
AMENABLE SEMIGROUPS

BY IAHLON IVY. DAY

1. Introduction
We begin with the definitions needed to formulate the results of this paper

and then survey the known results on existence and behaviour of invariant
means on semigroups. Then follow new results, among which are some cri-
teria for existence of invariant means; these are found in 4. In 5 it is
proved that an amenable semigroup is strongly amenable; this settles a ques-
tion that first arose in an earlier paper [10]. In 8 this result from 5 is
plied to improve other results of the paper [10] on the relationships between
means and ergodicity. In 5 the semigroup algebra 11(2) is discussed; it is
used as the principal tool in the proof of the result on strong amenability.
In 6 is discussed the specialization to the semigroup algebra of a semigroup
of an idea of Arens [1]; Arens has given a construction which makes an
gebra out of the second coniugate space of a Banach algebra, and has con-
structed an example of a commutative algebra whose second-conjugate
gebra is not commutative. We Show in 6 that the semigroup algebra of the
additive semigroup of positive integers has this pathological property; the
proof depends on showing that if an abelian semigroup has at least two in-
variant means, hen they cannot commute in the second-coniugate algebra.
7 discusses this necessary condition for commutativity in more detail.

The best result there is that an abelian group G has a unique invariant mean
if and only if G is a finite group. For general torsion groups the question of
uniqueness and existence of invariant means is dependent on whether Burn-
side’s conjecture, that every finitely generated torsion group is finite, is true
or not.
9 contains the proof that a theorem of G. G. Lorentz [17], about the set

where all invariant means are uniquely determined, carries over to amenable
semigroups.
10 introduces the concepts of amenable and introverted subspaces of

m(2) and shows how many of the preceding results have depended only on
these properties of m(2). In 11 these results are applied to the space
C(2) of bounded continuous functions on a topological semigroup.

2. Preliminary definitions

All of the present study will start from the relationships between a set
which shall usually be a semigroup or group, and certain function spaces de-
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termined by 2. These spces re defined s follows; see Bnch [2], pp. 11-12
for the cse where 2; is countable.

1(2) is the set of ll those rel-wlued functions defined on 2 for which

is finite.
m(2) is the set of ll bounded, rel-vlued functions x on 2 with norm

lub Ix()[.
1(2) nd m(2) re Bneh sprees.
As in Bnaeh [2], p. 188, eeh Bneh spree B hs conjugate spree B*

eonsi.sting of 11 the liner, rel-vlued functions on B; B* is Bneh spree
under the norm

lubllll_, [B(b)1.
We shall be interested in certain elements of m(21)*, but first we remark

that the proof of isometry of m(2) with 1(2)*, given in Banaeh [2], p. 67,
for countable Z, is valid in general; specifically:
For each x in m(2) there is a Tx defined for 11 0 in 1(2;) by

such that
() for ech x in m(2), Tx is in/(2;)*,
(b) T is liner; that is, dditive, homogeneous, nd continuous,
(c) for each x, Tx x [I; that is,

lublloll_ Tx(0) lub Ix(z)I,

(c) T crries 11 of m(2) onto ll of 1(2)*.
As in Banch [2], p. 100, ech linear operator U from one Bnch space B

to nother such spce B’ determines coniugte or djoint operator U* from
B’* to B* by means of the formula:
For each y in B*, U*fl’ is that element of B* for which

(U*y)(b) y(Ub) for 11 b in B.

Bnch shows that U* is lso linear operator nd that U* U [I.
In the special cse of the isometric operator T from m(2) onto 1(2)*, the d-
ioint operator T* is lso n isometry from/(2)** onto ll of re(Z)*.
The wek topology of Bnch spce B is defined, for example, in Hille

[15], p. 23, by means of neighborhoods; for our purposes it will often be con-
venient to think of it in terms of convergence; for discussion of general, or
Moore-Smith, convergence see G. Birkhoff [3], Tukey [22], nd Kelley [16];
we shll use the terminology of Kelley [16].

DEFINITION 1. If {b.}, where n runs over directed system 9, is net of
elements in Bnch spce B, then Ibm} converges weakly to b (in symbols,
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w-lim b, b) means that lim (b) (b) for every t in B*. A dual
notion, weak* convergence, can be defined for nets of dements of a conjugate
spa.ce: If {t} is a net of elements of B*, then {/.} converges weakly* to [ (in
symbols, w*-lim fl ) means that lim (b) (b) for every b in B.

The most important property of the w*-topology is
(A) Spheres in B* are w*-compact.

Expressing compactness in terms of nets this says"
(A’) If {.} is a net of elements in a sphere in B*, then there exists a

subnet {’} of {} such that {/ is w*-convergent to some element of the
sphere.

See Kelley [16], page 242, for a proof.
The following result is well-known (see Bourbaki [6], page 103) and is easy

to prove directly from the definitions.
(B) If U is a linear operator from one Banach space B to another B’, then

from the norm continuity of U follows also the weak-to-weak continuity;
that is, if w-lim b b, then w-lim Ub, Ub; and also the w*-w* continuity

* U*Yof U*; that is, if w*-lim. ’, /’, then w*-lim. U ,
Banach [2], page 189, also shows that there is a natural way to embed a

given B into its second conjugate space B**. To apply this to the case that
most interests us here, for each 0 in l(Z), let Q’O be that element of/(Z)**
defined by

Q’O($) g(0) for all f in l(Z)*.

Banach observed that in general this operator Q’ is a linear isometry of B
into B**; in this particular example where B 11(2), the range of Q’ does
not fill up the space B**. However we do have a general density theorem.

(C) Q’(B) is dense in the w*-topology in B**; even better, if S is the unit
sphere in B, then Q(S) is w*-dense in the unit sphere of B**.
For one proof, see Day [8].
In our particular spaces, define Q T*Q’; then Q is an isometry of 11(2)

into re(y,)*. From the w*-w* continuity of T* in both directions follows:
(D) The image Q(S) is w*-dense in the unit sphere of m(E)*.
In most of the rest of this paper we shall identify each x in m(Z) with its

image Tx in/(Z)*, and use the symbol x for either one. Similarly we shall
identify an element in l(Y,)** with T*t in re(Y,)*, and identify Q with Q’.

Following Banach’s terminology [2], page 23, we shall call an operator U
from one Banach space to another linear if U is additive and continuous.
Then, see Banach [2], page 54, the number

is finite. Under this norm the whole set of linear operators from B to B’
becomes a Banach space. In there are two analogues of the weak* topology
in B*; these are defined in terms of neighborhoods in Hille [15], page 33; we
describe them here in terms of convergence of nets.
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{U} has the strong limit U in 2 (in symbols, s-lim U U) means that
lim. Us x Ux 0 for every choice of x in B.

{U.} has the weak limit U in 2 (in symbols, w-lim U U) means that
lim [’(U. b) ’(Ub)] 0 for every choice of /’ in B’* and b in B.

In the special case in which B B, the set 2(B) of linear operators from
B into B has still more structure; it becomes an algebra if we define multipli-
cation in 2(B) as follows: For each S and T in 2(B), ST is that element of
2(B) for which

ST(b) S(Tb) for all b in B.

It is easily seen (Hille [15], page 33) that this multiplication is continuous
in the norm topology;in fact,

so 2(B) is a Banach,algebra.
Three other elementary processes will be useful in several later sections.
(1) Let 2 and Z be sets, and let f be a function carrying 2 onto all of

This determines a linear operator, which we call F, from m(2’) into m(2):
For each x’ in m(Z’), Fx’ is that element of m(2) such that

(Fx’) (o’) x’(fa) for every a in

It can be checked that F is a linear operator carrying m(2) isometrically into
m(2). Hence F* is a linear operator of norm one carrying m(2)* onto re(Y,’)*.

(2) Let 2V be a subset of Z; then there is a natural mapping II of m(2)
onto re(Y,’) in which for each x in re(Z), IIx is that function on 2V which agrees
with x on 2;’;

(IIx)(a’) x(z’) for all a’ in Z’.

Then it can be verified that II is a linear operator of norm one and that II*
is an isometry of m(Z’)* into m(Z)*.

(3) If is an element of 2, it determines an element Iz of ll(Z) by the
formula

1 if ’ ,
(i) (,)

0 if a’ a.

We shall often inject 2 in this way into ll(Z) and identify the image
with a and use the same label for both. This simplifies the notation much
more than it adds to the confusion.

