +, Yn; arbitrary in F; | there exists an
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element ay € T such that for each N = 1,2, -+, ¢j;
(3.3) (o), = Yu ‘pE(ak)xu =0, £#\

Proof. Corresponding to the basisx; , z2, - - - , Za; for F; isa set of orthog-
onal primitive idempotents &, €, -+, & from S; such that &, z, = 2.,
uw=12 --- n;. By Proposition 3.1,

Ja*ia = Ye(aey)z,

is in Homg,;(Te,, F;) = Homg*(F;, Te,), and {fo* | & = 1, 2, --- ,¢;i} is
a K;-basis for Homg*(F;, Te,). Then by Proposition 1.2/, {f,,* | ¢ = 1,2,

-, ¢;i is a direct family of projections representing T'e, as the S-direct
sum of copies of F;. Hence we may choose ay, = ay, & in Te, such that
fu*(ann) = 0,¢ # N, and fi*(an) = ¥’ # O wherey’ e Fj. Buty, = B, ¢/
where 8, ¢ S;. Hence replacing o, by 8, o , we obtain that fi.*(an) = yu -
Thus Ye(an)zu = 0, £ #= N, ya(ean) @ = Yy, and Ye(onu)z, = 0, for n = p
and all £ as g,2, = 0. We thus obtain the desired element by setting
a\ = Z:.:l ax, .

ProrosiTION 3.3. Let M(T) be a representative module for an (S;, S;)-
module T. Let Q be a set of indices, and let {y, | 7 €} be a K-basis for F;.
Let @, 3, -+, Za; be a Ki-basis for F;, and let Y1, s, -+, ¥c;; be a Kj-
basts for M(T). Then there is a K-basis for T uniquely determined by choosing
elements ), ¢ T for each triple (u, v, \) of theset A = {(u, v,\) |weQ;v = 1,2,

s, N =1,2, -+, ¢;} such that
(34) Yalam)Te = 8t Y,
where 8, and 8, are Kronecker deltas.

Proof. That such elements a,’}v exist follows from Proposition 3.2. For
aeT,let Yy(a)z: = O0forn=1,2,---,¢;andé = 1,2, -+, n;. Thisim-
plies Y(a)z: = Oforall y in M(T) and & = 1,2, --- ,n;. Hence y(a) =0
for each ¢ e M(T). By Proposition 3.1, ac = 0 for all primitive idempotents
c£eS;. Hence & = 0. Thus the elements o), are uniquely determined by
(8.4). We wish to show that they form a basis for T. Suppose that

> s kb ah, = O for a finite number of nonzero elements ki in K. Then for
eachN = 1,2 -+ ¢y

Zu,v \b)\(kl);l' azv)wz = Zlm kl);v 'h(azv)xe = 0’
where the summation is over all possible values of u and ». Hence by (3.4)
Zueﬂ kl):v yu = 0.

Since {y, | u € Q} is a K-basis for F';, we have that kh = 0 for u Q. Hence
ku, = 0 for (u, v, \) € A.
Next let « ¢ T. Then foreachX = 1,2, --- ,¢cs;v =1,2, -+, n,;,

W(a)z, = Zueﬂ k;);w Yu
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where k), e K. Set o’ = PN kb o), . Then one may verify that for\ = 1, 2,
ey i, v =1,2,-, ng, Ya(a)r, = da(a)z,. Hence Yy(a — o/) = 0
for ally e M(T). Thusa = «/. This shows that the set of elements a}, form
a K-basis for T as we desired.

Proposition 3.2 shows that if ¢ M (T), the set ¢(T') has some of the prop-
erties of a complete module of endomorphisms in that one may always find
an element « ¢ T such that ¢ (a)x, takes on arbitrary values in F; for each
element x, of a K;-basis for ;. However, the linearity condition is lacking
for the elements Y (a). But because M (T) is a double (K;, K;)-module, we
have that Ya 0 = 2 ui% anu(0)¥u, N = 1,2, - ,¢js, aau(o) e K;. Thus the
mapping ¢ — (an.(c)) is a matrix representation of K, on the left K ;-module,
M(T). Asis well known, this representation is determined by the double
(K;, K;)-module M(T), in the sense that isomorphic modules give rise to
similar representations.

