
ON SYSTEMS OF LINEAR DIFFERENTIO-STIELTJES-
INTEGRAL EQUATIONS

It is well known that the solution of the initial condition problem for a
system of linear differential equations dy/dx ..1 ai(x)y(x), i
1, 2, n, with initial conditions y(a) c is equivalent to the solution of
the system of linear integral equations y(x) .ia(s)y(s) ds - ci, and
that most of the properties of the solutions of such systems of differential
equations are deducible from the integral equation equivalent. (See Birk-
hoff-Lange [2], pp. 51-60.) Generalizations of the differential system are
simpler in the integral form; e.g., in the integral form, one can assume the
a(x) to be Lebesgue-integrable, and the solutions are then absolutely con-
tinuous functions. Recently H. S. Wall [14] and J. S. MacNerney [5] by
assuming that the functions a(x) are continuous and of bounded variation,
and by using a Riemann-Stielties (R-S) integral, have shown that the solu-
tion of the system of linear Stieltjes integral equations

yi(x) idai(s)yi(s) + yi(a)

as well as that of the corresponding nonhomogeneous system

y(x) ’ dai(s)y(s) - u(x) u(a)

parallels in many ways the differential case. The assumption that the a(x)
be allowed discontinuities, however, introduces difficulties, since the solutions
of the initial value problem would have discontinuities at the same points
as a(x) so that the R-S integral as well as its properties may no longer
apply.
The purpose of this paper is to indicate what changes in the theory are

necessitated by dropping the continuity requirement. In this theory, the
R-S integral is replaced by a form of the Lebesgue-Stieltjes (L-S) integral
as applied to functions of bounded variation with respect to functions of
bounded variation. While some of the properties valid in the case when
a(x) are continuous do not carry over, modification of others leads to com-
paratively elegant results. It turns out that a form of the product integral, a
modification of the product integral used effectively by L. Schlesinger ([10]
and [11]) in connection with systems of linear differential equations, plays
an important role in the form of the solutions for the case under consideration.
The desirability of considering the generalization treated here is an out-

growth of correspondence some time back with W. H. Ingham, who attempted
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to develop an integral and a theory which would handle this case. Unfor-
tunately at the time, the attempt to effect a rigorous treatment of Ingham’s
approach did not succeed. The present development was carried through
some time after the close of correspondence and is not related to nor de-
pendent on the theory proposed by Ingham. However, we feel indebted to
him for having insisted on calling our attention to the desirability of study-
ing the extensions treated here.

1. Vectors and matrices

We shall assume that our basis is an n-dimensional real vector space, and
for purposes of notation shall designate such vectors by capital letters at the
end of the lphabet, e.g., Y (y, y). When a norm is needed we
shall assume that II Y max Y I. n X n matrices will be denoted by
letters at the beginning of the alphabet, e.g., A [a], i, j 1, n.
Mutrices might be normed by ssuming II A II mux a I, but this norm
does not possess the property AB <- A I1" IIB II, desirable in consider-
ing matrices as constituting a normed ring. So we shall assume !1 A
max la. [, which is related to the fact that matrices provide a
linear transformation on n-vectors to n-vectors normed as above. Ob-
viously for this norm, if I is the identity matrix, then Ii I 1, and
IIABII <- IIA II’IIBII. Also lim lIAr-- A 0 is equivalent here to
lim a. a for each i, j. Other norms for Y and A could have been
used, keeping in mind the parallels: Y belonging to a linear normed complete
vector spuce ), and A being a lineur continuous trunsformation on ) to .

2. Functions

Our considerations will be limited to real valued functions of bounded varia-
tion on the closed interval a -< x -< b. We denote the total variation on
(a, x) of a function a(x) of bounded variation by V a. However if A(x)
is a matrix of functions of bounded variation, we shall define

V A 1.u.b., _, II A x, ) A Xk_l ) [1
1.u.b.,, maxi _.,la(x,) a,(x,_) [,

where the least upper bound is taken with respect to all subdivisions-- {a x0 <x <x < <x b} of (a, b). It is obvious that
V a =< V A for all subintervals (c, d) of (a, b) also that the function
V A is discontinuous if and only if some a. is discontinuous; and that

TT"X’l"O]1A(x % O) A(x O) <- -o A,
so that xl]A(x+0) A(x- 0) < . Here xa(x) means the
limit of a(x) where a is any finite subset of (a, b) and the a are directed
by inclusion. It is well known (E. H. Moore [8], pp. 61-67) that a(x)
exists if and only if a(x) is zero except for a denumerable number of x: x
and Zn a(Xn) < c.
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3. Integrals
The Stieltjes integral we shall use is a modification of the R-S integral.

We write g(x) go(x) "4- g,(x), where gc(x) is the continuous part of g(x)
and gb(x) is the function of the breaks, i.e.,

gb(x) g(a -- O) g(a) + <<(g(y--O) g(y 0))

+ e(x) e(x o).