3. Means on m(:)
In the common usage of sophomore calculus, a mean value, or average

value, of a function is a number chosen in some reasonable fashion between
the least upper bound and greatest lower bound of the function. Here we
ask that the choice be made simultaneously for all functions in m(Z) and
made in a linear way.
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DEFINITION 1.
each x in m(2;)

A mean on m(2;) is an element of m(2;)* such that for

glb z x() -_< t(x) -< lub, z x().

(A) Each mean t on m(2;) has the following properties:
(a) t is in the unit sphere in m(Z)*.
(b) If e is the function whose value is 1 at every point of 2;, then

(c) If x() >- 0 for all in Z, then (x) => 0.
lt ll=i.

(B) If an element t of m(2;)* satisfies (a) and (b), or if t satisfies any
two of the conditions (a’), (b), and (c) of (A), then t is a mean on m(2;).
A useful corollary of this is
(C) The set of means on m(2;) is nonempty, convex, and w*-compact.

DEFINITION 2. An element 0 of ll (2;) is called a countable mean on 2; if
0() >- 0 for all in 2; and if 0(’) 1. A countable mean is called
a finite mean on 2; if, in addition, the set { #() > 0} is a finite set.

Clearly the set of finite means is norm-dense in the set of countable means.
This nomenclature is a slight abuse of language, since the image, QO or Q#,
should, perhaps, more properly be called the countable or finite mean. See
Day [10] for the next result.

(D) If (I) is the set of finite means on 2;, then Q(I) is w*-dense in the set
of means on m(2;).

Consider next the operations between sets which were introduced in 2
and their effect on means.

IbEMMA 1. If f maps onto Z’, then F* maps M, the set of means on
onto M’, the set of means on m(2;’).

If t is in M and ’ F*t,thenll#’ll -< IIF*II I]1] 1. AlsoF(e’) e,
so ’(e’) (F*t)(e’) (Fe’) t(e) 1. By (B), t’ is a mean, so

F*M -- M’.

If t’ is a mean on m(2;’), let m0 {Fx’lx’ e m(2;’)}, and let t0 be defined
on m0 by o(Xo ’(F-Ixo for each x0 in m0. Then 0 is a linear func-
tional on m0 of norm one; by the Hahn-Banach theorem (Banach [2], page
27) 0 has at least one extension of norm one. Also

#(e) o(e) t’(e’) 1;

by (B), t is a mean on m(2;). But

(F*t)(x’) (Fx’) o (Fx’) ’(F-1Fx’) t’(x’)

for all x’ in m(2;’); hence F*t t’, and F* maps M onto M’.

:LEMMA 2. If 2;’ is a subset of , then II*M’ M.
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II* is a linear operator from m(2’)* into m(2;)* which preserves norm, so
for each ’ in m(Z’)*, H*’ is of norm one. But II*’(e) ’(He) t(er) l;
by (B), H*’ is a mean on m(2).

4. Semigroups. Invariance of means

A semigroup is a set in which an associative, binary operation is defined;
we shall generally write it by putting the elements to be combined next to
each other with no further symbols. Precisely,
() If and ’ are in Z, then is an element of Z.
(b) If , ’, and " are elements of Z, then (’’) (’)’.
In addition to groups some examples of semigroups are:
(1) The set of integers, or the subset of positive integers, under ordinary

addition as the rule of operation.
(2) The set of n-by-n matrices, under matrix multiplication.
(3) The multiplicative semigroup in the operator algebra 2(B) over

any Banach space B.
(4) Any set 2 in which the product of two elements is defined to be the

second element of the pair; ’ a for all a, a in 2.
Example (4) seems a most artificial and uncommutative semigroup, but

examples arise, as we shall Show in 6, even when the only original intent is
to study the semigroup of integers and its invariant means.

If 2 is a semigroup, then in m(2) many new operations become possible;
for example, it is possible to embed Z homomorphically into (m(Z)) by
the following device.
For each in Z let r be that element of 2(m(2)) defined for each x in

m(2) by
(r x)(’) x(t) for all in Z.

Similarly we define
(l x)(’) x(’) for all ’ in Z.

It is easily verified that the correspondence 6f with re is a homomorphism
of Z into (m(2)), and.that the correspondence of to 1 is an antihomo-
morphism, that is, it reverses the order of factors:

Also r, x =< x II, and r e e, so r, for each a; similarly, l, 1
for each a. It should be noted that these maps may not be isomorphic;
for example, in the semigroup of example (4) every l, is the identity operator.

DEFINITION 1. An element of m(2:)* is called left [right] invariant if
(1, x) (x) [(r, x) (x)] for all x in m(2:) and a in 2:.

This can easily be rephrased in terms of adjoint operations in the algebra
((z)*).

is left [right] invariant if and only if for every a in 2

l* [r* ]#--# #--
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DEFINITION 2. A semigroup 2; is called amenable if there is a mean t on
m(2;) which is both left and right invariant. In case only a left [right] in-
variant mean exists, 2; is called l-[r-] amenable.

We give in this section the many properties of invariant means which had
been announced with or without proofs before this paper and give references
to at least one source for each. These are listed in order with capital letters
to label them; the results called lemmas and theorems later in the section
are new.
The first two properties simplify many calculations.

(A) If 2; is both l- and r-amenable, then it is amenable.

This was proved for groups by Day [10]. To prove it for semigroups is
easiest after 6 of this paper; if and p are, respectively, left and right in-
variant, it will be shown in 6, Corollary 2, that k (R) p is both left and right
invariant.

(B) An 1-[r-] amenable group is also r-[1-] amenable; and therefore is ame-
nable.

This also was proved in Day [10]; basically it depends on the fact that the
operation g - g-1 transposes the order of products, and therefore inter-
changes left and right.
One of the earliest studies of invariant means is that of yon Neumann

[18]. The groups which he calls measurable can be seen to be those which
are called/-amenable here; (A) and (B) show that this class coincides with
the class of amenable groups, which shows that many of the results in Day
[10] are consequences of results in vsn Neumann [18].
An example, (4) at the beginning of this section, shows that nothing like

(B) is true for semigroups in general. In that semigroup,

( x)(’) x(’) x(’)

so every l is the identity and every mean is left invariant. (Means always
exist.) But (r x)(’) x(’z) x(z) for all z’, so r x x(z)e, and if
is right invariant, then (r x) (x) x(z)(e) for all z and x. Therefore
x is a constant function for all x in m(2), or else t(e) 0 and p(x) 0 for
all x in m(2;). But if 2; has more than one element in it, then m(2) has non-
constant functions in it, so a semigroup of the type in example (4) has no
right invariant linear functionals on it unless it has but one element.
Next come techniques for creating new amenable semigroups from given

ones.

(C) if is an (/-)[r-] amenable semigroup and f a homomorphism of
onto Z’, then Z’ is (/-)[r-] amenable.

In (B) two possibilities, left or right, are considered. In (C) and in 5, three choices
left or right or both, are possible, the same choice to be used all the way through the
sentence.
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One proves that ’ F’t, is left invariant on m(Z’) if is left invariant
over 2, and similarly for right invariant means. See Day, [12] for groups.

(D) If G is a (/-)[r-] amenable group, so is every subgroup.

See Day [12]. Also this has been published recently by F01ner [14].
The proof will be given in connection with a stronger result in 7, Theo-

rem 2. It has not been published before.
This result too may fail for semigroups. As an example let Z be any

non-amenable semigroup, and let 2] contain 2V and one new element 0 such
that 0’ ’0 00 0, and 2’ is a subsemigroup of 2:. 2: has an invariant
mean: (x) x(0). The subsemigroup 2V has not.

(E) Let H be a normal subgroup of a group G such that H and G/H are
amenable; then G is amenable.

See von Neumann [18] for left amenable; (B) and (A) complete the proof
(see Day [10]).

(F) Suppose that {Z is a set of amenable subsemigroups of a semigroup
such that (a) for each m, n there exists p with ,, , u , and (b) 2

tJ, , Then is amenable.

yon Neumann [18] has this for a well-ordered system of subgroups of a
group. In the present generality it is in Day [10].
To be sure these methods of construction have some value, we need ex-

amples. We know already a non-amenable semigroup but we need also

(G) A free group on 2 generators is not amenable.

This can be gotten from yon Neumann [18]; it is also in Day [10].
with (D) it asserts that

Used

(G’) A free group on 2 or more generators is not amenable.
group has a free subgroup on more than one generator.

