MULTIPLICITÉS DE CERTAINES COMPOSANTES SINGULIÈRES

En hommage à Oscar Zariski, a l'occasion de son soixantième anniversaire

PAR PIERRE SAMUEL

Etant donnés deux variétés (ou cycles) X, Y portés par une variété algébrique ambiante A, et une composante C de leur intersection qui soit singulière sur A, aucune théorie générale ne nous dit, pour l'instant, comment définir la multiplicité d'intersection relative $i_A(C; X \cdot Y)$, même si C a la bonne dimension $(\dim(X) + \dim(Y) - \dim(A))$. Seul est traité le cas très particulier où X et Y sont, au voisinage de C, des intersections complètes de A ([5], II, §6, n° 5). Nous allons donner ici quelques indications sur un autre cas très particulier.

Soient V et V' deux variétés normales de même dimension, et f une application birationnelle et partout régulière de V' dans V (ainsi f est "génériquement surjective"). Etant donné un diviseur D de V, nous cherchons à donner un sens à la notation $f^{-1}(D)$. Les seules difficultés proviennent des composantes W'_j de $f^{-1}(\operatorname{Supp}(D))$ (pris au sens ensembliste) telles que $f(W'_j)$ soit singulière sur V, et par conséquent de codimension > 1 puisque V est normale; en effet, si $f(W'_j)$ est simple, le coéfficient de W'_j dans $f^{-1}(D)$ est celui de W'_j dans le cycle $\operatorname{pr}_{V'}((D \times V') \cdot T)$ (où T est le graphe de f dans $V \times V'$); rappelons que, si $f(W'_j)$ est de codimension 1 sur V, la restriction de f à W'_j est une application birationnelle régulière de W'_j sur $f(W'_j)$, et le coéfficient de W'_j dans $f^{-1}(D)$ est égal à celui de $f(W'_j)$ dans D. Notons aussi que les sous variétés W'_j de codimension 1 de V' telles que $f(W'_j)$ soit singulière sur V sont en nombre fini (puisqu'il en est ainsi de celles telles que codim $(f(W'_j)) > 1$).

Ceci étant, il est naturel d'imposer à $f^{-1}(D)$ les trois conditions suivantes:

- (a) Si D est positif, il en est de même de $f^{-1}(D)$, et f^{-1} est un homomorphisme.
- (b) Si D est le diviseur (x) d'une fonction x sur V, $f^{-1}(D)$ est le diviseur (x') de la fonction x' sur V' correspondant à x. $(x' = x \circ f)$.
- (c) Si D est algébriquement équivalent à 0, il en est de même de $f^{-1}(D)$ (plus précisément, si D parcourt un système algébrique, il en est de même de $f^{-1}(D)$).

Dans ce qui va suivre, et qui n'est qu'une solution partielle du problème posé, nous nous occupperons seulement des conditions (a) et (b). Notons K le corps des fonctions rationnelles sur V (identifié au corps des fonctions rationnelles sur V'). Soient W' une sous variété de codimension 1 de V' et W la valuation correspondante de K; posons W = f(W'), et notons $\mathfrak o$

l'anneau local de W sur V. Pour tout diviseur D sur V, nous cherchons à définir le coéfficient $\bar{w}(D)$ de W' dans $f^{-1}(D)$. Nous ajouterons à (a) et (b) la condition naturelle que $\bar{w}(D)$ a un "caractère local", c'est à dire ne dépend que des composantes de D qui passent par W. Nous sommes ainsi ramenés au problème algébrique suivant:

(P) Pour tout idéal premier $\mathfrak p$ de hauteur 1 de $\mathfrak o$, notons $v_{\mathfrak p}$ la valuation correspondante. Il s'agit de trouver une application $\mathfrak p \to \bar w(\mathfrak p)$ à valeurs réelles positives telle que l'on ait

$$(1) w(x) = \sum_{\mathfrak{p}} \bar{w}(\mathfrak{p}) v_{\mathfrak{p}}(x)$$

pour tout élément non nul x de K.

Notons qu'il revient au même d'imposer (1) seulement aux éléments non nuls de \mathfrak{o} . Si (P) admet une solution \bar{w} , nous étendrons celle ci aux diviseurs locaux en W (qui correspondent aux combinaisons linéaires formelles des idéaux \mathfrak{p}), et les conditions (a) et (b) seront satisfaites.

Remarque. Si W = f(W') est de codimension 1 sur V, $\mathfrak o$ est l'anneau de la valuation w, le seul idéal $\mathfrak p$ est l'idéal maximal $\mathfrak m$ de $\mathfrak o$, on a $v_{\mathfrak m} = w$, et la seule solution de (P) est donnée par $\bar w(\mathfrak m) = 1$. Plus généralement, si $\mathfrak o$ est un anneau factoriel (en particulier si W est simple sur V), l'idéal $\mathfrak p$ est un idéal principal $\mathfrak o y$, et (1) implique $\bar w(\mathfrak p) = w(y)$; l'application $\bar w$ ainsi définie est l'unique solution de (P) et, lorsque W est simple, coı̈ncide avec la solution fournie par la théorie des intersections (cf. ci dessus, et [5], II, §5, $\mathfrak n^{\mathfrak o}$ 7).