The theory of double modules over division algebras of finite rank over K
is treated in Hochschild [6] and Jacobson {7, p. 173]. They restrict themselves
to the case that K; maybe identified with K; or a division subalgebra of K; .
In this case if K is separable over K, then M is a completely reducible double
(K;, K;)-module. If K; is a galois extension of K, then these irreducible
modules have K;-dimension 1. This means that if ¥ generates such an ir-
reducible module, there exists an isomorphism 6:K; — K; such that
Yo = 0(a)y for ¢ e K;, and ¢ is semilinear. If K is the center of K;, 6 is
induced by an inner automorphism. If K = K; = K;, then 6 must be the
identity, and ¢ is linear. This condition will always hold if K is algebraically
closed.

Let S., S’ , S;, and S; be simple rings with minimum condition. Let
I.:8; — S; and I;:8; — S; be ring isomorphisms. Let F; be an irreducible
Simodule, F; an irreducible Si-module, ete. Let wiiF; — F; be an I-iso-
morphism. Then w; induces an isomorphism of K, onto K, which we again
denote by I, that is defined by

(3.5) o'l = wow;
foro e K;.

TaeorREM 2. LetI:8; — Siand I iiS;— S; be given isomorphisms of simple
rings. Letw;:F, — FibeanI ~tsomorphism of the irreductble modules of S; and
Si. Similarly let w;:F; — F; be an I-isomorphism of irreducible modules.

Let there be given an (S;, Si)-module T and an (87, Si)-module T' with
representation modules

M(T) = Homs,;,s»(T, Homg(F:, Fj)),
M(T’) = Homs,,s;(T", Homg(F5 , F)).
For a given (I;, 1;)-isomorphism 60:M(T) — M(T’), there is induced an
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(I7', I7Y)-isomorphism J:T' — T satisfying

(3.6) (o) = wi(a)wi'

Jor o €T and ¢ e M(T); conversely, an isomorphism J:T' — T induces an
isomorphism 6:M(T) — M(T’) satisfying (3.6).

Proof. Let 8 be given. Asin Proposition 3.3, choose a K-basis {y, | u € Q}
for F;, choose a K;-basis {z;, 22, -+, s} for F;, and choose a K ;-basis
{¥1, 1112, <oy Yoy for M(T). Then {w; 21, wize, -+ - w,xn,} is a K;-basis
for F; as w; is a Io-isomorphism. L1kew1se {wjys | peQ is a K-basis for
Fj. Theset {6, 0, -, 0e; ;) 1saK ;-basis for M’(T’). Then by means
of Proposmon 3.3, choose a K-basis {ap, | (4, v, \) €9} for T and a K-basis
(a | (uyv,N) €@} forT’. Define J:T' — T by settmga,,,, = a), and extend-
ing J to T” by requiring it to be K-linear. Then N"(auy)wt T = OO wj Yy =
w; ¥n( ab’)z:. From this and the K-linearity of J, 6, and ¢ follows

On(o’) (wi ) = wjPy(a’)wi (i)
forall (g, v,N\), 7 =1,2, -+ ,¢js, £=1,2, -+ ,m;,and o' e T".
Let 2’ = > 2% r:2:. Then
(B9n()) (wi Texe) = (B¥n(a’)7e 'wime = (Bn(a’) me)wi 2
= 22 an (7o) 10 (o) (@i )
where az(7;) e K;. Thus

(Bdn(a’)) (@i e 26) = D54 ane(7e) 100 (0 Yo e
= 225 an(7e) 0 e ()i wi 2
= 2ot w; ap(me)¥r(a’”) o w;
= w;j Ya(a’) Ty 0 w; 2
= w;j () wi w; T 2x
Thus
(3.7) O, (a2 = wjp(awi'e

foralla’ e F;. Lety = Y. %% o,¢,. Then because 8 and w; are I ;-isomorph-
isms, (3.6) follows from (3. 7 ).
Now let 8 € S and v ¢S; and o ¢ T". Let ¢ e M(T). We compute

o W ((Eay) )i = (B0)(Bay) = B (),
o W((Eay) )i = B (@ (o )aT,
(3.8) o H(ery) )" = (8T

Since (3.8) holds for all ¢ ¢ M(T), (B'a’y')’ = B' ay and J is an
(I7%, I")-isomorphism.
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One may verify that (3.6) defines an (I;, I;)-isomorphism of M (T) onto
M(T") to prove the converse statement and the theorem.