No amenable

We have two basic families of amenable semigroups.

(H) Every abelian semigroup is amenable.

For groups this is in yon Neumann [18]; for semigroups in Day [9].

(I) Every finite group is amenable.

More precisely, for later use note that there is exactly one invariant mean
(left or right) on a finite group;if G has n elements, then

(x) n-la x(g) for all x in m(G)
is that mean.
A finite semigroup need not have any invariant mean. If 2 is a finite

semigroup in which ’ ’, 2 is not amenable if it has more than one ele-
ment.
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These known results have many corollaries, some of them not printed
before.

(J) A solvable group is amenable.

See von Neumann [18]. This follows from (H) and (E) by induction.
The same technique yields

(J’) If the chain of commutator subgroups of G ends at the identity in fi-
nitely many steps, then G is amenable.

See von Neumann [18]. Day [10] has a generalization to semigroups.
The example of the descending chain of commutator subgroups of the free
group on two generators, which ends at the identity only after countably
many steps, shows that some restriction on the chain is pertinent. In terms
of the notions of direct limit and inverse limit of groups, (F) can be used to
prove that

(F’) A direct limit of amenable groups is amenable.

Consider as an application an index set S, a family 2,, s e S, of amenable
semigroups, and the full and weak direct products: II,s 2 is the set of all
functions f defined on S such that f(s) , and the product operation is
defined coordinutewise; in case each 2 has an identity i, the weak direct
product IIs 2 is the subsemigroup of those elements f of II,s 2, such
that the set {s: f(s) i is u finite set. For S finite II II and, by
(E), II.s 2 is amenable; hence (F) implies for every S

(F) If all are amenable, then IIs is amenable.

The full direct product of amenable groups need not be amenable. For
example, let G be the free group on two generators and let/GI be he upper
commutator chain for G; that is, Go G and G+ [G, G], the normal sub:
group on those commutators fgf-g- with f in G and g in G. Then G/G+
is abelian, so, by (J’), G/G is amenable for all n in N, the set of positive
integers. Consider H II (GIGs); the inverse limiting system of
groups G/G, under the homomorphisms onto; U, (gG,) gG, if m >= n
nd g e G, is a subgroup of H; hence H contains a subgroup’ isomorphic to
this limit. This particular inverse limit group is isomorphic to G, because
l., G. 11}. By (G’) inverse limits and full direct products of amenable
groups need not be amenable.

(K) A group G is amenable if and only if every finitely generated subgroup
of G is amenable.

Sufficiency comes from (F), necessity from (D). For a semigroup we have
only sufficiency. For groups we have another result.

(K) Every locally finite group is amenable.
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(Locally finite means thut every finite subset of G generates a finite sub-
group of G) (Day [10].)

R. Baer calls a group G "supersolvable" if every nontrivial homomorphic
image of G has a nontrivial, abelian, normal subgroup; we shall use the
term Baer group for a group such that every nontrivial homomorphic image
of G hs a nontrivil normal, amenable subgroup.

THEOREM 1. Every Baer group is amenable.

This depends on

LEMMA 1. Every group G contains a normal, amenable subgroup G which
contains all other normal, amenable subgroups of G.

Let H} be the family of normal, menble subgroups of G. The family
is closed under the process of taking unions of increasing simply ordered sub-
sets, so Zorn’s lemma (see Kelley [16], page 33) applies to give a normal,
abelian G not included in any other H in /H}. If, now, H e {H} and H is
not a subset of G1, let G smallest subgroup of G spanned by G and H;
then G is normal in G’ and G’/G is isomorphic to H/G H. Hence G
and G’/G re amenable. By (E), G’ is amenable.
But if g’ is a word in G’ and g e G, ggg- is word in G too, since G and

H are both normal. Hence G’ is a normal, amenable subgroup of G which
contains G this contradiction shows that H G.
To prove Theorem 1 we suppose that G is a Baer group and that G c G.

Then G/G contains a normal, amenable subgroup A {1}; also G’, the in-
verse image of A, is an extension of G by A. Because A nd G are me-
nable, (E) asserts that G’ is amenable. G’ is also normal. This contradicts
Lemm 1.
Note again how the free group furnishes an example to prevent the as-

sumption that a group must have a largest amenable subgroup. If a and b
are the generators of free group G, then the infinite cyclic subgroups on
these generators are both amenable. But G is the only subgroup of G con-
taining both a and b, and G is not amenable.

Since not every subsemigroup of an amenable semigroup is amenable,
the following partial results add some information.

THEOREM 2. Let F be a semigroup with a left invariant mean t. Suppose
that Z is a subsemigroup of F such that t(x) O, where x is the characteristic

function of . Then is left amenable.

Proof. Let h denote the left translation operator in m(2), and for each
in F define i from m(F) into m(F) by

ix (lx)x for all x in m(r).
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Define T from m(2) into re(r) by

(Tx)(,) {:(/)ifif 2,2,
and let v T*/t(x). Then v is a mean on m(2).
that for each in 2 and x in m(2)

T(X x) i. (Tx).

It can easily be checked

Now let us fix a in 2. Let v l x i x, so v(/) x(z/) x(o)x().
This shows that v(,) can either be 0 or i and takes no other value, and,
therefore, that v is the characteristic function of a set E. It is clear that

Let us take any /in F and consider the sequence z i => 0}. If possible,
suppose that there exists 0 =< / <: j such that ak, and a, both are in E.
It follows from (b) and e E that a, e 2, which again with (b) shows that, e E, and this is a contradiction. Thus, either no belongs to E, or
there is exactly one j such that av e E. Now let n > 0 be an integer, and
let us consider

)n EO<_i<_n l v.
Then for each /in 1

w. (,) 0_<__< v(z) 0 or 1

by our previous considerations; therefore,

thus
(n-t 1)(v)- t(w ___< 1.

As this is true for every n, g(v) 0. Now if we take any x in m(2) such
that x --< 1, then we can easily check that

and therefore

or

--v <= l (Tx) i(Tx) <= v,

t(l Tx) t(i Tx) O,

t(i Tx) t(l Tx)

and by homogeneity it follows that

(i Tx) (l Tx) (Tx)

for all x in m(2). From (a) this can be written as

t[T(ho x)] [Tx],
and this is the same as

x)

forllxl] -< 1,
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This shows that is left invariant and we already know that it is a mean on
m(2;), so 2 is left amenable.
The amenability, or lack of it, of finite semigroups was settled in the thesis

of Rosen [19]. (See also [20].)

THEOREM 3. A finite semigroup has an invariant mean if and only if it
has just one minimal left ideal, and just one minimal right ideal; then these
ideals coincide, and the resulting two-sided ideal, the kernel of , is a finite
group G. The unique invariant mean on re(Z) is that of G; if n number
of elements of G, then

t(x) n-a x(g).

Rosen [20] also discusses left and right amenability of finite semigroups
and the corresponding results in compact semigroups.
The lemmas above show that the family of amenable groups is closed under

four standard processes of constructing groups from given groups: (a) sub-
group, (b) factor group, (c) group extension, (d) expanding unions (or direct
limits).

Also finite groups and abelian groups are amenable. Let EG, for ele-
mentary groups, be the smallest family of groups containing all finite groups
and all abelian groups, and closed under the processes (a)-(d). Then EG
AG, the family of amenable groups. Also define NF to be the family of
groups with no free subgroup on two generators. It is easily seen that NF
is also closed under the processes (a)-(d). It follows from (a) and (G) that
AG .._. NF.

It is not tnown whether EG AG or AG NF or both.

5. Finite means and the semigroup algebra of a semigroup

In 3 we noted that the set of finite means is w*-dense in the set of means.
It is also useful to recall from Day [10] how this combines with invariance.

DEFINITION 1. Say that a net {u} of means is w*-[norm-] convergent to
right invariance if

w*-lim[r*- ] 0 [limllr- ll 0].

The dual definitions cun be made for left invariance.

(A) If l-} is any net of means which is w*-convergent to , then {}
is w*-convergent to right [left] invariance if and only if is right [left] in-
variant.
By w*-continuity of r*

lim (r* (x) (x)) (r* (x) (x)).

(B) If {t} is a net of means w*-convergent to right [left] invariance,
then every w*-cluster point of {.} is a right [left] invariant mean on m(2).
Every w*-cluster point of {t} is the limit of a subnet
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For every a in 2 and x in m(2;), r* m(x) m(x) is a subnet of r* t(x)
t (x); hence it also tends to zero. By (A), t is right invariant.