1. Un théorème d'existence

Théorème 1. Soient o un anneau local noethérien, intègre et intégralement clos (plus généralement un anneau de Krull local), K son corps des fractions, I l'ensemble des idéaux premiers de hauteur 1 de \mathfrak{o} , $\mathfrak{v}_{\mathfrak{p}}$ la valuation normée de K correspondant à \mathfrak{p} ϵ I, et w une valuation discrète normée de K dont l'anneau domine \mathfrak{o} . Il existe une application \bar{w} de I dans R_+ (ensemble des nombres réels ≥ 0) telle que

$$(1)' w(x) = \sum_{\mathfrak{p} \in I} \bar{w}(\mathfrak{p}) v_{\mathfrak{p}}(x)$$

pour tout élément x non nul de K.

Notons, en effet, E l'espace vectoriel réel ayant I pour base (ensemble des combinaisons linéaires formelles d'éléments de I), P l'ensemble de ses éléments positifs (éléments dont toutes les composantes sont positives), H le sous-groupe de E formé par les diviseurs de fonctions (i.e. les éléments $\sum v_{\mathfrak{p}}(x) \cdot \mathfrak{p}$ pour $x \in K$, $x \neq 0$), et F le sous-espace vectoriel de E engendré par H. L'application $x \to w(x)$ de H dans Z se prolonge de façon unique, en une forme R-linéaire sur F (que nous noterons encore w). Il s'agit de prolonger cette forme linéaire en une forme linéaire \bar{w} sur E de telle sorte que ce prolongement prenne des valeurs positives sur P. Nous allons,

pour celà, utiliser une forme classique du théorème de Hahn-Banach ([2], Chap. II, §3, exerc. 1 et 2). Notons F^+ l'ensemble des $\alpha \in F$ tels que $w(\alpha) \geq 0$; l'ensemble $P + F^+$ est un cône convexe dans E.

Nous allons d'abord montrer que, pour tout $\mathfrak{p} \in I$, on $\mathfrak{a} - \mathfrak{p} \notin P + F^+$. En effet, dans le cas contraire, il existerait des nombres réels positifs presque tous nuls $a(\mathfrak{q})$ ($\mathfrak{q} \in I$), un entier $n \geq 0$, n éléments $x_i \neq 0$ de K et n nombres réels b_i tels que

(2)
$$-\mathfrak{p} = \sum_{\mathfrak{q}} a(\mathfrak{q}) \cdot \mathfrak{q} + \sum_{i,\mathfrak{q}} b_i v_{\mathfrak{q}}(x_i) \cdot \mathfrak{q} \quad \text{et} \quad \sum_{i} b_i w(x_i) \geq 0.$$

Nous allons nous ramener au cas où les nombres réels $a(\mathfrak{q})$, b_i sont rationnels, et pour celà nous utiliserons le lemme classique suivant de la théorie des approximations diophantiennes (voir, par exemple, [1], Chap. VII, §1, n° 1, prop. 2):

LEMME 1. Etant donnés une famille finie (c_i) de nombres réels et un nombre $\varepsilon > 0$, il existe des entiers q > 0 et s_i tels que $|c_i - s_i|^{-1} | \le \varepsilon q^{-1}$ pour tout i.

Ceci étant, pour chaque i $(i=1,\cdots,n)$, les éléments $\mathfrak{q} \in I$ tels que $v_{\mathfrak{q}}(x_i) \neq 0$ sont en nombre fini; il existe donc $\varepsilon > 0$ tel que

$$\varepsilon \cdot \sum_{i} |v_{\mathfrak{q}}(x_i)| \leq \frac{1}{2}$$

pour tout $\mathfrak{q} \in I$, et $\varepsilon \cdot \sum_i |w(x_i)| < 1$. Comme les nombres $a(\mathfrak{q})$ qui sont $\neq 0$ sont en nombre fini, il existe, d'après le lemme 1, des entiers q > 0, s_i et $s(\mathfrak{q})$ tels que

$$|b_i - s_i q^{-1}| \le \varepsilon q^{-1}$$
 et $|a(\mathfrak{q}) - q^{-1}s(\mathfrak{q})| \le 1/3q$

pour tout i et pour tout \mathfrak{q} ; on aura pris $s(\mathfrak{q}) = 0$ si $a(\mathfrak{q}) = 0$, et $s(\mathfrak{q}) \ge 0$ si $a(\mathfrak{q}) > 0$. Pour $\mathfrak{q} \ne \mathfrak{p}$, la relation (2) donne $a(\mathfrak{q}) + \sum_i b_i v_{\mathfrak{q}}(x_i) = 0$, d'où

$$q^{-1} | s(\mathfrak{q}) + \sum_{i} s_{i} v_{\mathfrak{q}}(x_{i}) | \leq 3^{-1} q^{-1} + \varepsilon q^{-1} \sum_{i} | v_{\mathfrak{q}}(x_{i}) |$$

$$\leq 3^{-1} q^{-1} + 2^{-1} q^{-1} < q^{-1};$$

comme le nombre $|s(\mathfrak{q})| + \sum_i s_i v_{\mathfrak{q}}(x_i)$ | est entier, on en déduit