COROLLARY 3.4. With the same notatzon as Theorem 2, let G and G; ; be ir-
reducible Si- and S J~modules, respectively, and form the representation module

M'(T') = Homgg;, s, (T, Homg(G: , Gy)).

Let 0:M(T) —» M'(T') bean (I;, I i)-isomorphism. Then a mecessary and
sufficient condition for ' to induce the same (I3 ) I; )-zsomorphzsm J:T'—>T
as that induced by 6: M (T) — M(T ), wil :F;— F; ,and witFj— F 28 that there
exists an Siisomorphism pi:Fi — G5 and an S;-zsomorphzsm piF; — G
such that

(3.9) 0y = uj Opui .

Proof Suﬁczency Let (3.9) hold. Let J':T' — T be determined by
P = MW, w, = p;w;j, and ¢. Then for o' ¢ T’, we have from (3.7),

Y(@”) = 0P(a’) = u; 0( )T = o) = wjp(a)wi
Hence :ﬁ(a’l') = ¢(a’’) forall y e M(T). Thus o =a and J = J'.

Necesszty If 0\1/(04’) = @ Y(o/ )it and OY(a’) = w; \//(a"r)w:-, set
B = w; w;tand p; = w, wj ', and verify (3.9).

3B. Structural modules as representation modules

We have seen that the structural elements of a given module X belong to a
structural module H j; (cf. (3.1)), and this module is a representation module
for the Cartan submodule R;; of R. What we next wish to show is that every
element of H ;; is a structural element derived from the structure of a principal
indecomposable module.

Let U; be a principal indecomposable module. Then U; is isomorphic to
a left ideal Re of R, where ¢ isa primitiveidempotentof B. Thus U, isa cyclic
left R-module with generatorz,. As an S-module, U is the direct sum of its
homogeneous components: U; = @i U,; where each U;; is a direct sum
of copies of F;. Since U;/NU; is isomorphic to F;, NU;, considered as an
S-module, contains U,;, j # ¢. Butif o is a generator for U;, sois zo + n,
wheren isany element of themaximal submodule NU;. Butalso, 2o = Z'},,l x;
wherez; e U;;. Consequently,;isalsoa generatorfor U;. Asz; iscontained
in a homogeneous S-submodule U;; of U, , Sz; = 4 is irreducible, and RA =
Rz; = U;. If Bisanotherirreduciblesubmoduleof U,; such that B n NU; =0,
then B ® NU; = U,;, and there exists in B an element T = (mod NU,).
Hence also z; is a generator for U;. As before, B = Sz: and U; = RB. We
have, therefore, proved

ProrositioN 3.5. Letf ¢ Homs(F;, U;) be such that fF; n NU; = 0 and
f# 0; then RfF; = U,.

We shall call such an element f e Homs(F;, U;) a generating element of U,
in Homs(Fi , U,,)
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ProrosiTioN 3.6. Let fo be a generating element of U, in Homg(F;, U,).
Let | ;| be the structure of U;. Then the K j-homomorphism of Homg*(F;, U;)
into H ;; defined by f* — Yi[f*, fol 1s an tsomorphism.

Proof. 1t is clear that the mapping is a homomorphism. If ¢[f* fo] = 0
for f* e Homg*(F;, U;), then (f*Rfo)F; = f*U; = 0. Hencef* = 0, and the
mapping is a monomorphism.

Now let ¢ be a primitive idempotent in S; such that Re is isomorphic to U; .
But Re = Re;e and Re;e = @5 e, Re;e = ®py Rue. Since S, R, =
S, e.e, Ry, = 0 whenu # v,

Homg(Ri e, F;) = @ Homg;(R,i ¢, F;) = Homg;(Rji ¢, Fj).

Hence dimx; Homs,;(Rj: ¢, F;) = dimg; Homgs*(F;, U;). By Proposition
3.1, dimg; Homg*(F;, U;) = dimg,; Hj; .

Let Hj; = {Y[f*, fol | f* e Homs*(F;, U,)}. Then Hj; is a K,-submodule
of H;; which is isomorphic to Homg*(F;, U;). Thus dimg, Hj; = dimg; Hj;
and Hj; = H;;. Thus the given mapping is an epimorphism and hence an
isomorphism.

IV. CHARACTERIZATION OF CLEFT RINGS
4A. Isomorphisms of cleft rings

Let R and R’ be rings with minimum condition and identity elements which
possess cleavings

(4.1) R=S@eN, R =8N,

where S and S’ are semisimple rings and N and N’ are the radicals of R and
R/, respectively. Let I,: S — 8’ be a given isomorphism. We are interested
in determining when one can extend the isomorphism I, to an isomorphism
IR —R.