If .f f dg exists as an R-S integral, then for any closed interval (c, d) of (a, b)
we define

/(x) dg(x) f(x) dg(x) "4-f(c)(g(c "4- O) g(c))

-+- f(x)(g(x+ O) g(x- 0)) + f(d)(g(d) g(d- 0)).
c<x<d

For convenience we shall assume that the symbol

f(x)(g(x -f- O) g(x 0))

includes the last three terms in this expression. It is possible to show that
the integral in question can be obtained as the limit by successive subdivi-
sions of a Riemann sum suggested by W. H. Young [13] (see Hildebrandt
[4], p. 275), viz.,

dfdg lim _., {f(x-l)(g(x-I A- O) g(xi-))

"4-f(x)(g(x- O) g(xi-1 27 0)) 2f_ f(x)(g(xi) g(x 0))}

where {c x0 < xl < < x d} and x_ < xi < xi. For the
closed interval (a, b) it agrees with the Lebesgue-Stieltjes (L-S) integral.
For any closed subinterval (c, d) of (a, b), however, we have

f [+0L-S fdg fdg
c--O

(see (b) below), with obvious adjustments if c a or d b.
We note the following properties of this integral"
(a) .[fdg is a bilinear functional on the space BV BV.
(b) If h(x) ]fdg, then h(x) is of bounded variation, and continuous

at all points of continuity of g. If x0 is a point of discontinuity of g(x), then
h(xo) h(xo O) f(xo)(g(xo) g(xo 0)), with similar expressions
for h(xo "4- O) h(xo) and h(xo 4- O) h(xo 0).

(c) A substitution theorem is valid, viz., if k(x) gdh, then
fa fdk(x) fa fgdh. This results immediately from the integral definition
by using the substitution theorem for R-S integrals and item (b).
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(d) The following convergence theorem is adequate for the purposes of this
paper" If limn fn (X) f(x) for all x on (a, b), the fn(x) are uniformly bounded

v(- ) 0,on (a, b) and gin(x) converges to g(x) in the sense limm
then lim. fn dg, afdg. This follows immediately from the identity
fn dg, fdg fn d(g, g) + (A f) dg, the inequality

=< 1.u.b. If(x) IV g,

and the convergence theorem for L-S integrals.
(e) The integration by parts theorem must be modified.

(Hildebrandt [4], p. 276)

fdg - gdf fg
a<_x_b

We have

[(f(x + 0) f(x))(g(x + O) g(x))

+ (f(z) -f(x- 0))(a(x) g(x- 0))].
Since

fa fdg df(x) dg(y) df(x) dg(y),

we can rewrite the integration by parts formula as follows"

f dg(y) fa(f )f df(x) dr(x) dg(y) (f(x O)+
a_x_

f(x))(g(x + O) g(x)) (f(z) f(z 0))(g(x) g(x 0))],

which makes it a special case of the Dirichlet formula considered below.
Notation. Since the differences f(x + 0) f(x) and f(x) f(x 0)

will be of frequent occurrence in the sequel, we shall abbreviate them by
A+f(x) and A-f(x), respectively, and set A+f(x) f(x + O) f(x 0).

(f) Dirichletformula. If h(x, y) is bounded ona_<_ x-< b, a-<_ y_<_ b
and of bounded variation in y for each x and in x for each y, then

fa df(x) h(x, y) rig(y) df(x)h(x, y) dg(x)

[zX+f(x)h(x, x)A+g(x) A-f(z)h(x, z)Z-g(x)].
axb

This theorem can be proved by breaking up each of the functions f(x) and
g(y) into their continuous and discontinuous parts, giving rise to four parts
for each of the iterated integrals. The three parts involving continuous parts
of f or g are equal in pairs; the integrals for the purely discontinuous parts of

f and g give rise to the sum term. A less cumbersome procedure can be
based on the following lemma on iterated integrals, the proof of which can

be made by un adaptation of the reasoning used by H. J. Ettlinger [3], p. 65,
for the case when g(x) h(x) x, and the integrals are Riemann integrals"
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LEMMA. If h(x, y) is bounded on the rectangle a <- x

_
b, c <= y <= d;

if f(x) is of bounded variation on a

_
x <- b, and g(y) of bounded variation on

c <- y <= d; and if h(x, y) dr(x) exists for every y, and a h(z, y) dg(y)
exists for every x; then dr(z) h(x, y) dg(y) anda ( df(x)h(x, y)) dg(y)
both exist and are equal.

All integrals are to be taken in the sense of this section.
If h(x, y) is bounded on a

_
x =< b, a -< y -< b and of bounded variation

in x for each y and in y for eachx, and if we setH(x, y) h(x, y) on
a =< y-< x =< bandzero on a -< x < y -< b, then H(x, y) satisfies the
hypotheses of the lemma, and its iterated integrals are equal. Now

H(x, y) dg(y) L-S h(x, y) dg(y)

and similarly

df(x)H(x, y)

h(x, y) dg(y) "F h(x, x)A+g(x),

df(x)h(x, y) -F 5-f(y)h(y, y).

Consequently

df(x) h(x, y) dg(y) -F df(x)h(x, x)A+g(x)

df(x)h(x, y) dg(y) W A-f(y)h(y, y) dg(y).

Since h(x, x)A+g(x) and A-f(y)h(y, y) vanish excepting at the points of
discontinuity of g and f, respectively, we have

dr(x) h(x, y) dg(y) -F A+ :(x)h(x, x)A+g(x)
a<__x_b

df(x)h(x, y) dg(y) -F A-f(x)h(x, x)A+ g(x),

or

dr(z) f: h(x, y) dg(y) df(x)h(x, y) dg(y)

+
a___xb

which is the Dirichlet formula desired. Obviously the formula in its simple
form holds if the sum term vanishes, which occurs, for instance, if f and g
have no common discontinuities on the same side of any point of (a, b). As
noted above, setting h(x, y) 1 on a =< x -< b, a =< y =< b yields the in-
tegration by parts formula.
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The theorems of this section have been stated for the case of single func-
tions. Their validity can be extended to the case where matrix or vector
functions are involved, if proper attention is paid to order in the products.