(3)
$$s(\mathfrak{q}) + \sum_{i} s_{i} v_{\mathfrak{q}}(x_{i}) = 0 \qquad (\text{pour } \mathfrak{q} \neq \mathfrak{p}).$$

Pour $\mathfrak{q}=\mathfrak{p}$, la relation $-1=a(\mathfrak{p})+\sum_i b_i\,v_{\mathfrak{p}}(x_i)$ (déduite de (2)) donne de même $|q+s(\mathfrak{p})+\sum_i s_i\,v_{\mathfrak{p}}(x_i)|<1$, d'où

(4)
$$q + s(\mathfrak{p}) + \sum_{i} s_{i} v_{\mathfrak{p}}(x_{i}) = 0.$$

Posons $x = \prod_i x_i^{s_i} (x \in K)$. On a

$$w(x) = \sum_{i} s_{i} w(x_{i}) \ge \sum_{i} (b_{i} q - \varepsilon \operatorname{sgn}(w(x_{i})) w(x_{i}))$$

$$\ge q \sum_{i} b_{i} w(x_{i}) - \varepsilon \sum_{i} |w(x_{i})| > q \sum_{i} b_{i} w(x_{i}) - 1 \ge -1$$

(en vertu de (2)); comme w(x) est un entier, on en déduit $w(x) \ge 0$. Les relations (3) et (4) donnent alors

$$(5) \qquad -q\mathfrak{p} = \sum_{\mathfrak{q}} \left(s(\mathfrak{q}) + v_{\mathfrak{q}}(x) \right) \cdot \mathfrak{q} \qquad (q > 0, \quad s(\mathfrak{q}) \ge 0, \quad w(x) \ge 0).$$

On a ainsi $v_{\mathfrak{q}}(x^{-1}) \geq 0$ pour tout $\mathfrak{q} \in I$, et $v_{\mathfrak{p}}(x^{-1}) > 0$, d'où $x^{-1} \in \mathfrak{p}$. Comme l'anneau de w domine \mathfrak{o} par hypothèse, il en résulte que $w(x^{-1}) > 0$, contrairement à la relation $w(x) \geq 0$.

Choisissons un élément $\mathfrak p$ de I. Nous venons de voir que l'ensemble des cônes convexes C de E contenant $P+F^+$ et tels que $-\mathfrak p$ $\mathfrak e$ C est non-vide; il est évidemment inductif si on l'ordonne par inclusion. Un élément maximal de cet ensemble est un demi-espace fermé E^+ de E (cf. [2], Chap. II, §3, exerc. 1 et 2), ce qui veut dire qu'il existe une forme linéaire $g\neq 0$ sur E telle que les points de E^+ sont ceux qui vérifient $g(\alpha)\geq 0$. Ce demi-espace E^+ ne contient pas F, sinon il contiendrait le diviseur $(x)=\sum_{\mathfrak q} v_{\mathfrak q}(x)\cdot \mathfrak q$ d'un élément x de K tel que x^{-1} $\mathfrak e$ $\mathfrak p$; d'où, $(x)-\mathfrak p\geq 0$ et $-\mathfrak p$ $\mathfrak e$ E^+ puisque $P\subset E^+$, ce qui est contraire à l'hypothèse. Donc E^+ n F est un demi-espace fermé de F, nécéssairement égal à F^+ puisqu'il le contient. La restriction de g à F est donc proportionnelle à w, et il existe donc bien une forme linéaire positive $\bar w$ sur E qui prolonge w. CQFD.

2. Condition d'unicité

Conservons les hypothèses et notations du théorème 1. Il montre que, pour $\mathfrak{p} \in I$, on a $\bar{w}(\mathfrak{p}) \leq w(x)/v_{\mathfrak{p}}(x)$ quel que soit $x \in \mathfrak{p}, x \neq 0$. Posons

(6)
$$w'(\mathfrak{p}) = \inf_{x \in \mathfrak{p}, x \neq 0} (w(x)/v_{\mathfrak{p}}(x)).$$

On a le résultat suivant:

Théorème 2. Les hypothèses et notations étant celles du théorème 1 et de (6), on a $\bar{w}(\mathfrak{p}) \leq w'(\mathfrak{p})$ pour toute application \bar{w} de I dans R_+ vérifiant (1)'. Si w' vérifie (1)', toute autre application \bar{w} de I dans R_+ vérifiant (1)' est égale à w'. Pour tout $\mathfrak{p} \in I$, il existe une application \bar{w} de I dans R_+ vérifiant (1)' et telle que $\bar{w}(\mathfrak{p}) = w'(\mathfrak{p})$. Si une seule application \bar{w} de I dans R_+ vérifie (1)', cette application est w'.