In Day [10] it was proved that
(C) A semigroup 2; is (/-)Jr-] amenable if and only if there exists a net

{.} of finite means such that the net {Q} is w*-convergent to (/-)[r-]
invarianceo

This follows from (A) and (B) of the present section and (C) and (D) of
3.
Observe that [Q0} is w*-convergent to zero in m(2;)* if and only if

is w-convergent to 0 in/1(2;); hence we can convert this to
(C’) A semigroup is (/-)[r-] amenable if and only if there exists a net

[} of finite means such that {} converges weakly to (/-)[r-] invariance.
A condition formally stronger than amenability was used in Day [10] and

was named, for groups, in an abstract of that period, Day [11].

DEFINITION 2. is called (r-)[/-] strongly amenable if there exists a net
{} of finite means convergent in norm to (right) [left] invariance;

that is such that for each

(lim r Q Q o) [lim I* Q Q 0].

The notation was so unwieldy that while many properties of amenable
groups could be shown to have analogues for strongly amenable groups, it
was not then possible to decide whether every amenable group is strongly
amenable, nor was it convenient to discuss strong amenability of semi-
groups. This can be handled by changing the problem to one stated in
1(2;), and this in turn requires a discussion of a multiplication operaion
which makes a Banach algebra out of 11(2;). This definition of multiplica-
tion is a familiar one in the classical case where Z is a finite semigroup; see,
for example, van der Waerden [23], page 49.

DEFINITION 3. For each choice of 01 and 02 in ll(Y,), define 01 02 by the
formula

If ech element in Z is identified with the vector Iz in l(Z) (see defi-
nition in 2, (3)), then it is easy to check that for ll z in

Hence if we drop the I, it will cuse no confusion in the multiplication in
Z, since I is an isomorphism of Z into l(Z). Hereafter we shll use the
symbol a both for in nd Iz in l(Z). This gives the formul

for every 0 in l().
Then this multiplication in l(Z) lso determines right nd left transla-

tion operations 0z nd z0 in/(Z);
(0)(’) , 0(z2) nd (0)(’) ,=, 0(z).
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Direct calculations with the definitions prove
(D) r(Qo) Q(o0-) and l*(QO) Q(0-o) for all in 2: and 0 in
Therefore the elements r* Q Q. and l* Q Q which were dis-

cussed in the definitions of weak and strong amenability are images under Q
of the elements . and 0- . Under the mapping Q, norms are
preserved and weak convergence to zero in 11(2) is equivalent to weak*
convergence to zero of the images in m(2:)*. This proves the following re-
formulation of the preceding amenability conditions.

LEMMA 1. A semigroup is amenable (strongly amenable) if and only if
there exists a net {q,} of finite means such that for every (r in

lim(--) 0 lim(--)

in the weak (norm) topology of
This displays clearly that strong amenability is not less of a restriction

on a semigroup than is amenability. The purpose of this section is to prove
these two conditions equivalent, but we now turn aside from the main stream
of that proof to give some information about the semigroup algebra which
will be needed.

LEMMA 2. Suppose that 01 and 0. are in 11(), or are countable means, or
are finite means; then the same property is possessed by 1 0. Hence 0 and
0(r have for each (r in the same of these properties as has O. Also multiplica-
tion in 11() is associative, so (0-0)# ((0#). Finally, 01 02 01 [1[1 02
and

01 02 ae21 01(O")0"02 ae21 02(IT)01 0".

Hence 01 0. is an element of 1(2:) if the 0 are, and 11(2:) is a Banach algebra,
possibly without unit. When the numbers 0(0-) are all nonnegative, then
the only possible proper inequality in the above chain is prevented from
occurring, and then 01 0 01 0 [[;in particular, 01 0 is a countable
mean if the 0 are countable or finite means. When the 0 are finite means,
01 0.() 0 except in the finite set

and 0(0-) > 01.
COROLLARY 1. The set of countable means and the set of finite means are

subsemigroups in the multiplicative semigroup of the Banach algebra 11().
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This technical matter settled, we turn now to averages and nets of aver-
ages of elements of a linear space.

DEFINITION 4. If L is a linear topological space and E is a subset of L,
then an element x is called an average of E if it is in the closure of the convex
hull of E; x is a finite average of E if it is in the convex hull of E; that is, if
there exists a real-valued function on E such that (y) >= 0 if y e E, (y) 0
except for a finite set of y in E,E(y) 1, and x (y)y.

For example, the finite means in 11(2;) are the finite averages of the set 2;

of basic means, and the countable means are the averages of 2. Using the
w*-topology of the space m(2)* the set of all means is the set of averages of
Q(2;).

DEFINITION 5. If D {d,} is a net of elements of a locally convex linear
topological space, say that C {c} is a net of finite averages far out in D
if (a) each c is a finite average, c ,N(n)d., of values of the func-
tion D, and (b) for each no in N, there is an i0 in I such that, for each i _>- i0
and each n such that e(n) > 0, it follows that n >= no.

LEMMA 3. Let L be a locally convex linear topological space, and let D d,,}
be a net of elements of L converging to an element z of L. If C is a net of
finite averages of elements far out in D, then C also converges to the limit z.

Take a convex neighborhood U of z, and take nv so that d, e U if n -> n.
Choose iv by (b) of Definition 5 so that i >_- iv and e(n) > 0 imply
n -> nv. Then all d, for which (n) > 0 are in U, so, by convexity of U,
c ’N(n) d, e U when i _>- iv that is, lim c z.
We need also a result well-known for sequences to be a consequence of

Mazur’s theorem. (See Mazur [24]; see Bourgin [7] for the general case.)

LEMMA 4. Let L be a locally convex linear topological space, and let
D {d,} be a net of elements weatcly convergent to an element z. Then there is a
net C of finite averages of elements far out in D such that C converges to z in the
topology originally given in L.

Let K, closed (in L) convex hull of {d, m >= n}. Then by the Ascoli-
Mazur-Bourgin theorem (Bourbaki’s "geometric form of the Hahn-Banach
theorem", [5], page 69), each K, is weakly closed; hence z is in each K..
Let be the Cartesian product of the directed system 9Z with the directed
system of neighborhoods of z, ordered by ; that is, (U, n) => (V, m) means
that U V and n >= m. Then for each i (U, n) there is a c in U which
is a finite average of the din, m _>- n, because z is in K,, the closure in L of
this set of finite averages. Then C ci} has the desired properties.
With this machinery we are prepared to prove the main theorem of this

section.
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THEOREM 1. A semigroup is amenable if and only if it is strongly ame-
nable.

The characterizations of Lemma 1 show that a strongly amenable semi-
group is amenable. If, on the other hand, 2 is amenable, Lemma 1 asserts
the existence of net q (q of finite means such that in the weak topol-
ogy of 11(2) we have for each of 2

lim ( ) 0 lim ( ).

Let be any finite subset of , and enumerate the elements of in some
order as , , ..., . Then tends to zero weakly in /(Z);
by Lemma 4 there is a net of finite averages of elements far out in such
that lim 0. By Lemma 3 the weak limit of
is zero for j 2, k; hence there is u subnet {} of such that
lim 0 for j 1, 2, while a still tends weakly
to zero for j 3, ..., k. Continuing by induction there exists a subnet

{q} such that
lim aq 0 for 1 j k.

If Z is finite, this net will do to show one side of strong amenability if
Z. If Z is infinite, let g be the cartesian product of , the directed

system of integers, with A, where A is the net of all finite subsets of Z or-
deredby so (n, ) > (n’, ’) meansn > n’and ’ Then for each
i (n, ) let (i) (n, ) be so chosen that

(1) (n, 8) is finite average of elements, m n, and
(2) for each element of

(n, ) (n, )[ < 1/(number of elements in ).

Such an element (n, ) can be chosen from the net , associated to by the
construction of the preceding paragraph, for each ,q is a finite average of
finite means , and is therefore a finite mean itself, and, once is chosen
and n given as well, q for q large enough uses only elements with m n
and can be taken as close to zero in norm as may be desired.

This net {} is a net of finite averages of elements far out in , and
lim 0 for each in Z. By Lemma 3 the weak limit of a ,
still is zero for each in . Hence the argument just used will yield a
net ’ which is norm convergent to right invariance as well as to left in-
variance. This proves the theorem by displaying a net with the charac-
teristic property which Lemma 1 says is equivalent to strong amenability.