4. The matrix A(x) continuous

For future reference and comparison, it seems desirable to collect the basic
results relative to the solutions of the systems

(I) Y(x) dA (s) Y(s) zr Y(a)

(II) Y(x) dA(s)Y(s) + U(x) with Y(a) U(a),

for the case where the matrix A(x) is continuous (Wall [14], pp. 160-163;
MacNerney [5], pp. 354-362). We have

(a) The system (I) has a unique solution valid on (a, b) expressible in
the form Y(x) B,(a, x)Y(a).

(b) The matrix B(a, x), the result of successive substitutions applied
to (I), is expressible as the Peano [9] series:

B(a, x) I + f f" fa81
81 fasn- dA (sl) dA (s.) dA (Sn+l) -the convergence being uniform on (a, b). As a natter of fact

B(a, x)II <= exp VA,
the inequality being actually term by term. The proof of this uses the fact
that if v(x) is continuous, then vndv (vn+l(b) vn+(a))/(n + 1),
which in turn depends on the integration by parts theorem for R-S integrals.

(c) The matrix B can be defined for any two points x’, x" of (a, b) in
either order. As a function of the upper limit it satisfies the integral equa-
tion"

(I’) B(x’, x") dA (s)B(x’, s) - I,

so that B (a, x) is a fundamental system of solutions of (I).
(d) For any x, B(x, x) I, and for any three points x’, x", x’" of (a, b)

we have B(x", x"’)B(x’, x") B(x’, x’"). Then B(x’, x") and B(x", x’)
are reciprocals of each other. Matrix functions possessing these properties
are called harmonic functions by H. S. Wall ([14], p. 160).

(e) The matrix A is expressible in terms of such a B(x’, x’) via the
relation A (x) A (a) de B(x’, s)B(s, x’), the latter expression being
independent of x’.
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(f) The matrix B(x’, x") is also expressible as a product integral
(Schlesinger [11]; MacNerney [5], p. 362), viz., if

then

B(x’, x") f", (I + dA) lim (I + A(x") A(x,,))

(I + A(x,) A(x,_l)) (I + A(xl) A(x’)),

the limit being taken as z max lxi xi_l approaches zero. Conse-
quently the limit exists also as a directed limit in z ordered by inclusion.

(g) As a function of the lower limit x’, B(x’, x’p) satisfies the system of
integral equations

B(x’, x") B(s, x") dA(s) + I,

which in differential equations is equivalent to the statement that B(x’, x")
in x’ is a solution of the adioint differential equation dZ/dx -ZA. This
property can be proved by applying the Dirichlet formula for interchange
of order of integration to the Peano series.

(h) The solution of the nonhomogeneous system (II) is expressible in
the form

Y(x) B(a, x)U(a) + B(s, x) dU(s),

U(x) being assumed to be of bounded variation (discontinuities allowed).
(i) The determinant of B(a, x) satisfies the integral equation

det B(a, x) d (a,(s) ai(a)) det n(a, s) + 1.
i.1

This can be shown by applying a multiple integration by parts theorem and
the substitution theorem for R-S integrals.

5. The matrix A(x) has a finite number of discontinuities on (a, 5)
In order to see what effect discontinuities of A (x) have on the solution of

equation (I), we consider first the case where A (x) has a single discontinuity
at x0. Since for a __< x < x0, A (x) is continuous, it follows that for this
interval we have

dA(s)Y(s) -+- Y(a) is equivalent to Y(x) B(a, x) Y(a).

At x0, we have

fo oY(xo) dA(s)Y(s) + Y(a) dA.Y + Y(a) + dA.Y
0--0

Y(xo O) + A-A(xo)Y(xo) S(a, xo- O)Y(a) + A-A(xo)Y(xo).
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Consequently Y(xo) is determined uniquely, if and only if the matrix
I A-A (x0) has a reciprocal. Assuming this to be the case, we have

Y(xo) (I A-A (xo))-lB(a, Xo O) Y(a).

Similarly we show that

Y(xo + O) Y(xo) + A+A(xo)Y(xo)
(I + A+A (x0))(I A-A (Xo))-IB(a, Xo O) Y(a).

For x > x0 + 0

Y(x) dA. Y A- Y(xo -4- 0),
o+o

so that

Y(x) B(xo zr- O, x)(I -f- A+A(xo))(I A-A(xo))-B(a, Xo O)Y(a).

This suggests setting

[(a, x) B(a, x) for x < x0

(I A-A(xo))-B(a, x0 0) for x x0

B(xo -4- O, x)(I A- A+A (x0))(I A-A (xo))-B(a, xo O)

for x > x0.