We follow our previous convention in designating the modules and rings
F,,K;,8;,,U;,and Hj;,%,j = 1,2, -+, k, which are associated with the
rings R and S. Because of the isomorphism I, , the corresponding objects as-
sociated with R’ and S’ can and will be designated by F: , K; R S; , U; , and
Hji,3,j7=1 2 ---, k We will assume that Iy:8; — S;. Then there
are Ip-isomorphisms w;:F; — F: ; furthermore, w; induces an isomorphism
I:K; — K defined by (3.5).

We will first derive necessary conditions by assuming that the extension [
of I, exists. LetJ = I, Now I induces an I-isomorphism u::U; — Ui,
it =1,2, ---, k, because U;/NU,; is isomorphic by an I¢-isomorphism to
Ui/NU; .

Furthermore, w; ' and u; induce an Iy-isomorphism

o:Homs(Fe, U;) — Homg (Fi, Us)
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for(,e=1,2,---,k, given by
(4.2) ¢of = pifor
for f e Homgs(F;, U;). Likewise, w; and u3" induce the Jo-isomorphism
¢*:Homg*(Fy, U;) — Homg*(F;, U3,
for¢, e =1,2, .-+, k, given by

(4.3) O*f* = wgfui’
where f* e Homg*(F;, U;). Thus
(4.4) (0**) (of) = wefHor’ = ()"

Two Is-isomorphisms such as ¢ and ¢* which satisfy (4.4) will be said to be
contragredient.

Also w; , wy, and J induce (Iy, Io)-isomorphisms 6: Hy, — H,, defined for
each pair ¢, 9 = 1,2, -+, k by

(4.5) W (a’) = wrp(a)uy’

where ¢ € Hy, and o’ ¢ R.  Let f* e Homg*(F¢, U;), fe Homg(F,, U,), and
o' e R’. Using (4.2) and (4.3) we obtain

(4.6) wef*afoy' = wp fruiialuifor' = (e*f*)o (of) = Wile™, ofl().
Therefore, from (4.5) and (4.6)

4.7) wilf*, 11 = ile*f*, ofl.

A (left) structure Z(R, S) for a cleft ring B with cleaving R = S @ N is
the set {|¥:||¢ = 1,2, -+, k} of structures of the principal indecomposable
modules U;, 7 = 1,2, -- -, k, respectively. The structures | ¢; | are called the
principal structures of R.

As above, let R and R’ betwo cleft rings with cleavings (4.1). Letlo:S — 8’
be anisomorphism. Let Z(R, 8) and Z(R’, §’) be the left structures of R and
R’. Then 2(R, 8) and Z(R’, 8’) are said to be I-conformal if there exist con-
tragredient® Io-isomorphims ¢ and ¢*

¢:Homs(F;, U:) — Homs/(F¢, Us), gi=1,2 -,k
(4.8)
¢*:Homg*(F¢,U;) - Homs*(Fy, Us),  £4=1,2,--,k
and (Io, Io)-isomorphisms 6 defined for £, » = 1,2, --- k

(4.9) 6:Hy, — Hy,
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such that
(4.10) oudf*, 11 = vile*f of], i=1,2-,k

where | ¥, | is the principal structure of B and | vi | is the corresponding prin-
cipal structure of R’, f* e Homs*(F:, U,), and f ¢ Homs(F,, U;), & 9 =
1,2, -,k

THEOREM 3. Let R and R’ be cleft rings with cleavings (4.1). A mecessary
and sufficient condition for an isomorphism Iy: S — 8’ to be extendable to an iso-
morphism [:R — R’ is that the left structures Z(R, S) and Z(R’, S’) of R and
R’ respectively, be I-conformal.

Proof. We have proved the necessity. We now prove the sufficiency. Ac-
cording to Theorem 2 there exist (S;, S,)-isomorphisms J g,,:R;»,, — Ry, in-
duced by the isomorphism 6 of (4.9). Clearly the homomorphism J¢, deter-
mines an (S, S)-isomorphism J:R’ — R. We wish to show that J is a ring
isomorphism.