It is worthy of note that there is truly something that needed proof in
this theorem. It is well-known (Banach, page 137, gives the case where Z
is countable, but the proof does not depend on that property of Z) that for
sequences in lx(Z) weak convergence to an element is equivalent to strong
convergence to the same element. But this is a theorem for sequences; for
nets in general the facts that (a) weak and norm topologies are distinct in
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11(2:) if 21 is not finite, and (b) these topologies can both be determined by
convergence of nets, show that a net {0.} might converge weakly to zero
while at the same time it need not con.verge to zero in norm.
A recent theorem of Flner [14] gives two new characteristic properties of

amenable groups.

THEOREM OF FLNER. Amenability of a group G is equivalent to each of the
following conditions:

(a) For each number tc such that 0 <- tc < 1 and each finite subset "r of G,
there is a finite subset E of G such that for each g in ".

(no. of elements common to E and to gE)/(no, of elements in E) > t.

(b) There is a number ko, 0 < ]Co < 1, such that for each choice of finitely
many, not necessarily distinct, elements gl g., g,, e G there is a finite set
E <- G such that

n-l_, (no. of elements common to E and g E) >- leo(no, of elements in E).

For groups this yields another proof that left amenability is equivalent to
strong amenability. For a given finite subset of G and a given e > 0,
take E by FOlner’s condition (a) with lc 1 s; then set ,(g) 1/I EI
if g e E, 0 if g e E. This net converges in norm to left invariance.

It is not now clear whether Flner’s condition can be derived from strong
amenability in general. A related question is" How much tampering can a
net of means strongly convergent to invariance take before it loses its de-
sirable property. In this vein we have two results

LEMMA 5. If {q,} is a net of finite means which is weak [norm] convergent
to right lleft} invariance, then for each 0 in 11() such that e(O) 1,

in the weak [norm] topology in l(Z).

For one typical case of the proof assume that w-lim (- .) 0
for each in Z. Then for each finite mean we have

e 2() 2()( );

therefore b . tends weakly to zero. But each mean 0 in 11(21) can be ap-
proximated arbitrarily closely in norm by a finite mean b, and for all . in
wehave[l- -01] --< I1- 011. For each x in m(2) and each e > 0,
take I1 0ll < e, and then takeso that lx( )1 < e. Then

hence {. 0 } tends weakly to zero. Similar proofs yield the corre-
sponding results for {0 .} and for norm convergence.

LEMMA 6. If is a semigroup and q {q,} is a net of finite means con-
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verging in norm to right invariance, then each of the following nets converges in
norm to right invariance"

(1) The net Ib,q}, where I} is any other net of finite means defined on
the same directed system 9.

(2) Any right multiple of Iq} by a single countable mean, Iq,
(3) Any net of finite (or countable) averages of elements far out in
Dual results hold for left invariance.

Proof of (1).

Proof of (2).

Both terms tend to zero by Lemm 5.
Proof of (3). If is n vemge, finite or countable, of elements {},

then m bm is the same average of { }. Hence {h
is a net of averages of elements far out in {, q} and, by Lemma 3,
has the same limit, zero, as the latter net.
A related result is

LEMM& 7. Under the hypotheses of Lemma 6, let K(n, O) be the closure of
{. 0 , [’ a meant; then for each 0 the diameter of K(n, O) tends to zero.

Proof.

which gends go zero by () of ghe preceding lemmg.

6. The second-conjugate algebra of a semigroup algebra
This section contains an application of an idea of Arens to semigroup

algebras, and in turn applies what we now know about invariant means to
construct examples of interest for Arens’s own work.
Arens [1] showed how to define a multiplication in the second-conjugate

space of a Banach algebra B. The process works in three steps:
For each in B* and b in B, define b in B* by

( (R) b)(b’) (bb’) for all b’ in B.

For each in B** and f in B*, define Q/ in B* by

( Q )(b) ( (R) b) for all b in B.

For each in B** and in B**, define in B** by

( (R) )() ( (R) ) for all t in B*.

If for B we choose 11(2), where 2 is a semigroup, if we make the identifi-
cations of /1()* with m(2:) and of l()** with m()*, then for x in m(2)
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and 0 in 11(2), the first definition gives for all 0’ in 11(2;),

= o()[( e )(o’)] [ o()x ](o’).

Ts shows that for ech x nd 0,

x 0 O()z .
But

(x )(o’) x(o’) . x()o’()

, x(’)o’(’) ( x) (o’).
:SO

x=l.x.
Hence

( x)() (x ) ( x) : (x).

We take this as our basic definition, now that we have checked that it agrees
with Arens’s definition; that is, we rewrite the definitions for our case as"

xa=lx.

( x)() (z ) ( x) ( )(x).

( )(x) ( ).

We add two new definitions

o() r . O()r

We are now ready to describe the properties of this multiplication in m()*
and to show how invariant means appear.

LE 1. (Arens) is associative and distributive; also, the norm of the
product is not greater than the product of the norms.

For each x
Ix ( )](x) x[,(. ) x],

and

[(. ) x]() ( )(x ) .[ (x )] .[ x]

for all x and a. Also

[(x .) ](x) (x )( x) x[. ( x)],
and

[ ( )]() [( x)]

for all x and a. But for all a’, x, and a

[( )](’) ( x)(’) (., x) (, x) (
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Hence for all and x
o( ( z) (o ).

Hence the last expressions in the second and fourth equations of this proof
are equal for all x and a; hence the last expressions in the first and third
equations are equal for all x. Hence E) is associative.
For distributivity we check first that ( + v) (R) x x + v x for

all , v in m()* and x in re(Z); this is true because for all a in Z

[( + ) x]() ( + )(x ) (x ) + (x )

( x)() + ( x)() [ x + zl().
Then for all x

IX ( + ,)](x) x[( + ) x] x[ x + l
x(, x) + x( x)

(x )(x) + (x )(x)

=[x,+x](x).

To prove the boundedness, if g, e m()* and x e m(Z), then

I( )(x)l ( x)l II, llll x II,
and for each a

Henceif.]]x] 1, then]] x ]],so

LEMMA 2. U 0 e/I(Z) and e m(Z)*, then QO l, a Qo
re .

For each x in m(Z)

$)(x) ( x) ( 0(), x) 0()( x)

o()(x ) o()[( x)()]

(qo)( x) (qo )(x).

For the other conclusion, start with in m()* and 0 in/(); then

Qo o() Q.

Then for each a in Z and x in re(Z)

( q)(x) (Q x),
and for each r in Z

(Q x)() (Q)(x ) (Q)(, ) ( x)()

x() (r, )().
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Hence for each x

hence

and

Q, (R) x ro.x,

(v 5) Q(r)(x) v(Qr 5) x) v(r x) (r*)(x);

( ) QO) O((r)r* ( O(r)r* ) (v)
(o 0(a)r)*() r.

COROR 1. If 0 is fixed, then QO is w*-w* continuous in the second
variable, and QO is w*-w* continuous in the first variable.

Proof. Every adjoint operation is w*-w* continuous by 2, (B).

COOR 2. If and are means, then is left invariant if is left
invariant, and is right invariant if is right invariant.

For one of these proofs we have from Lemmas 1 and 2

l( ) Qa ( ) (Qa )

(l)=.
CoaoR 3. Q is an isomorphism of the algebra ll() ito m()*; that is,

QO Qo Q(o 02).

We already know that Q is isometric into re(z)* and is linear. For all
x in m()

o o()x() [Q(O

LEM 3. The operation is w*-w* continuous in the first variable if
the second variable is fixed.

Let {} be a net of elements of m(%)* such that lim (y) (y) for
all y in re(Z); then

( )(x) ( x)( x) (

for all x in m(%); that is,

w*-lim ( v) v if w*-lim .
Continuity in the other variable may not be present; see Corollary 5 of

Theorem l of this section or Arens [1]. This limited weak*-continuity in the



second vrible found in Corollary 1, is due to the symmetry of our defini-
tion of multiplication; r nd l do not enter into it together.
We hve now gthered together the elementary properties of the lgebm

m(2;)*, and we know that Q is n isometric isomorphism of the lgebm 11(2)
into the lgebm re(Z)*. To connect wht we know bout menble semi-
groups with Arens’s results, we prove

THEOREM 1. If is an element of m()* which is fixed under all the operators
l, then for every in m()*

0 (e),

where e is the function constantly one on .
For ll e l()

QeO lgv =,e()lv
( eO)) (Oe()).