La première assertion résulte de l'inégalité $\bar{w}(\mathfrak{p}) \leq w(x)/v_{\mathfrak{p}}(x)$ $(x \in \mathfrak{p}, x \neq 0)$. Si w' vérifie (1)', on a $\sum_{\mathfrak{p}} (w'(\mathfrak{p}) - \bar{w}(\mathfrak{p}))v_{\mathfrak{p}}(x) = 0$ pour tout $x \in \mathfrak{p}$, d'où $w'(\mathfrak{p}) - \bar{w}(\mathfrak{p}) = 0$ pour tout \mathfrak{p} puisque ces nombres sont positifs; ceci démontre la seconde assertion. La quatrième étant une conséquence immédiate de la troisième, il nous reste à démontrer cette dernière. Pour celà nous distinguerons deux cas:

(a) Cas où $\mathfrak{p} \in F$ (notations de la démonstration du théorème 1). Il existe alors des $x_1 \in K$ et des nombres réels b_i tels que $\mathfrak{p} = \sum_i b_i(x_i)$ (où (x) désigne le diviseur $\sum_{\mathfrak{q}} v_{\mathfrak{q}}(x) \cdot \mathfrak{q}$ de l'élément x). Le raisonnement d'approximations diophantiennes menant à (5) montre qu'il existe des entiers s(i) et q (q > 0) tels que $q \cdot \mathfrak{p} = \sum_i s(i)(x_i)$; en posant $y = \prod_i x_i^{s(i)}$, on a donc $q \cdot \mathfrak{p} = (y)$. Comme, dans (6), on peut remplacer $w(x)/v_{\mathfrak{p}}(x)$ par $w(x^q)/v_{\mathfrak{p}}(x^q)$, et que, pour x non nul dans \mathfrak{p} , on a $x^q = y^r z$ avec $r = v_{\mathfrak{p}}(x)$ et $z \in \mathfrak{o}$, il vient $w'(\mathfrak{p}) = \inf_{r \geq 1, z \in \mathfrak{o}} ((rw(y) + w(z))/qr) = w(y)/q$. Comme, d'après (1)',

on a $w(y) = q\bar{w}(\mathfrak{p})$, on a bien $\bar{w}(\mathfrak{p}) = w'(\mathfrak{p})$ (et ceci pour toute \bar{w} vérifiant (1)').

(b) Cas où $\mathfrak{p} \notin F$. Nous commençons par prolonger w en une forme linéaire u sur $F + R \cdot \mathfrak{p}$ en posant $u(\mathfrak{p}) = w'(\mathfrak{p})$. Si $w'(\mathfrak{p}) = 0$, la double inégalité $0 \le \bar{w}(\mathfrak{p}) \le w'(\mathfrak{p})$ montre qu'on a aussi $\bar{w}(\mathfrak{p}) = 0$; on peut donc supposer $w'(\mathfrak{p}) > 0$. Soit D l'ensemble des éléments α de $F + R \cdot \mathfrak{p}$ tels que $u(\alpha) \ge 0$. Nous allons montrer que le cône convexe D + P (P: ensemble des éléments positifs de l'espace vectoriel E) ne contient pas $-\mathfrak{p}$, ce qui, comme dans le théorème 1, permettra de prolonger u en une forme linéaire positive \bar{w} sur E, et démontrera donc notre assertion.

Raisonnons par l'absurde, et supposons qu'on ait une relation de la forme

(7)
$$-\mathfrak{p} = \sum_{i} b_{i}(x_{i}) + b \cdot \mathfrak{p} + \sum_{\mathfrak{q}} a(\mathfrak{q}) \cdot \mathfrak{q}$$

où $x_i \in K$, b, b_i , $a(\mathfrak{q})$ réels, $a(\mathfrak{q}) \geq 0$ et $bw'(\mathfrak{p}) + \sum_i b_i w(x_i) \geq 0$. Un raisonnement d'approximations diophantiennes analogue à celui du théorème 1 montre qu'il existe des entiers q > 0, s(i), c et $n(\mathfrak{q})$ tels que

(8)
$$-q \cdot \mathfrak{p} = \sum_{i} s(i)(x_i) + c\mathfrak{p} + \sum_{\mathfrak{q}} n(\mathfrak{q}) \cdot \mathfrak{q}, \quad n(\mathfrak{q}) \ge 0,$$
$$cw'(\mathfrak{p}) + \sum_{i} s(i)w(x_i) \ge 0.$$