Again by Theorem 2, 8¢(a’) = w; (o’ ¢)wy* for o ¢ Riy,. Thus,

(4.11) oilf*, fl(e) = w wilf*, fl(a)ey”

for f* e Homg*(F:, U;), f e Homg(F,, U;), and o' e R'.

Let {fu.*, fulu=1,2,---,t} bea direct family representing U; as the S-
direct sum of the modules 'y, F , - - - . Then {¢ f" ,<pf,, | u = 1 2, , i
represent U; as the S'-direct sum of the modules Fi, F, , e Fk by Vlrtue
of the fact ¢ and ¢* are contragredient isomorphisms. Now for o and B’ e R,
/* e Homg*(F, U,), and f e Homg(F,, U;), we have, using (2.6), (4.10),
and (4.11),

wg Wlf*, F((@8))ey" = wile*f*, of)(«8')
= i Uile*f*, efl(@)Wile*x, of1(8')
(4.12) = Do ot W%, £l (@ )WALX, 187wy
wg Y%, £, 87wy

Therefore

(4.13) wilr*, f1((a'8)7) = wdf* f1(7, 87).

But (4.13) holds for a generating element f of U; in Homg(F;, U;) and
any f* e Homg*(F:, U;). Hence by Proposition 3.6,

Y((a8)) = $('87)
for all ¥ e Hy;. Thus e:((o/8))e; = e; o’’8’e;, and this must hold for all
§1=12 ---,k Hence
(8) = o8’

asl = D tqe:. Thenl = J'is the desired extension of I, .
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We note that if R/N is a separable algebra, and if R = S @ N and
R = 8 @® N are two cleavings of R, then there exists an inner automorph-
ism of R mapping S onto S8’ by Malcev’s Theorem [4 or 8]. Thus the struc-
tures of R given by any two cleavings are conformal.

4B. Anti-isomorphisms

We here treat the problem of extending an anti-isomorphism of the semi-
simple components of two cleft rings. Commutative algebras will afford an
interesting interpretation of this theory.

We will adopt the convention of denoting homomorphisms of right modules
as left operators. Also we introduce the opposite ring R’ to a ring R. Then
every right R-module X is a left R’-module, and we have a standard anti-
isomorphism such that to « ¢ R corresponds o' ¢ R’ given by o’z = za for
a ¢ R. Similarly a left R-module is a right R’ module, and we have that
R” = R and a — o” is the identity mapping.

We let h: X — X’ be a homomorphism of right R-modules. Then for x ¢ X
anda € R, h(za) = h(x)a andh(a’z) = o’(hz). Hence h isa homomorphism
of left R’-modules, and conversely. That is, Homz(X, X’) = Homgo(X, X’).
Let I:R — R’ be an anti-isomorphism. Then the composite mapping I° is an
isomorphism I’:R — R”. An I-homomorphism h:X — X’ of a left R-module
X into a right R’-module X’ defined by h(ax) = (hz)a' is also an I°-homo-
morphism of the left R-module X into the left R”-module X’ defined by
h(azx) = o" (hz). Conversely, every I’-homomorphism isan I-homomorphism.

Let F be a left [right] irreducible R-module; then F is a right [left] irreducible
R’module. Let U be a left [right] principal indecomposable R-module; then
U is a right [left] principal indecomposable R’-module because U is easily
seen to be both an indecomposable R*-module and a projective R’-module.

Let R be a cleft ring with cleaving R = S ® N as before. Let X be a right
R-module. A structure | ¢ | for X is now defined by means of the homo-
morphisms

(4.14) Ylg*, gl(a) = g*a'g

for g* e Homg*(F;, X) and g e Homg(F;, X), ¢, = 1, 2, ---, k. Thus
| ¢ | is also a structure of the left R’-module; because of the above remarks,
we have Homg*(F;, X) = Homg*(F;, X) and Homg(F;, X) =
Homg (F;, X).

Likewise, HomK(Fﬁ;, F;) is an (S;, S;-)-module where S; = 8" and
S; = Sjlo. But then it is also an (S;O, S;o)-module. For this reason we
shall equate

(4.15) H; = Homgs,r,s,(Ri; , Homg(F , F)
with

(4.16) H3} = Homgs,o,s:0 (R , Homg(F;, F5).
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A right structure ='(R, S) for a cleft ring R with minimum condition with
cleaving R = 8 @ N is the set of structures |¢; |,z = 1,2, .-+, k, of a com-
plete set of right indecomposable modules. Thus a right structure is also a
left structure (R, 8°) for the opposite ring R’ with cleaving R’ = S° @ N°.