But for each in re(Z)*, there is a net {0} in/I(Z) such that w*-lim QO .
By Lemma 3

@ v w*-lim (QO v) w*-lim (QO(e)v)

[lim QO(e)]v (e)v.

CoRoLlARY 4. If v is a left invariant mean, then v v for every mean .
(e) 1 if u is a mean.

CononY 5. If Z’ is the set of all left invariant means on re(Z), then Z’
is a semigroup in which the product of two elements is always the second element
of the pair.

CoroLlarY 6, If Z is a left amenable semigroup and if re(Z)* is a commuta-
tive Banach algebra when is used as the multiplication, then there is only one

left invariant mean on m(Z).

For Z’ can be both commutative and nonempty if and only if it has just
one dement; if there were two, Corollary 5 would assert that v v #

v @ , which would prevent commutativity.
An example pertinent to Arens’s work is

CononY 7. Let be the semigroup of nonnegative integers; then l(Z) is,
but its second-conjugate algebra is not, commutative.

The sequence of finite means {m} defined by

,(i) 1In if i <= i <- n,

(i) 0 if i > n,
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converges in norm to invariance, for

By taking a function x in m(2) so that there are longer and longer blocks of
consecutive zeros and ones, it is easy to construct a sequence such that

lim sup Q,(x) 1 > 0 lim inf Q(x).

By 5, (B), every w*-cluster point of this sequence Q is an invariant mean.
By w*-compactness of the set of means, there is at least one w*-convergent
subnet {’} of {q} with limit’s(x) 1, and at least one w*-convergent
subnet {} with lim "(x) 0. Then g w*-lim and w*-

f!
lim Cm are distinct invariant means. By Corollary 6, m(2)* is not commu-
tative.
Due to the asymmetry of our definition of multiplication in m(2)*, the

dual conditions for right invariant means may fail, and indeed do fail for
most abelian groups. For example, in the situation of Corollary 7, where
is the semigroup of nonnegative integers, l r for all z, but the product of
two right invariant means is not necessarily the first one, while it must be the
second one.

7. Uniqueness of invariant means on m(2)
From the preceding section we saw that a necessary condition for commuta-

tivity of m(2;)* is that there exist only one invariant mean on m(2). We
devote this section to a proof that the behaviour of the semigroup of integers
is typical of the behaviour of abelian groups; on every infinite abelian group
there are many invariant means.
We begin with the observation that by 5, (B) we want a net of means on

m(2) which is w*-convergent to invariance but is not actually w*-convergent.

LEMM_ 1. If {,} is a net of means on m(Z) which is not w*-convergent but
is w*-convergent to right [left] invariance, then there is more than one right [left]
invariant mean on re(Z).

By w*-compactness of the set of means (3, (C)) {} must have at least
one cluster point; since it is not w*-convergent it has more than one cluster
point, so it has subnets converging to at least two different points; these
subnets both converge to the same-sided invariance as that possessed by {},
so the limits, by 5, (B) are invariant on that side.
To reduce the class of semigroups requiring special investigation we give

two simplifying results.

THEOREM 1. (I. S. Luthar) Let f be a homomorphism of a left [right] ame-
nable semigroup Z onto a semigroup Zr, and let F be defined from m(Z) into
re(Z) as in 2, (1); Fx’(z) x’(fz) for all in . Then F* carries the set
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Mz [M] of left [right] invariant means on m() onto the set M [M,] of left [right]
invariant means on m(Z’).

We already know from Lemma 1 of 3 that F* carries the set of all means
on m(2) onto the set of all means on m(’). That it carries left invariant
means to left invariant means is easily verified; it is, indeed, the proof of (C)
of 4.
To refine that proof slightly, as in the proof of 3, Lemma 1, set

{Fx’ x’ m(2V)}, and define 0 on m0 by 0(x0) t’(F-xo), so that uo(Fx’)
t’ (x’) for all x’ in m(Z’).

LEMMA 2. mo is carried into itself by all l and all r

For each x’ in m(2;’) and each

(o Fx’)()= (Fx’)() x’(f()) x’((f)ff))

( ’)(f) [F(, z’)]();

that is, for each z and x’
,(Fx’) F(’o x’).

Hence it is n element of m0. A similar clcultion gives

ro(Fx’) F(r’o x’).

LMM 3. o is left invariant on mo.

For all a in 2 and x in m(’)

o(l Fx’) o(F(l’, x’)) ’(l, x’)

’(x’) o(Fx’).

We could now use a theorem of Hahn-Banach type for extension of functions
invariant under groups of transformations; see the thesis of R. J. Silverman
[21]. However, a check of the proof there shows that the second-conjugate
algebra gives us a technique for proving this in the framework in use here.
By the classical Hahn-Banach theorem, Banach [2], page 27, there is an

extension of 0 defined on all m(2) with

,0 ,’ 1.

Also (e) -- t0(e) t’(e’) 1, so t is a mean. 2 is left amenable, so
choose any left invariant mean on m(2:) and let (R) tl.
Then by Corollary 2 of 6, is a left invariant mean on m(2). To see

that is also an extension of t0, take x0 in m0 then

(X0) (P () l)(X0) P(1 () X0),
and for every

( (R) Xo)(a) (Xo 5) ) (lo Xo) o(l Xo) o(Xo),



AMENABLE SEMIGROUPS 533

SO

( ) xo) ,o(xo)e,

#(Xo) [#o(xo)e] tto(Xo)(e) to(Xo).

Hence is a left invariant extension of o. Then for every x’ in m(’)

F*(x’) (Fx’) o(Fx’) ’(x’),

so F* r. Therefore F* carries the set of left invariant means on m(2;)
onto the set of left invariant means on m(2V).
For right invariance we pass to the transposed semigroup 2 in which prod-

ucts are taken in the other order from that used in 2. This interchanges
l and r, and a left invariant mean on 2 can be constructed as above, and
the result transposed back to get a right invariant mean on 2. As Arens has
emphasized, and as these examples continue to emphasize, this repeated
transposition need not return one to the original product operation in the
second-conjugate space.
Using the operation (2) of 2, we are able to give a reduction in the case of

groups.

THEOREM 2. Let G be an amenable group, and let H be a (not necessarily
normal) subgroup of G. Suppose that is a mean [left invariant] on re(G) and
that ,’ is a left invariant element of m(H)*. Define II, as in 2, (2), from
m(G) onto m(H) by IIx(h) x(h) for all h in H, and set II*,’. Then

) " "’ I], [and t ) "Y is left invariant].

We have already seen (3, Lemma 2) that / II*’ is in re(G)*, and, by
Corollary 2 of 6, (3 ’ is left invariant when is. We need now to use the
construction which proves that H is amenable (4, (D)). Let K be a set of
representatives for left cosets of H in G so that every g in G has a unique repre-
sentation as a product, g /oh, with in K and h in H. Define U from m(H)
into m(G) by

(Uy’)(kh) y’(h) for all k, h.

Then U is an isometry of m(H) into m(G), and HUy’ y’ for all y’ in m(H).
Now choose s > 0, and then choose x’ in re(H) with x’ I and

"’(x’) > I1"I1- . Letx Ux’. Then

and
( (R) )(x) ,( (R) x),

(’ ) x)(g) ,(x g) /(l x) (H*’)(/o x)

/’(II/g x).
But, setting g lh,

(II/g x)(h’) (l x)(h’) x(gh’) x(khh’)

(Ux’)(khh’) x’(hh’) (l x’)(h’),



534 MAHLON M. DAY

SO

Hence

Therefore

SO

II(/ Ux’) l x

( x)(e) ’(i x’) ’(x’) for all g in G.

(R) x ,’(x’)e,

(tt ) ")(x) tt(’(x’)e) "’(x’)t(e) ’(x’)

Hence li (R) ’ >
]] /’ 11, since, by 6, Lemma 1,

COROLLAnY 1. For each mean the operator Z defined by Z.’ (R) (II*’)
from m(H)* to m(G)* is an isometry of the set of left invariant elements of m(H)*
into re(G)*. If also is left invariant, then Z carries the set of left invariant
means on re(H) isometrically into the set of left invariant means on m(G).

These results imply

THEOnnM 3. If a left amenable group G has either a subgroup or a factor
group with more than one left invariant mean, then G has more than one left
invariant mean.