En posant $y = \prod_i x_i^{s(i)}$, on a

$$(9) -q \cdot \mathfrak{p} = (y) + c \cdot \mathfrak{p} + \sum_{\mathfrak{q}} n(\mathfrak{q}) \cdot \mathfrak{q}, w(y) + cw'(\mathfrak{p}) \ge 0.$$

Si on a c+q>0, (9) montre qu'on a $(y^{-1})\geqq 0$ et $v_{\mathfrak{p}}(y^{-1})\geqq c+q>0$, d'où y^{-1} ϵ \mathfrak{p} ; il vient alors $w'(\mathfrak{p})\leqq w(y^{-1})/v_{\mathfrak{p}}(y^{-1})\leqq -w(y)/(c+q)$, d'où $cw'(\mathfrak{p})+w(y)+qw'(\mathfrak{p})\leqq 0$, et donc $cw'(\mathfrak{p})+w(y)<0$ puisque q>0 et $w'(\mathfrak{p})>0$; ceci contredit $w(y)+cw'(\mathfrak{p})\geqq 0$. Dans le cas contraire $(c+q\leqq 0)$, soit ϵ un nombre >0 tel que $-\epsilon(c+q)< w'(\mathfrak{p})$, et soit x un élément non nul de \mathfrak{p} tel que $w'(\mathfrak{p})\leqq w(x)/v_{\mathfrak{p}}(x)\leqq w'(\mathfrak{p})+\epsilon$; posons $z=x^{-(c+q)}y^{-v_{\mathfrak{p}}(x)}$; on a $v_{\mathfrak{p}}(z)=-(c+q+v_{\mathfrak{p}}(y))v_{\mathfrak{p}}(x)=n(\mathfrak{p})v_{\mathfrak{p}}(x)\geqq 0$, et, pour $\mathfrak{q}\not=\mathfrak{p},\ v_{\mathfrak{q}}(z)\geqq -v_{\mathfrak{q}}(y)v_{\mathfrak{p}}(x)=n(\mathfrak{q})v_{\mathfrak{p}}(x)\geqq 0$; d'où z ϵ \mathfrak{o} et donc $w(z)\geqq 0$. Or cette dernière relation s'écrit $0\leqq -(c+q)w(x)-v_{\mathfrak{p}}(x)w(y)$, d'où $0\leqq (-(c+q)(w'(\mathfrak{p})+\epsilon)-w(y))\cdot v_{\mathfrak{p}}(x)$, et donc $0<(1-c-q)w'(\mathfrak{p})-w(y)$ (puisque $v_{\mathfrak{p}}(x)>0$ et que $-(c+q)\varepsilon< w'(\mathfrak{p})$). Or, d'après (9), on a $w(y)+cw'(\mathfrak{p})\geqq 0$; il vient donc $0<(1-q)w'(\mathfrak{p})$, ce qui est contradictoire puisque $q\geqq 1$ et que $w'(\mathfrak{p})>0$. CQFD.

Ceci étant, nous dirons qu'un idéal $\mathfrak{p} \in I$ est presque-principal (relativement à w) si, pour tout $\varepsilon > 0$, il existe $x \neq 0$ dans \mathfrak{p} tel que

$$\sum_{\mathfrak{q}\neq\mathfrak{p}}v_{\mathfrak{q}}(x)w'(\mathfrak{q}) \leq \varepsilon v_{\mathfrak{p}}(x).$$

Nous dirons que $\mathfrak o$ est presque-factoriel (relativement à w) si tout idéal $\mathfrak p$ ϵI est presque-principal. On a le théorème suivant:

Théorème 3. Si \mathfrak{p} ϵ I est presque-principal, on a $\bar{w}(\mathfrak{p}) = w'(\mathfrak{p})$ pour toute application \bar{w} de I dans R_+ vérifiant (1)'. Pour qu'une telle application soit unique (c'est à dire égale à w'), il faut et il suffit que \mathfrak{o} soit presque-factoriel.

En effet, s'il existe $x \neq 0$ dans \mathfrak{p} tel que $\sum_{\mathfrak{q}\neq\mathfrak{p}} v_{\mathfrak{q}}(x)w'(\mathfrak{q}) \leq \varepsilon v_{\mathfrak{p}}(x)$, et si \bar{w} vérifie (1)', les relations

$$w(x) = v_{\mathfrak{p}}(x)\bar{w}(\mathfrak{p}) + \sum_{\mathfrak{q}\neq\mathfrak{p}} v_{\mathfrak{q}}(x)\bar{w}(\mathfrak{q})$$
 et $\bar{w}(\mathfrak{q}) \leq w'(\mathfrak{q})$