Let R and R’ be rings with minimum condition which have cleavings

(4.17) R=S®N and R' =8 @ N

Let Io:S — S’ be an anti-isomorphism. We say that the left structure
(R, 8) is I,-conformal to the right structure =’'(R’, 8') if (R, 8) is (Io)"-
conformal to the left structure Z(R”, 8°) of R’.

CoROLLARY 4.1. Let R and R’ be cleft rings with minimum condition with
cleavings (4.17). Then a necessary and sufficient condition for an anti-iso-
morphism Io: S — 8’ to be extendable to R is that the left structure Z(R, S) be
Io-conformal to the right structure Z'(R', S').

Proof. A necessary and sufficient condition for 7,:.S — S’ to be extendable
is that (I,)°: S — 8" be extendable. But this is equivalent to having (R, S)
and (R, 8°) (I,)’-conformal. By definition, this is equivalent to having
Z(R, S) and Z'(R’, 8’) I,-conformal.

We remark that the extension I of I, is characterized by

(4.18) (o) = we¥(a ey,

where J = I, 6 is given by (4.5), wi:Fy — F'; , and w,: F, — F, are Io-iso-
morphisms and ¢ ¢ Hy, .

4C. Dual modules and anti-isomorphisms

Let X be a left R-module. We form the dual module X* = Homg(X, K).
In case [X:K] < o, a satisfactory duality theory exists because X** may and
will be identified with X. Therefore, to assure this, we assume that
[R:K] < ». Hence [X:K] < » as X is assumed to have a finite composition
series.

As usual. we denote the value of z* ¢ X* at x ¢ X by (¢* x). Then X*is
a right R-module where

(ar 2%, ) = (x*a, 2) = (¥ ax) = (¥, aL ).

Let f e Homz(X, X’), where X and X’ are, say, left R-modules. Denote by
t:Homz(X, X’) — Homp(X’*, X*) the transpose mapping defined by
(fz'*, z) = (&'* fz) for x ¢ X and 2'* e X’*. Thus ‘a; = azand ‘ez = ay .

Let F be an irreducible left [right] R-module. Then F* must be an irreduci-
ble right [left] module, for otherwise F = F** would be reducible. Let L be
the endomorphism sfield for F. Then F is a left L-module and a right L’
module. We identify the endomorphism sfield L* of F* with L so that F*
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is a right L-module and a left L-module. We have for z* ¢ F*, 2 ¢ F, and
gel

@*, ox) = (&¥0, ) = (o'z* z) = ('oz*, z)

where ¢’ is in L°, the opposite sfield to L. Thus the transpose mapping may
be considered as the anti-isomorphism ¢ — ¢° of L onto L’.

Consider now F; to be a left irreducible B-module and X to be an arbitrary
R-module. Assume R to be a cleft algebra with cleavingR = S @ N. Form
the module Homs(F;, X) = Homgo(F;, X). Thisis a (K}, K;)-module,
where K, is the endomorphism sfield of ;. Then the transpose mapping
t:Homg(F;, X) — Homg(X* F.*) = Homg*(F* X*) = Homg*(F* X¥)
is an, isomorphism of additive groups. But also Homg*(F*, X*) is a
(K}, K:;)-module just as is F*. Thus if f e Homs(F;, X), c e K;, and
reKy, Yrfo) = (o)(N)(r) = )P = 7(*f)e. Thus we say that
t:Homg(F;, X) — Homg*(F*, X*) isa (K}, K;)-isomorphism of modules
or, sometimes, a K -isomorphism, or a K-isomorphism.

Likewise, if F; and F; are irreducible left R-modules, Homg(F;, F;) is a
(K;, K;)-module and Homg(F;*, F*) is a (K?, K})-module and, therefore,
also a (K;, K;)-module. Then ¢:Homg(F;, F;) — Homg(F;*, F;*) may
be verified to be a (K;, K;)-isomorphism as well as a (K}, K})-isomorphism.

Now we suppose that R and R’ are cleft algebras with cleavings (4.17).
As before, associate the left modules F;, U;, and the left structural modules
Hj;,i,j=1,2, ---,k with R. Also associate F; , U; , and the right strue-
tural modules H ;]- with R’. Of course, F: , U; are right R’°-modules, and
H:; is a left R"-module. Since Homx(F:, F;) is a (K, K;)-module, the
same is true for

H:; = Homs s (R, Homg(F;, F)) = Homs,,s;(R%; , Homg(F;, F3)).