If we examine this expression carefully, we find that the definition of the
matrix B(a, x) for the case when A (x) has a finite number of discontinuities
centers in the interval function

C(x’, x") (I h-A(x"))-B(x -f- O, x" 0)(I -+- A+A(x’))
where A (x) is continuous for x’ < x < x". Then

(a, x) C(x x)C(x_ x) C(a, xl)

where a =< x < x < < x =< x, are points of discontinuity of A (x) on
(a, x). In general

/(x’, x") C(x, x")C(x_, x) C(x’, x)

where x, x are the ordered points of discontinuity of A in the closed
interval x’ <= x <- x". We can then state the following theorem"

THEOREM. If A (x) has a finite number of discontinuities on (a, b), then a
unique solution of the system (I) on a <-_ x <= b exists if and only if the ma-
trices I A-A (x) have reciprocals for all points of discontinuity of A. The
solution can then be expressed Y x a, x) Y a

It must be pointed out that the order a < b is important here. If b < a,
x") x’ x" 0 is replacedor in C(x’, > then the differences are reversed; x’

by x" + 0 and x’ 0 by x’ + 0, so that for x’ > x" we define

C(x’, x") (I A- A+A(x"))-IB(x O. x" -I- 0)(I A-A(x’))
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which exists if and only if I -[- A+A(x) has a reciprocal for all discontinui-
Xvtties of A. It is obvious that C(x’, x")C(x’, x) I for all (x’, ), so that

(x’, x")/(x", x) I. As a matter of fact if x, x", x’" are any three
points of (a, b), then (x, x’")(x, x) (x’, x’"). Further the fact
that (x’, x") :, dA(s)(x’, s) + I can be obtained from the unique-
ness of the solution of equations (I) by setting Y(a) successively equal to
the rows of the identity marrY. For the unique existence of (x, x") for
all pairs x, x", it must be assumed that both I A-A (x) and 1% A+A (x)
have reciprocals for all points of discontinuity of A (and so for all x).

6. The nonhomogeneous system if A(X) has a finite number of
discontinuities

In the case when A (x) is continuous the solution of

(II) Y(x) dA(s)Y(s) q- U(x) with Y(a) U(a)

is expressible in the form Y(a) B(a, x)U(a) + .[ B(t, x) dU(t). If we
test this form for the case when A (x) has a finite number of discontinuities
with/(a, x) defined as above, we find by using Dirichlet’s formula

dA(s)Y(s) dA(s)B(a, s)U(a) -t- dA(s) B(t, s) dU(t)

)(U(a,x) I)U(a) -t- dA(s)U(t, s) dU(t)_, [A+A(y)B(y, y)a+U(y) A-A(y)S(y, y)h-U(y)]

B(a, x)U(a) U(a) q-- (B(t, x) I) dU(t)

[A+A(y)A+U(y) A-A(y)a-U(y)]
a_u<-x

B(a,x)U(a) .-}- B(t,x) dU(t) U(x)

[A+A(y)A+U(y) a,-A (y)a-U(y)l.

It follows that Y(x) B(a, x) U(a) + . B(t, x) dU(t) is a solution of the
nonhomogeneous equation (Ii) if the term vanishes, in particular, if A
and U have no common discontinuities. This solution will be unique since
Y(x) dA(s) Y(s) is equivalent to Y(x) B(a, x) Y(a) O, where
B(a, x) is uniquely determined.
To determine the form of the corrective term in our assumed solution,

we again assume that A (x) has a single discontinuity at x0 and proceed as
in system (I). As a result of rather tedious but fairly obvious manipula-
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tion we find that if I A-A (x) has a reciprocal at x0 then the solution of
(II) is as follows

Y(x) =B(a, x)U(a) -t- B(t, x) dU(t) for x < x0,

:(a, xo)U(a) A- (t, Xo) dU(t)

-4- (I A-A(xo))-A-A(xo)A-U(xo) for x x0,

(a,x)U(a) A- (t,x) dU(t) -t- (xo- O, x)A-A(xo)A-U(xo)

(xo A- O, x)A+A(xo)A+U(xo) for x > x0.

This suggests, and it is easily verifiable, that if A (x) has a finite number of
discontinuities and I A-A (x) has reciprocal for each of these, then the
unique solution of the system (II) with a < b is expressible in the form

Y(x) t](a, x)U(a) -i- /(t, x) dU(t)

W [/(y O,x)A-A(y)5,-U(y) (y W O,x)A+A(y)A+U(y)].

Obviously he corrective erm vanishes if A and U have no common discon-
tinuities.

7. The matrix A(x) has an infinite number of discontinuities
In case there are no restrictions on the number of discontinuities of A (x),

we set A(x) A(x) A- A(x), where A(x) is the continuous part of A,
and A(x) , A(x), where A(x) is the simple break function corre-
sponding to the discontinuity x. The convergence in this series is in the
terms of total variation, i.e., lim V(A(x) _,’- A(x)) 0. If we
denote by a any finite number of the discontinuities and set

A(x) A(x) -f- _, A(x),

then on any interval containing no points of a, AA(x) AA(x). As a
consequence the fundamental matrix B(x’, x") corresponding to A(x) can
be written

B(x’, x") C(xm x")C(x,,-1, x) C(x’, xk),

X
ptwhere xk < < x are the points of a in the interval (x’, ),

C(s, t) (I A-A(t))-IB(s, t)(I -4- h+A(s)),
while B(s, t) corresponds to A(x). This suggests that lim B(x’, x")
may exist, and that this can serve as the fundamental matrix for A (x).
We note in the first place that B(x’, x") is uniformly bounded as to a, x’,
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and x", i.e., there exists an M such that IIB(x’, x")ll <= M. Because of the
properties of norms we have