montrent qu'on a $\bar{w}(x)/v_{\mathfrak{p}}(x) \leq \bar{w}(\mathfrak{p}) + \varepsilon$; on a donc $\bar{w}(\mathfrak{p}) = w'(\mathfrak{p})$ en vertu de (6) et de l'inégalité $\bar{w}(\mathfrak{p}) \leq w'(\mathfrak{p})$; ceci démontre la première assertion. Le "il suffit" de la seconde en résulte aussitôt. Enfin, si \bar{w} est unique, on a $w(x) = \sum_{\mathfrak{q}} w'(\mathfrak{q})v_{\mathfrak{q}}(x)$ (théorème 2) pour tout x dans K; étant donné $\mathfrak{p} \in I$, prenons x dans \mathfrak{p} tel que $w'(\mathfrak{p}) \leq w(x)/v_{\mathfrak{p}}(x) \leq w'(\mathfrak{p}) + \varepsilon$ (cf. (6)); on déduit aussitôt de ceci qu'on a $\sum_{\mathfrak{q}\neq\mathfrak{p}} w'(\mathfrak{q})v_{\mathfrak{q}}(x) \leq \varepsilon v_{\mathfrak{p}}(x)$; donc \mathfrak{p} est presque-principal; comme ceci a lieu pour tout $\mathfrak{p} \in I$, \mathfrak{p} est presque factoriel. CQFD.

En termes imagés un idéal premier presque-principal, est un idéal premier $\mathfrak p$ de hauteur 1 dans lequel existent des éléments dont le diviseur est presque entièrement concentré en $\mathfrak p$ (i.e. dont les composantes en dehors de $\mathfrak p$ sont négligeables). Un idéal premier principal (ou, plus généralement, dont une puissance symbolique est principale) est évidemment presque-principal. Mais il en existe d'autres, comme le montre le:

Théorème 4. L'anneau local $\mathfrak o$ du sommet du cône V projetant une courbe plane non-singulière C est presque-factoriel (relativement à n'importe quelle valuation $\mathfrak o$ dominant $\mathfrak o$). Si $\mathfrak o$ est le degré de $\mathfrak o$, et si $\mathfrak o$ est la valuation déduite de la filtration de $\mathfrak o$ par les puissances de son idéal maximal, on a $\mathfrak o$ $\mathfrak o$ pour tout idéal premier $\mathfrak o$ correspondant à une génératrice de V.

Démontrons d'abord que, si $\mathfrak{p} \in I$ correspond à une génératrice D de V, \mathfrak{p} est presque-principal pour toute valuation w dominant \mathfrak{o} . Notons d le degré de C, et A le point de C correspondant à D. L'espace vectoriel des formes de degré n à 3 variables est de dimension $\frac{1}{2}(n+1)(n+2)$, et le sous espace vectoriel des formes de degré n qui sont multiples de l'équation de C est de dimension $\frac{1}{2}(n-d+1)(n-d+2)$; un supplémentaire est donc de dimension $dn-\frac{1}{2}(d^2-3d)$. Il existe ainsi une courbe plane C_n de degré n ne contenant pas C et vérifiant

$$dn - \frac{1}{2}(d^2 - 3d) - 1 = dn - \frac{1}{2}(d - 1)(d - 2)$$

conditions linéaires. Imposons donc à C_n de passer par A et d'y avoir avec C un contact d'ordre tel que A figure au moins $dn - \frac{1}{2}(d-1)(d-2)$ fois dans le cycle intersection $C \cdot C_n$; alors $C \cdot C_n$ contiendra, en dehors de A, un cycle de degré $\leq \frac{1}{2}(d-1)(d-2) = g$ (g est d'ailleurs le genre de C). Soit x_n l'équation homogène de C_n ($x_n \in \mathfrak{o}$); on a $v_{\mathfrak{p}}(x_n) \geq dn - g$ et $\sum_{q \neq \mathfrak{p}} v_q(x_n) \leq g$ (noter que $v_q(x_n) = 0$ lorsque \mathfrak{q} ne correspond pas à une génératrice du cône V). Notons L l'ensemble des classes dans \mathfrak{o} des formes linéaires à 3 variables; c'est un espace vectoriel de dimension 3 ou 2 sur le corps de base (2 seulement lorsque V est un plan); en notant L_j l'ensemble des $y \in L$ tels que $w(y) \geq j$, les L_j forment une suite décroissante de sous-

espaces vectoriels de L; comme $\bigcap L_j = (0)$, il existe un entier k tel que $E_k = (0)$. Or, si $\mathfrak{q} \in I$ correspond à une génératrice de V, \mathfrak{q} contient un élément $y \neq 0$ de L (il est même engendré par deux éléments de L); on a donc $w'(\mathfrak{q}) \leq w(y)/v_{\mathfrak{q}}(y) \leq w(y) \leq k$. D'où $v_{\mathfrak{p}}(x_n)^{-1} \sum_{\mathfrak{q} \neq \mathfrak{p}} v_{\mathfrak{q}}(x_n) w'(\mathfrak{q}) \leq gk/(dn-g)$; comme le second membre tend vers 0 quand n tend vers l'infini, \mathfrak{p} est presque-principal.