Then’the t,ranspose isomorphism t:HomK(F; JF) — HomK(F’;*, F*) induces
a (K;, K;)-isomorphism, which we again denote by ¢, such that

t:Hi; — Hi* = Homes,s (R, Homg(F}*, Fi*))
= Homs,’,s;1(Ri; , Homg(F3*, F*)).
Now let Io: S — 8 be an anti-isomorphism. Then if
¢:Homg(F¢, U;) — Homs(F¢, Us)
is an Ig-isomorphism, of a right K;-module onto a left K;-module,
to:Homg(F; , U;) — Homg*(Fg*, Us*)

is also an Ig-isomorphism of a right K;-module onto a left K:»-module. Con-
versely, if ¢':Homg(F:, U;) — HO]’I,l,s*(I':g*, U*) is a given I¢-isomorphism,
then t¢’:Homg(F:, U;) — Homg(F;, U;) is also an Ip-isomorphism. Now
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also¢*:Homg*(F:, U;) — Homs*(Fg , U ;) is contragredient to ¢’ if, and only
if, to*: Homg*(F;, U;) — Homs(Fg*, U; *) is contragredient to to’.

Likewise, if 6: H ;;— H;is an (I, , Io)-isomorphism, then 6* = ¢6: H,,——»H,,
is also an ([, , Iy)-isomorphism, and conversely.

Therefore, the conditions of Corollary 4.1 translate into the following
proposition.

Prorosition 4.2. Let R and R’ be cleft algebras of finite rank over a field K
with cleavings

R=8S®N, R =8@N

as above. Then a necessary and sufficient condition for an anti-isomorphism
Iy:S — 8 to be extendable to an anti-tsomorphism I:R — R’ is that there exist
contragredient Io-isomorphisms ¢’ and ¢'* for £,7 = 1,2, - -+ | k such that

¢ :Homy(F; , U;) — Homg*(Fg*, U),
¢"*:Homs(Fy, U;) — Homs(Fi¥, U*),
and an (I, Io)-isomorphism, for &, 9 = 1,2, --- | k

(4.19)

(4.20) 9*: Hyy — Hi*
such that
(4.21) OMf*, fl = wiMe'S, o4,

where | ¥i| is the structure of U, and |¥i*| is the structure of U,
* e Homg*(Fy, U,;) and f e Homg(F, , U;).

Proof. We need only show that (4.21) is equivalent to (4.10). Hence
suppose that (4.10) holds. Then for o ¢ R/, f* e Homg*(F:, U;) and
f e Homg(F,, U;), we have that

owilr, (@) = wile*™, efl(@) = (%) (az) (o).
Thus
O, () = "1e**) (ar) (@] = “(¢f)'(ar) ' (¢**)
= (¢f) (ab) (&"*f*) = ¥*e'f, o *f*I().
The argument may be reversed to show also that (4.21) implies (4.10). This
completes the proof.

We remark that if R = R and 8 = 8§, we may obtain a condition for
extending an anti-automorphism. Then also Fs is a left R-module. Hence

there exists an R-isomorphism +;: Fg — Fg and (17, 2/, --- k") will be a
permutation of the sequence (1, 2, , k).
Furthermore, V,y = U ,* is an 1n;|ect1ve R-module [3] with unique minimal

irred,ucible submodule (Us/NU3)*. ) This is an irreducible module isomorphic
to F;* and hence is isomorphic to ;. We may then reinterpret the conditions
(4.19), (4.20), and (4.21) by replacing ¢ by X = ¢v;’, ¢* by A* = v; ¢'*, and
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0* by 7, where n¥ = v:(6*¢)v;" for ¢ e Hy,. Then we obtain that
N:Homg(F;, U;) — Homg*(Fe , Vi)
N :Homg(F:, U;) - Homg*(Fy , Vi)

are contragredient Io-isomorphisms. Furthermore,

(4.192)

(4.20&) ﬂ:Hji —> H,;'jr
is an ([y, Ip)-isomorphism. One may verify that (4.21) is equivalent to
(4.21a) mdf* f1 = WA, N