C(s, t)II <= (I l-A(t))
Now

Be(s, t)II <= exp v ac and

Further if X-d(t) < 1, then

(I a-d(t))-1 <- 1 + A-A(t)I1" (1 --II a-A(t)II)-.
Using the fact that8 A+A(s)]] < and 8 A-A(s)[I < so that
I-I, (1 + a+A(s)]]) and II, (1 -]] /-d(s)1[) converge, we can show
that

B(x’, x")

=< N 1-Ix (1 + A+A(x) II)I, (1 A-A(s)[I)-lexp V Ac M,
where s is limited to the discontinuities for A for which A-A(s) < 1, and
N It (I A-A(t))-1 I1, where ranges over the points, finite in num-
ber for which A-A(t) => 1 and (I A-A(t))-1 > 1. It is obvious
that if any terms in the product definition of B(x’, x") are omitted, the
same inequality holds, i.e., the same upper bound M serves.

In order to show that lim B,(x’, x") exists, we follow the usual procedure
involved in proving convergence of infinite products and observe that if
A1, Am and B1, Bm are 2m matrices, then

A A2 Am B B2 Bm <= K(,=I A, B, ),
where K is the maximum ofIIA...A.B.+I...Bm[[, j 1,.-., m.
Supposea -> a. Let a consist of a x0 < x < x2 < < xk b, and
let al consist of xi_ xi0 < x < < xk x,i 1,...,lc. Then
if we remember that B(x,:_ x) IB(xi_ x), we obtain

<M

<M

B(a, b) B(a, b)[I II x, II II C
i=l i=l

If we assume that a contains 11 points for which /x-A (x) we hve
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where now the points xij involved on the right-hand side of this inequality
belong to zl z. Since ,IIA+A(x) < and,llA-A(x)II < ,
we conclude that there exists a ze such that if z > ze and zl => z, then

Bl(a, b) B(a, b)II <= e,

from which one deduces in the usual way that lim B(a, b) exists. The
x") existssame reasoning proves that if a < x’ < x" < b, then lim B(x’,

x" A similar(denoted by B(x’ x")), as a matter of fact uniformly in x’,
Xprocedure shows that if x’ > x", then lim B(x’, ’) also exists, and that

x" for all x’, we have alsosince B(x", x"’)B(x’, B(x’, x’" x",
XPtB(x", x’")B(x’, x") B(x’, ). Further B(x, x) I for all implies

B(x, x) I. We then have fundamental matrices having the same (har-
monic) properties as the matrices B for the continuous case, subject, of
course, to the proviso that I -t- A+A (x) and I A-A (x) have reciprocals
for all discontinuities of A (x).

Since B x’ x" "j, dA(s)B(x’, s) + I for all a, lim V(A A) 0,
x" x’ x" x’, the convergence theoremand lim B(x’, B( uniformly in x’,

on integrals assures us that

B(x’, x") dA()B(x’, ) "Jr- I,

and that a solution of Y(x) .[ dA (s) Y(s) Y(a) can be expressed in
the form Y(x) B(a, x) Y(a). To show that this solution is unique, we show
that Y(x) .[ dA(s)Y(s) implies Y(x) O, Y(x) being of bounded varia-
tion and so bounded in x. Now

Y(s) fa dA(s)Y(s) f dA(s) Y(s) + f d(A(s) A(s))Y(s).

Since A(s) has only a finite number of discontinuities and has no discon-
tinuities in common with d(A(s) A(s))Y(s) U(x), it follows from
6 that Y(x) .B(s, x) d(A(s) A.(s))Y(s). Then

Y(x) MVa(A A,)l.u.b.: Y(x) Ilo
From this it follows that Y(x) -< e for any e, i.e., Y(x) 0 in x.
a consequence, B(x’, x") is the unique solution of the system

As

B(x’, x’) dA (s)B(x’, s) + I,

and gives a fundamental system of solutions for system (I).

8. Properties of the fundamental matrix B(x’, x")
We shall assume that x’ < x" except when stated otherwise. The changes

to be made when x’ > x’p are easily apparent from the change in the defini-
Xtttion of the fundamental interval function C(g, ).

(a) The matrix B(x’, x") is of bounded variation in x" uniformly for
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a =< x"

_
b, and in x’ for a <= x’ <- b. The only points of discontinuity

in x’ or x" are those of A (x).
From the integral equation satisfied by B(x’, x") it follows that

!] B(x’,x2) --B(x’,xl)

The continuity and bounded variation properties in x" follow from this in-
equality. The identity

B(x’, x" --- O) B(x’, x" O) (A(x" + O) A(x" O))B(x’, x")

follows from the integral equation.
For B(x’, x") as function of x’ we have

dA()B(x.B(x x") B(x x")

dA(s)(B(x, s) B(x, s)) dA(s)B(x, s).
2

Considering this as an integral equation to be solved for

x") B(x x")B(x
we find

B( ") B( ") B( ") ()(, ).