If f is a homomorphism of G onto G’, and if . are left invariant ele-
ments of m(G), then there exist, by Theorem 1, andp such that F*t
each is left invariant, and ..

If H is a subgroup of G and .is left invariant on m(G), and if . are
left invariant means on re(H), then by Theorem 2 each Z’ is left invariant,
and Z Z’ Z([ t) 0, since Z is an isometry on left invariant
elements.

This is our first main result, and with the known structure theorems for
abelian groups it enables us to prove

THEOaE 4. An abelian group G has only one invariant mean if and only if
G is a finite group.

If an abelian group has finite order, then its mean is unique. If the group
is of infinite order, then either there is or there is not an element of infinite
order in G. If there is an element of infinite order, it generates a cyclic sub-
group which, by Corollary 7 of 6, has more than one invariant mean; by
Theorem 3, G also has more than one invariant mean.

If G has only elements of finite order, we observe that this implies that there
exists in G an expanding sequence of finite subgroups H

LEMM 4. Let H [JH where H,+ H each H is a finite subgroup
of H,+ and where the number of elements in H,+ is more than ten times the
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number of elements in H,. Then there is more than one invariant mean on

Define x in m(H) by x(h) 1 if heH+l H and x(h) 0 if
h e H- H:_I for any n. Let /c be the number of elements in H, and
define . in l(H) by

(h) 1/ if heH,

(h) 0 if hell..

Then {} converges in norm to invariance, for as soon as h e H. then
h- 0. But lira inf(x) .1, and lim sup..(x) .9, so {}
is not weakly convergent. By Lemma 1, re(H) has at least two inwriant
means.
Now return to the proof of Theorem 4. By taking a subsequence if neces-

sary, the finite subgroups there can be chosen to have all the properties of
Lemma 4, so H H. has more than one invariant mean. Hence G has
more than one inwriant mean.

Color,AnY 2. If G is an abelian group, then the second-conjugate algebra
re(G)* is commutative if and only if G is finite.

If G is finite, then l(G) and l(G)** are isomorphic, and are, therefore,
both commutative with G. If G is infinite, Theorem 4 asserts that there
are many inwriant means; Corollary 6 of 6 asserts that re(G)* is not commu-
tative.

ConohnY 3. Let G be an infinite group; then each of the following con-
ditions is sucient that G have more than one invariant mean:

(i) The commutator chain G G1 G 1 ends at the identity
in a finite number of steps.

(ii) G is amenable and contains an element of infinite order.
(iii) G is locally finite; that is, every finite subset of G generates a finite sub-

group of G.

(i) and (iii) are already known to be sufficient conditions for amenability of
G. (ii) and (iii) yield many means by Theorem 2 and Lemma 4. If (i)
holds, we have first that every G/G+ is abelian, by the definition of com-
mutator groups. At least one of these groups must be infinite, since an ex-
tension of a finite group by a finite group is always finite. By Theorem 4
that group G/G+ hs many means. But G/G+ is a factor group of G,
so, by Theorem 1, G has many means. By Theorem 3, G itself has many
means.

It should be observed that the cse not covered by the theorem brings us
directly up ginst one of the outstanding impotent problems of group theory.
A group is clled torsion group if every element is of finite order.

Burnside’s conjecture. Every finitely generated torsion group is finite
group.
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If Burnside’s conjecture is true, then all infinite torsion groups are ame-
nable, and indeed come under (iii) of the last theorem, so they have many
means. It should be remarked that the set of left [right] invariant means
over any semigroup is convex; hence a semigroup with more than one in-
variant mean must have at least a continuum of invariant means.

8. Means and ergodicit),
We take advantage of the results of 4 on strong amenability of amenable

groups to improve some of the results of the paper [10] on the relationships
between mean values and ergodicity. First we need some definitions:

If B is any Banach space, we let (B) be the Banach algebra of all linear
operators from B into B. $ is called an operator semigroup over B if $ is a
subsemigroup of the multiplicative semigroup of (B). A linear Operator
A is an average of the subset g of 2(B) if and only if for each b in B the point
Ab is in the closed convex hull of the set of Sb, s . A is a finite average of
$ if A is in the convex hull of $; that is, if there exists a finite mean on g

such that A s (S)S.
A bounded operator semigroup $ is called weakly, strongly, or uniformly

ergodic under a net {A} of averages of $ when for each S in g

lim, A,(S- I) 0 lim, (S- I)A,

in the appropriate topology of (B); that is,

(weak) 3[A,(S I)b] ---> 0

for each b in B and/3 in B*,

(strong) A,(S I)b II-- 0

for each b in B, or

(uniform) A,(S I)II--> 0

and t[(S I)A, b] 0

and (S I)A, b ’ 0

and (S I)A, II--* 0;

For convenience, for each b in B we also set K(b) for the closed convex
hull of Sb S e g,}.

Eberlein [13] has shown that if a semigroup g is strongly ergodic under a
net of averages {A,}, then the following conditions on an element b in B are
equivalent"

(a) The net {A, b} has a weak cluster point b0 in B.

{Sb b lbeBandS

respectively.
For an ergodic operator semigroup over B, we define two closed linear

subspaces of B.
y Y($) is the set of common fixed points of all the elements of $; that is,

beifandonlyifSb- b for all S in $.

() is the smallest closed linear subspace of B containing
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(b) There is a b0 in ff such that b b0 e

(c) K(b) n @ has in it exactly one point b0.
(d) lim, A.b b0.

From these and the rest of the ergodic theorem come other results (see Day
[9] and [10] for references); let ($) be the vector sum of
8 {b0+ blb0eff, be}. Then

(e) ff contains only the point 0.
(f) Pb norm-lim A b exists if and only if b e .
(g) is a closed linear subspace of B.
(h) P is the projection of on ff along ; that is, PPb Pb if b e 8, Pb b

if and only if b , Pb 0 if and only if b e .
(i) PS SP P for all S in $.

() P is a lineur operator whose norm is not greater than lubs$
We recall more definitions from Day [10]. A rght [left] representation of

semigroup Z over a Banach space B is a homomorphism p [antihomomorphism
h] of Z onto an operator semigroup over B; that is, for each a in Z, p [M] is
in (B), and p, pp, [M, ,] for each , a’ in . The right [left]
regular representation of Z is the representation r [/] already defined over
m() by (r z)(a’) x(a’a)[(/ x)(a’) x(aa’)] for 11 , q’ in and 11 x
in re(Z).

Hereafter we shall use p for a right representation, h for a left representa-
tion, and for a representation which may be either right or left.

Attached to each bounded representation v of the semigroup, is a represen-
tation of the algebra l() over B defined for each 0 in l() by

o o, 0(),.

LEMMA 1. Each representation of the semigroup Z determines a representa-
tion of the same ind of the semigroup algebra l(Z) by the definition above; then

(i) [ (lub, 11)1[ II,
(ii) + + g and 1(),
(iii) c g c is a scalar,
(iv) po po p so. p p p and p p p

(v) o M, so M h M and M.
For an example we give a proof of one such relation.

In the paper [10] (essentially in Theorem 2 and Corollary 4) the following
properties of an abstract semigroup were proved equivalent"

(1) Z is an amenable semigroup.
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(2) There exists a net {} of finite means which converges weakly to in-
variance.

(3) Every bounded (right or left) representation - of over a Banach space B
is weatly ergodic under a net { of finite averages of the o.

(4) The right and left regular representations, r and of over re(Z) are
weatly ergodic under nets of finite averages, {r} and {/}.

In this section we show that these conditions are also equivalent to the
(formally stronger) conditions obtained from the last three by replacing weak
by norm convergence. The only cost is in the extra care required in con-
structing a new system of finite means from the original system of means which
is assured by (2).

THEOREM l. The following statements are equivalent to the conditions (1) to
(4), above:

(2s) is strongly amenable, under a net {,} of finite means.
(3s) Every bounded right or left representation r of Z over a space B is uni-

formly ergodic under a net l’,,} of finite averages of the -.
(4s) The right and left regular representations, r and l, of over re(Z) are

uniformly ergodic under nets of finite averages, r and I}.
From 5, Theorem 1, we know that. (2) implies (2s). For the next step,

if {q} is a net of finite means converging in norm to invariance, then
by Lemma 1, { is a net of finite averages of the such that

where M is a bound for r II. The other relations follow in the same way,
so v(Z) is uniformly ergodic under the net {vn}. (3s) clearly implies (4s),
and (4s) implies (4); this completes the proof of equivalence of these new
conditions with the earlier ones.