4D. Characterization of commutative algebras

TuEOREM 4. Let R be a cleft algebra with [R:K] < «,” and with cleaving
R =8 ® N. Suppose that S is contained in the center of R. Let Uy,
Uz, -+, Uy be the left principal indecomposable R-modules, and let V; = Uﬁ*,
i1=1,2,---,k Then a necessary and sufficient condition for R to be com-
mulative ts that

(1) the structural module Hg, = 0 for £ 5% n;

(ii) there exist contragredient K -isomorphisms N and N* fort =1, 2, --- | k
such that
N Homg(F;, U;) — Homg*(F;, V),
(4.22)
N :Homg*(F;, U;) — Homs(F;, V;);
and
(iii)
(423) 'I’@[f*’ f] = g‘z[)‘fr x*f*], T = L2, k:

where | Y5 | is the structure of U; and | ¢; | ¢s the structure of V ;.

Proof. First, we note that Hy, = Homs,,s,) (R¢ , Homg(F¢, F,)). Hence
He, = 0if and only if R;, = 0. But then R = ®%, R; where R; = Ry; =
e; Re; is a subideal of R. Thus R; 2 8., ¢ = 1, 2,---, k. Hence
R;=8; ® N,; where N; = e; Ne; is the radical of R;. Thus (i) is equivalent
to having R be the direct sum of primary rings ;. Since every commutative
ring is a direct sum of primary rings, we need only show that (ii) and (iii)
are equivalent to having each R; a commutative ring.

Let now R be a primary cleft ring R = S @ N where S is a field in the
center of R. Thus R is an algebra over S as well as over K. Furthermore, if
A is a left R-module, it is also a right S-module, and we have that [5, p. 6]

A* = Homg(4, K) = Homx(4 ®s 8, K) = Homs(A4, Homg(S, K));
A* = Homg(4, S).

7 Of course, if R is indecomposable so that B = S @ N where S is a subfield of R con-
tained in the center of R, then we can take K = S, and the assumption that [R:K] < «
will follow from the fact that R possesses the minimum condition.
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In this case there is one simple ideal component S; = 8 of S, one irreducible
module F = F,, one principal indecomposable module U = U, , and one
structural module H = Hy;;. We have the dimension [F:S] = 1. Hence
we may identify F and S as (S, S)-modules. Also since S is commutative,
we may identify S and §”. Thus F = F’ where F’ is the irreducible S’-
module defined from F.

Let 6:S — F* be defined by 8(¢) = oxo where x, is a fixed vector of S.
Now 3§ is a correlation. Because S is commutative, § is an S-isomorphism.
Thus § defines a bilinear function f:F X F — 8 by setting f(z, y) = (oz, ¥)
for z, y ¢ . Then we have, for h ¢e Homg(F, F) = 8,

F(67 (h)oz, y) = f(z, hy) = hf(z, y) = f(hz, y).
Thus ‘h = shé™".

Now we refer to formulas (4.19a), (4.20a), and (4.21a). Observe that
in our present case, H = Hy = Hy . Hence by setting n = 1, the identity
isomorphism, we immediately obtain (4.19a), (4.20a), (4.21a) from (4.22)
and (4.23). Thus we see that (4.22) and (4.23) imply that the identity
automorphism can be extended to an anti-automorphism of R. We wish to
see that this anti-automorphism is the identity automorphism. Using the
S-isomorphism y = &' where y:F* — F, we obtain the isomorphisms ¢’ and
©'* of Proposition 4.2 by setting ¢’ = My and ¢’* = y"'A*. Likewise, n induces
the (K, K)-isomorphism 6*/ of (4.20) when we set 6*¢ = v '(m¥)y =
(o) = . But 6* = ‘(6Y) where 6 is the (K, K)-isomorphism of (4.18).
Thus ‘(6¢) = % or § = 1. Hence (4.18) becomes

(4.24) Y(a) = wp(a e’

where w:F — F' is a K-isomorphism of F onto F/ = F. But by Corollary 3.4,
we may assume that w = 1. Hence ¢(a’) = ¢¥(a’’) and o/ = o'’. Thus J
is the identity automorphism. This means that B must be commutative.
Conversely, if R is commutative, the identity automorphism of R is an
anti-automorphism. This means that (4.18) may be replaced by

(4.25) Y(a') = ()

with 8 = 1. But then we may establish (4.19), (4.20), and (4.21) with
0* = t. Again choosing v = 8", we obtain (4.19a), (4.20a), and (4.21a)
with = 1. From this, (4.22) and (4.23) follow directly. This completes
the proof.
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