I follows

B(x, x") B(xl x") l M vA (x) VA (x)

from which the continuity and bounded variation properties in x’ follow.
Xtt(b) The matrix B(x’, can be expressed as a product integral. We

shall set x’ a, x" b with a < b; the alterations for the general case will
be obvious. If A (x) is continuous, then

B(a, b) lim (I + A(b) A(x,)) (I + A(x) A(a)),

where the limit exists either as, max x x_ approaches zero or
by successive refinements of . The corrective terms involved in the defini-
tion of B,(a, b) in 7, suggest that we consider the product

(I A-A(b))-(I + A(b O) A(x. + 0))(I + A+A(x.))
(I- A-A(x))-(I + A(x O) A(a + 0))(I + A+A(a))

D(x, b)D(x,_, x,) D(a, x),
where we define

D(x’, x")

(I a-A(x"))-(I + A(x" O) A(x’ + 0))(I + +A(x’)).
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We prove the following theorem"

THEOREM. If A (x) is of bounded variation on (a, b), then

lim 1-I D(x_l x)

exists in the sense of successive subdivisions and is equal to B(a, b).

If we set

E(x’, x") (I-- A-A(x"))-1 (I- A(x") A(x’))(I - A+A(x’)),
then we obtain our theorem by comparing

B(a, b) with B(a, b) I C(x_, x,),

II C(x_ x) with I E(x_ x), and

II, E(x_ x) with ID(x_ x).

Since lim B.(a, b) B(a, b), we have that, for every e > 0, there exists a , such
that if a => he, then I1 B(a, b) B(a, b) Ii -< e. Here the a is limited to
the points of discontinuity of A (x). However since

B(x", x’")B(z’, B(x’,

and the "corrective" multipliers on Be drop out if x_ or x are points of con-
tinuity of A, we see that limiting the points of a to discontinuity points of
A is unnecessary.

In order to compare C(x’, x") with E(x:, x") we note that

II B(x’, x") (I - Ao(x") A(x’)) II
<= VA(x")--- VA(x’) exp VA(x")- VA(x’) I,

a consequence of the Peano series for B(x’, x"). Consequently

B(x,_ x,) (I -{- A(x) A(x_I)) !!
<- maxI VA(x, VA(x_) V A exp Y A,

so that

II C(x,_, x,) II E(x_, x)

<- M I1S,(x_,, x) (I - Ac(x) Ac(x_,))

=< M max VA(x) VA(x,_I) V A exp V A.

Because of the continuity of A(x), it follows that if a is made
small enough, this expression can be made smaller than e.

Finally since

II E(x’, x") D(x’, x") <- II (I A-A(x"))-’ 11
A(z" O) A(x’ + O) (A(z") A(x’)) I1"111 + A+A(x’)
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we hve

O) A(x’ + O) (Ac(x") A(x’))
<- "’<-_<=" A(x + O) A(x O)

<= M _,,,c A(x + O) A(x O) II,
where Ca are the points not in a. The right-hand side of this inequality can
be made to be less than e by choosing so that

Combining these various considerations, we find that there exists a a such
that if -> a, then B(a, b) II D(xi_, xi) =< 3e, the desired result.

If x’ > x’, we define

D(x’, x")

(I + A+A(x"))-I(I (A(x’- O) A(x" + 0)))(I A-A(x’)).

From the expression for B(x’, x") with x’ < x" we can check that

x" x" O) (A(x" + O) A(x" x").B(x’, /0) B(x’, O))B(x’,

On the other hand,

B(x’ + O, x") B(x’, x")(I + A+A(x’))-,
and

B(x’ O, x") B(x’, x")(I A-A(x’))-,
so that

B(x’ + 0, x") B(x’ O, x")

B(x’, x")[(I + A+A(x’))-- (I- A-A(x’))-].
It follows that B(x’, x") considered as a function of x’ does not in general
satisfy the adjoint system B(x’, x") ., B(s, x") dA(s) + I, since this
would imply that

B(x’ -- O, x") B(x’ O, x") B(x’, x")(A (x’ O) A (x’ -- 0)).

(c) The matrix A (x) in terms of B (x’, x"). We have (Wall [14], p.
161)

THEOREM. If B(x’, x") is the fundamental matrix for A (x), then

A(x) A(a) d B(x’, s)B(s, x’),

so that the integral on the r(aht is independent of x’.
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If we replace B(x’, s) by f, dA (t)B(x’, t) + I and use the substitution
theorem for integrals, we obtain

Conversely,

THEOREM.

d8 B(x’, s)B(s, x’) dA(s)B(x’, s)B(s, x’)

dA(s) A(x) A(a).

X
vp

XIf B(x, x) I for all x and B(x’,
for all x’, x", x’", B(x’, x") being of bounded variation in x’ for each x", and
in x" for each x’, then A x, t) a d8 B t, s)B s, t) is independent of t, and
B(x’, xp’) j, dA(s)B(x’, s) - I.

The fact that

d,B(t’,s)B(s,t’)

shows that A (x, t) is iadependent of t. By the substitution theorem, we have

d.A(,)B(z’,)= dB(,)B(.)B(z’,)

d, B(t, s)B(x’, t) (B(t, x") B(t, x’))B(x’, t)

B(x’, x") I,

Xi.e. B (x’, ’) satisfies the integral equation (I) for A (s, t) for all t.
As already noted in the case when A(x) is continuous, B(x’, x") is ex-

pressible as the product integral 7 (I dA) lim (I + A A). It
follows from the above theorem that if A is discontinuous, the same product
integral which can readily be shown to exist as a limit in the sense of suc-
cessive subdivisions (see MacNerney [6], pp. 186-187) does not corre-
spond to the matrix of a differentio-integral equation. For it is not in general
true that (I + dA (I + dA I. Take for instance A(x) 0
for 0 x < ;cforx ;andcfor < x 1. Then

(1 + dA(x)) (1 + o)(1

while (1 + dA x) (1 c c) (1 c so that these two integrals
are in general not reciprocals of each other.