Ceci prouve (théorème 3) que, si \bar{w} vérifie (1)', $\bar{w}(\mathfrak{p})$ est uniquement déterminé lorsque \mathfrak{p} correspond à une génératrice. Or on sait que tout diviseur sur V est linéairement équivalent à une combinaison linéaire de génératrices ([4]). Donc, d'après (1)', \bar{w} est déterminé de façon unique. Par conséquent \mathfrak{o} est presque-factoriel (théorème 3).

Supposons enfin que w soit déduite de la filtration de $\mathfrak o$ par les puissances de son idéal maximal. Avec les notations précédentes, on a $v_{\mathfrak p}(x_n) \sim dn$ et $w(x_n) = n$. D'où, d'après (6), $w'(\mathfrak p) \leq \inf_n(w(x_n)/v_{\mathfrak p}(x_n)) = d^{-1}$, et ceci pour tout $\mathfrak p \in I$ correspondant à une génératrice. D'autre part, pour $y \in L$, on a $\sum_{\mathfrak p} v_{\mathfrak p}(y) = d$, d'où les inégalités $1 = w(y) = \sum_{\mathfrak p} w'(\mathfrak p)v_{\mathfrak p}(y) \leq d^{-1}\sum_{\mathfrak p} v_{\mathfrak p}(y) = 1$. Comme, pour tout $\mathfrak p$ correspondant à une génératrice, il existe $y \neq 0$ dans L tel que $v_{\mathfrak p}(y) > 0$, on en déduit $w'(\mathfrak p) = d^{-1}$. CQFD.

Remarque. Comme tout diviseur sur V est linéairement équivalent à une combinaison linéaire de génératrices, $w'(\mathfrak{q})$ est un multiple de d^{-1} pour tout $\mathfrak{q} \in I$. D'autre part le théorème 4 montre que, si on note V' la transformée monoïdale du cône V relativement à son sommet W, f l'application canonique de V' sur V, et W' la courbe de V' correspondant àu point W, alors le cycle image réciproque $f^{-1}(D)$ doit nécéssairement être $d^{-1}W' + D'$ (D génératrice de V, D' courbe de V' correspondant régulièrement à D) si on veut que les conditions (a) et (b) de l'introduction soient vérifiées. Dans ce cas, comme toutes les génératrices de V sont algébriquement équivalentes entre elles, et que tout diviseur de V est linéairement équivalent à une combinaison linéaire de génératrices, notre solution w' vérifie aussi la condition (c) relative à l'équivalence algébrique.

3. Un exemple de non-unicité

Remarquons d'abord que, avec les notations du théorème 1, les applications \bar{w} qui vérifient (1)' forment une partie *convexe* de R^I (ou, ce qui revient au même, du dual de E).

Considérons la quadrique V^0 d'équation $(X_0 X_1 - X_2 X_3 = 0)$ et le cône V de dimension 3 ayant V^0 pour base; notons W le sommet de V et $\mathfrak o$ l'anneau local de W sur V; celui ci contient l'anneau de coordonnées homogènes A de V^0 et est l'anneau de fractions de A relativement à son idéal homogène maximal. La filtration de $\mathfrak o$ par les puissances $\mathfrak m^n$ de son idéal maximal définit une valuation w qui domine $\mathfrak o$. Soient G^0 une génératrice de la quadrique V^0 , G ($\subset V$) le plan la projetant à partir de W, et $\mathfrak p$ l'idéal de G dans $\mathfrak o$. Nous allons d'abord montrer que, avec les notations de (6), on a $w'(\mathfrak p) = 1$.

Démonstration. Notons $\mathfrak P$ l'idéal de G^0 dans A, et $\mathfrak M$ l'idéal maximal homogène de A. Montrons qu'on a $\mathfrak P^{(n)} \subset \mathfrak M^n$ (où $\mathfrak P^{(n)}$ désigne la puissance symbolique $n^{\text{ème}}$ de $\mathfrak P$); comme ce sont des idéaux homogènes, il suffit de montrer que, si u est un élément homogène de degré q de $\mathfrak P^{(n)}$, on a $q \geq n$; or u est l'équation d'une surface S^0 de degré q; on a $S^0 \cdot V^0 = nG^0 + H^0$ où H^0 est un diviseur positif sur V^0 ; intersectons avec une génératrice $G^{(n)}$ de V^0 , appartenant à l'autre système que celui de G^0 et intersectant proprement H^0 ; le cycle $(S^0 \cdot V^0) \cdot_{V^0} G^{(n)} = S^0 \cdot G^{(n)}$ est de degré q, et $(nG^0) \cdot_{V^0} G^{(n)}$ est de degré 1; d'où $q \geq n$. Comme $\mathfrak P^{(n)}$ et $\mathfrak M^n$ engendrent $\mathfrak P^{(n)}$ et $\mathfrak M^n$ dans $\mathfrak P^{(n)}$ et $\mathfrak M^n$ dans $\mathfrak P^{(n)}$ et $\mathfrak M^n$ exemple pour les formes linéaires nulles sur G et pour leurs puissances. D'où $W'(\mathfrak P) = 1$ d'après (6).