Incidentally this example also shows that if A is discontinuous,

lim II + A)
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need not exist as a approaches zero, contrary to a theorem stated by
F. M. Stewart ([12], pp. 101). For if a does not contain the point 1/2, then
II (1 -t- A A) 1 -f- c., while if a contains the point 1/2, then

II (1 -t- AiA) (1 + cl)(1 + c--

so that the limit exists in the norm sense if and only if o(cl c2) O, i.e.,
A (x) is continuous on the right or on the left.

9. The determinant of the matrix B(a, b)
If A (x) has a finite number of discontinuities at a _-< x < < xm _-< b,

then (with xo a, xm+ b) B(a, b) II_+ C(x_, xi). Now

det C(xr, x’) det [(I A-A (x"))-I] det Bc(x’, x") .det (I + A+A (x’)),
and detBc(x’, x") exp (_1 (aj(x" -O) aj(x’-t- 0))). Hence

det B(a, b) exp (--1 (ac(b) ac(a)))
"]-I det (I + h+A(x))/II det (I A-A(x)),

where a(x) is the continuous part of aj(x). Since the determinant is a
continuous function of its elements, it follows that in any case

det B(a, b) (exp (a(b) a(a)))

II det (I -t- A+A (x)/1-I det (I A-A (x)).
By the use of Hadamard’s theorem on the maximum of a determinant it can
be shown that the infinite products involved in this expression converge
absolutely. Since det B(a, b) and det B (b, a) are reciprocals of each other,
this formula points up the fact that for B(b, a) to exist it is necessary that
I + A+A(x) huve a reciprocal for every x. (See also MacNerney [7].)

10. The nonhomogeneous equation

From the preceding developments and the treatment of equation (II) for
the case of a finite number of discontinuities of A (x), the following theorem
is suggested"

THEOREM. If a <-- X <= b, I A-A (x) has a reciprocal for all x, and U(x)
is of bounded variation, then the system Y(x dA s Y s U x with
Y(a) U(a) has as unique solution

Y(x) B(a, x)U(a) + B(s, x) dU(s)

+ [B(y O,x)h-A(y)A-U(y) B(y + O,x)A+A(y)A+U(y)].
a<-u_

The fet that this is solution en be esily verified. Since the infinite
series on the right is uniformly convergent, term by term integration is
permitted, nd we hve
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dA(s)Y(s) dA(s)B(a, s)U(a) -i- dA(s) B(t, s) dU(t)

dA(s)B(y O, s)A-A(y)A-U(y)
--0

dA(s)B(y -t- O, s)A+A(y)A+U(y)
+0

The lower limits on the last two integrals are as indicated, because the term
does not enter into the expression for Y(x) until x or s is __> y 0 or y + 0,
respectively. Applying the Dirichlet formula of 3 and the fact that

dA (s)B(y O, s) B(y O, x) I,
--0

(similarly for y + 0), we find that f dA (s) Y(s) Y(x) F(x). The
uniqueness of the solution has already been considered.
Another form for this solution of the nonhomogeneous equation can be

obtained, if we note that by 8(b)

and
B(y O, x)A-A(y) B(y O, x) B(y, x) ---A B(y, x),

B(y -f- O, x)A+A(y) B(y, x) B(y + O, x) --A+ B(y, x).

Then

Y(x) B(a,x)U(a) + B(s,x) dU(s)

[A-B(y,x)A-U(y) AB(y, x)A+U(y)l
a<__u<-

If we apply the integration by parts theorem of 3(e) to the last two terms,
we obtain

Y(x) B(a,x)U(a) + B(s,x)U(s) d.B(s,x)U(s)

U(x)- daB(s,x)U(s).

If U(a) Y(a), i.e., if (Y(x) . dA(s)Y(s) + U(x) U(a) + Y(a),
then

Y(x) B(a, x) Y(a) ’1" U(x) U(a) da B(s, x)(U(s) U(a)).

11. The matrix B(x’, x") as a function of the lower limit x’

The fct that the solution of the nonhomogeaeous equation discussed in
the preceding paragraph involves the integration of the matrix B(x’, x")
with respect to the lower limit x’, suggests that this matrix may perhaps
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satisfy such an equation with the function U(x) replaced by A (x). This is
actually the case. We rewrite the equation

B(z’, z") dA()B(z’, ) -t" I

in the form

B(x’,x") I dA(s)(B(x’,s) I) + A(x") A(x’),

and then apply the formula of 10 to obtain the relation"

B(x’,z") I-t-- B(,z") dA()

+ [B( O,z")(ZX-A())- B( + O,z")(zX+A(Y))].

This reduces to the usual adjoint equation if the sum term vanishes, which
is true in particular if A (x) is continuous. An alternative form can be ob-
tained by observing that B(y 0, x) B(y, x)(I A-A(y))-I and
B(y q-- 0, x) B(y, x)(I q- A+A(y))-1. Since for any matrix C,

(I- C)-’C -I- C--k (I- C)-1,
we have

_,x,<_y<=x,,B(y, x")[(I A-A(y))-I(zX-A(y)) (I q-- A+A(y))-I(A+A(y))]
x")

[--A-A(y) q- (I- zX-A(y))-1- A+A(y) (I q- A+A(y))-1]
_,,<=,,<__x,,B(y,z")[--A+A(y)q (I- A-A(y))-- (I q- A+A(y))-].