Ceci étant, comme tout diviseur sur le cône V est linéairement équivalent à un diviseur "conique" ([4], loc. cit.) et comme tout diviseur sur V^0 est linéairement équivalent à une combinaison linéaire de deux génératrices données, G_1^0 et G_2^0 , de systèmes distincts, l'espace vectoriel E du théorème 1 est engendré par F et par les deux idéaux \mathfrak{p}_i des plans G_i projetant les droites G_i^0 (i=1,2). D'autre part l'élément $\mathfrak{p}_1+\mathfrak{p}_2$ de E est le diviseur (y) de la classe y dans \mathfrak{o} d'une forme linéaire et, pour toute application \bar{w} vérifiant (1)', on a donc $\bar{w}(\mathfrak{p}_1)+\bar{w}(\mathfrak{p}_2)=w(y)=1$. Ainsi \bar{w} est entièrement déterminée par le nombre $a=\bar{w}(\mathfrak{p}_1)$, et on a nécéssairement $0\leq a\leq 1$. Comme $w'(\mathfrak{p}_1)=w'(\mathfrak{p}_2)=1$, le théorème 3 montre l'existence de deux applications \bar{w}_0 et \bar{w}_1 vérifiant (1) et telles que $\bar{w}_0(\mathfrak{p}_2)=1$ (d'où $\bar{w}_0(\mathfrak{p}_1)=0$) et que $\bar{w}_1(\mathfrak{p}_1)=1$ (d'où $\bar{w}_1(\mathfrak{p}_2)=0$). Par convexité les applications vérifiant (1)' sont les $\bar{w}_a=(1-a)\bar{w}_0+a\bar{w}_1$ où a parcourt l'intervalle [0, 1].

Soient alors V' la transformée monoïdale du cône V relativement au sommet W, f l'application canonique de V' sur V, et W' la surface de V' correspondant à W; la restriction de f à V' - W' est un isomorphisme de V' - W' sur V - W. Pour tout diviseur D sur V nous noterons D' le diviseur sur V' correspondant régulièrement à D (D' est l'adhérence de $f^{-1}(D) \cap (V - W)$ dans V'). L'anneau local de W' sur V' est l'anneau de la valuation W définie ci dessus. Pour $0 \le a \le 1$, nous étendrons \bar{w}_a aux diviseurs sur V (et pas seulement aux diviseurs locaux en W) en posant $\bar{w}_a(D) = 0$ si aucune composante de D ne contient W. Alors l'application

$$D \to f_a^{-1}(D) = \bar{w}_a(D) \cdot W' + D'$$

vérifie les conditions (a) et (b) de l'Introduction. Comme V (resp. V') est une variété rationnelle, l'équivalence linéaire des diviseurs y coïncide avec l'équivalence algébrique; donc la condition (c) de l'Introduction se réduit à (b) et est aussi vérifiée.

Il semble donc que, dans cet exemple, il y ait une infinité de façons raisonnables de définir le diviseur $f^{-1}(D)$. Notons que, pour chacunes d'elles, on a $f(f^{-1}(D)) = D$ (D diviseur sur V) et $f^{-1}(f(D')) - D'$ multiple de W' (D' diviseur sur V').

Remarque. Dans les cas où il n'y a pas unicité de \bar{w} , les cycles à coéfficients réels s'introduisent naturellement. Dans les cas d'unicité (c.à.d. quand \mathfrak{o} est presque factoriel relativement à w) il serait intéressant de savoir si, comme dans l'exemple traité au théorème 4, ces coéfficients seront toujours rationnels; plus généralement on peut se demander si les nombres réels $w'(\mathfrak{p})$ définis par (6) sont toujours rationnels (cf. [3]).

BIBLIOGRAPHIE

- N. Bourbaki, Topologie générale, Chapitres V-VIII, Éléments de Mathématique, Livre III, Actualités Scientifiques et Industrielles, no. 1029, Paris, Hermann, 1947.
- Espaces vectoriels topologiques, Chapitres I-II, Eléments de Mathématique, Livre V, Actualités Scientifiques et Industrielles, no. 1189, Paris, Hermann, 1953.
- 3. M. NAGATA, Note on a paper of Samuel concerning asymptotic properties of ideals, Mem. Coll. Sci. Univ. Kyoto, Ser. A, Math., vol. 30 (1957), pp. 165-175.
- P. Samuel, Multiplicités des composantes singulières d'intersection, Colloque de Géométrie Algébrique, Liège, 1949, pp. 87-90.
- Méthodes d'algèbre abstraite en géométrie algébrique, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 4, Berlin-Göttingen-Heidelberg, Springer, 1955.

Université de Clermont-Ferrand Clermont-Ferrand, France