As a consequence if we set

(X) A (x) _.a<=y<_x/.-b A (y)

"t- -a<__y<_x [(/ A-A(y))-I (I q- AWA(y))-I]

Ac(x) _a<=y<_x [(I- A-A(y))-- (I-t- A+A(y))-I],
then

x") B(s, di(s) + IB(x’,

i.e., B(x, a) as a function of x satisfies an equation of the form

Z(x) Z(s) de{(s) q- Z(a),

where the continuous parts of A (s) and A (s) are the same.

12. The adjoint equation
It is obvious that the adjoint equation Z(x) -f.Z(s) dA(s) q- Z(a)

can be subiected to the same treatment as equation (I) and yields a matrix
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C(a, x) which satisfies the equation C a, x) C a, s) dA s + I.
The question of the relation between B(a, x) and C(a, x) is pertinent. We
note that

(a, ) dB(a, ) -i- d(, )B(, ) 0.

Applying the integration by parts theorem we obtain

0 C(a, s)B(a, s)I
a__ [A+C(a, y)A+B(a, y) A-C(a, y)A-B(a, y)].

Solving this equation for C(a, x) and remembering that the reciprocal of
B(a, x) is B(x, a), we have

C(a, x) B(x, a) Eayx [A+C(a, Y)A+B(x, Y) A-C(a, y)A-S(x, y)].

Now A+C(a, y) -C(a, y)A+A(y), A+B(x, y) A+A(y)B(x, y), and
similarly for A-. Then

C(a, x) B(x, a) "t- _,,<=<=. [C(a, y)(A+A(y))B(x, y)

C(a, y)(A-A(y))B(x, y)].

Obviously C(a, x) B(x, a) if A (x) is continuous.

13. Singular solutions
The preceding developments are valid provided that (I + A+A(x))

and (I A-A (x)) have reciprocals for every x. The contrary can occur at
only a finite number of points, since (ll A+A(x) + A-A(x) II) --< VA,
and the matrix IWA has a reciprocal if IIAII < 1. Suppose that xl is
the first point on (a, b) for which I- A-A (x) fails to have a reciprocal.
Then since at xl we would have

Y(x) dA(s) Y(s) -t- dA(s)Y(s) + U(x)

(A-A(x))Y(x) + Y(xl- O) + U(x) U(xl- 0),

the value of Y(x) is determined if and only if this system of equations has
a solution. If rl is the rank of the matrix I A-A (xl), then such a solution
would contain n- rl arbitrary constants. These constants would carry
over into the interval xi, x., where x. is the next point of (a, b) for which
I- A-A (x) does not have a reciprocal. Proceeding in this way, we find
that if a solution exists between a and xk, then in the interval xk_, x such
a solution may depend on at most (n rl) + + (n r_) arbitrary
constants, since it is conceivable that the arbitrary constants may be re-
duced by the conditions for the existence of a solution at some point x xi.

Similar statements can be made concerning the existence of nonvanishing so-
lutions of the equation Y(x) . dA (s) Y(s).
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14. Generalization
The case when the system (II) reads

or

Y(x)

Y(x) f F(s) dA(s) Y(s) T U(x)

dA(s)F(s)Y(s) -t- U(x), with Y(a) U(a),

where F(x) is a matrix of functions L-S integrable with respect to A, does
not introduce any new difficulties. Such a system is reduced to the system
(II) by the substitution

A*(x) F(s) dA(s) A*(x) dA(s)F(s)

where now A*(x) will be a matrix of functions of bounded variation. The
right to make this substitution depends on the substitution theorem for L-S
integrals, viz., if Y(s) is of bounded variation and F(s) is L-S integrable
with respect to A (x), then

F(s) dA(s)Y(s) dA*(s)Y(s).

This suggests that un effective way to define a product integral for the ex-
pression (I + F(x) dA (x)), F(x) L-S integrable with respect to A (x), is
to apply the definition given in 8 to A*(x) . F(s) dA (s). This ,,avoids
the complication inherent in the fact that measurable sets on the linear inter-
val are difficult to arrange in a linear order.

15. Linear normed spaces
The developments of this paper have been made in such a way that they

indicate the generalization involved by assuming that Y(x) is on (a, b) to a
linear normed complete space , and A(x) is on (a, b) to the class of linear
continuous transformations on to ), the A (x) being strongly of bounded
variation on (a, b). This would extend the situation developed by MacNer-
hey [5] by dropping the condition that A (x) be continuous in the strong sense
on (a, b) (see also MacNerney [6]). So far as we can see, the basic results of
this paper can be extended to this more general setting without any difficulty.
The exception is, of course, that there is no parallel to the determinant of the
matrix B(a, x) in the general case. Also, some of the statements made for
the singular case where for some points of discontinuity of A (x), I A+A
and I- A-A do not have reciprocals need alterations. Although there
will still be only a finite number of such singular points, the question of solu-
tions is tied up with the inversion of a continuous linear transformation T
which does not have a reciprocal.
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