9. A theorem of G. G. Lorentz on almost convergence

We observed in Day [10] that Lorentz [17] had proved that when is the
semigroup of integers, certain conditions on an element x in m(Z) are equiva-
lent; in this section we state these conditions for amenable semigroups and
prove that they are still equivalent.

DEFINITION 1. Let Z be an amenable semigroup. An element x of m()
is called almost convergent if all invariant means on re(Z) coincide at x.

As in Day [10] let (R and be the operator semigroups r(Z) and l(Z) in
(m()), and let 6 6 {RL[R e 6, L e 2}. It is observed in [10]
that (R and commute, so ( is also a semigroup. If Zt is the transposed
semigroup of , then 2 is a homomorphic image of Zt, so ( is a homomorphic

The referee has remarked that some of Lorentz’s results can be found in the lec-
tures of yon Neumann on invariant measures, The Institute for Advanced Study, 1940-
41.
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image of 2 2; t. But 2 is amenable along with 2, and the direct product
of two amenable semigroups is amenable, so ( is a representation of an
amenable semigroup, and all of the ergodic theorem of 8 applies. First,
( is uniformly ergodic under some net of fiaite averages {v} of the elements
of (P, and second, an element x of m(2) is in the ergodic subspace 5 of (P if
and only if x norm-lim x exists.
Now 5 X) and r projects 5 on along X). If t is an invariant mean

on m(2), then
t(x) lim.( x) lim t(x) (x).

But () {telt real} (see [10]), so for each x in 5, there is a t such that
t(x) t(t e) t hence for each x in 5, (x) is independent of the in-
variant mean t. Let 0 be the linear functional defined in 5 by t0(x) t
for each x in 5.

For y in m(2) define pl(y) by

pl(y) glblt0(x) x e 5(() and x >= y}.

(The notation x >= y means that x() y() for ll a in 2.) Set

p(y) -p(-y); then p(y) lub {t0(z)I z eh(()nd y => z}.

For the special case in which 2 is the set of positive integers, Lorentz [17]
proved that (1) nd (3) below re equivalent; he also uses a function p defined
in a somewhat different way than our p as an id in his proof.

THEOREM 1. Let be an amenable semigroup; then the following conditions
on an element x of re(Z) are equivalent"

(1) x is almost convergent.
(2) p(x) p(x).
(3) There exist finite averages of. transforms of x under ( which are arbi-

trarily near some constant function.
(4) x is in the ergodic subspace 5.

That (4) implies (1) is proved in defining 0 that (4) implies (2) is trivial,
for p(x) o(X) p(x) if x e 5. Hence, if x does not satisfy (2), then
x 5. By the Hahn-Banach theorem, Banach [2] pge 27, there exist t least
two extensions t.of 0 such that p(y) >= (y) for all y, because for ech wlue
of r with p(x) >= r >= p.(x) there is n extension of 0 such that r is domi-
nated by p and (x) r.
But if t is ny one such extension, (x Px) o(X Px) 0 because

x Px 5. Hence is invariant under (; that is, is both right and left
invariant.

Since x _<_ x lie which is n element of 5, p(x) <-II x II, so -<- 1.
Also t(e) 0(e) 1, so t is a mean. Hence (1) fails for x if (2) does; that
is, (1) implies (2).

If (2) holds for x, take s > 0, and take y, z in 5 such that y => x _>- z nd
t0(y z) < . Then by the ergodic theorem (8) there is a finite average
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r of elements of (P such that

so
’, Y o(y)e < ,,

r z

_
r, x <- ’ y (o(Y) " e)e.

Then there is a t such that

but

sO

z)

(#o(Y) 2)e =< (0(z) e)e

_
r, r z -<_ v r x

Hence
-< (o(Y)-t- e)r r e---- (/o(Y)-I-

This proves that (2) implies (3).
rem quoted in 8.

(3) implies (4) is part of the ergodic theo-

10. Amenable subspaces of

A subspace of m(2) may behave better under translations than does the
full space; an extreme example is the subspace of constant functions on 2.
We shall assume throughout this section that X is an invariant linear closed
subspace of m(Z) such that e X. Occasionally it will be useful to have X
a sublattice, and for many results we also wish to have X introverted; this
means that for every x in X and in X*, the function x, defined by x(a)
(l x) for every a in 2 (the function on 2 denoted by E) x in 6), and the dual
function x, defined by x(a) (r x) for every a in 2:, are in X.

In 3 the definition of means can be copied in X, and 3(A), (B) proved as
before. Writing J for the injection map of X into m(2), it is easy to see that
J* carries the set of means in m()* onto the set of means in X*. 3(C), (D)
follow at once with J*Q replacing Q. Lemma 3.1 must be restated as:

If f maps onto , if X and X are in m(Z) and m(Z’) respectively and such
that F(X)

_
X, and if M and M’ are the sets of means in X and X, then

F*(M) M. To get isometry in Lemma 3.2 requires X to be a vector lat-
tice.

Paralleling 4 we define: X is amenable if there is a mean in X* such that
(r x) (x) (l x) for all x in X and a in 2. 4(A) need not hold unless
X is introverted (see discussion of 6). 4(B) requires X to be inverse-in-
variant. 4(C) becomes: f a homomorphism of onto ’ and X amenable in
re(Z) imply F-(X) amenable in m(Z’). 4(D) suggests the true result: If X
is amenable, so is every invariant subspace of X. We skip 4(E) through (K)
except to remark thut (F) has a parallel:
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LEMMA 1. If {X} is an increasing net of amenable subspaces of m(), then
X, the closure of the union of the {X,}, is amenable.

This and the existence of amenable subspaces allow us to use Zorn’s Lemma
to prove that every m(Z) has maximal amenable subspaces. It does not tell
whether there can be more than one such subspace. The formulas at the
end of the proof of Lemma 7.2 also allow us to prove

LEMMA 2. If f.maps homomorphically onto ’, if X’ is contained in m(Z’),
and if X F(X’), then X has in m(E.) the same ones of the following properties
as has X’ in m(Z’)" (a) Contains constant functions. (b) Right (left) invariant.
(c) Right (left) introverted. (d) Amenable. (e) Sublattice of m(..).
As an application of these lemmas, let G be a group, and let G,, where s

runs over S, be the family of all amenable homomorphic images of G. For
each finite subset of S, let G’ IIs Gs, and let f be defined from G into
G’ coordinatewise using the original homomorphisms f, mapping G onto G,.
Then each G’ is amenable by 4(F), so the subgroup Go f(G) is also ame-
nable. Let X F m(G); then eachX has all of the properties of Lemma 2.
If z = z’, then X = X, so the sets Xo are expanding with a. By Lemmas
1 and 2, X, the closure of the union of the X, is amenable; indeed, it can be
shown to have the other properties discussed in Lemma 2. Since the full
direct product II,s G8 need not be amenable, it is by no means sure that X
is itself determined by a homomorphism of G. If G is the free group on two
generators, the calculations at the end of 4 show that X is at least large
enough to separate points of G.

In 5 we make no use of introversion. If we modify Definition 5.1 to con-
sider means in X*, then 5(A), (B), (C) hold, and (C’) must be modified by
using X-convergence of finite means in place of weak c.onvergence" that is, we
use in 11(2) the topology that Bourbaki ([6], p. 50) calls z(ll(2:), X). The
corresponding relatively .strong or Mackey topology, r(/(2), X) (see [6], p.
70), must then be used in the definition of strong amenability of X and in the
later lemmas. J*Q must replace Q in 5(D) and elsewhere. Then every-
thing goes swimmingly through the main theorem of 5.

In 6 we must assume that X is left introverted as this returns (R) x to
X where r( (D x) can be computed for n in X*. J*Q replaces Q in Lemma 2
and Corollary 3, and the latter requires that X be a lattice; the rest down to
Corollary 6.6 holds as before, with m(2) replaced by an introverted X.
We have already had use for the extension of Lemma 7.2. The rest of

Theorem 7.1 extends if X is an amenable subspace containing F(X’), X’
m(2;’). Theorem 7.2 is yet unadapted to this situation.
For 8 we concentrate our attention on X-representations; that is, represen-

tations r of 2: over B such that for each 5 in B* and b in B the function/, b,
defined by t b() t(r b)for all in 2, is in X. Clearly the right and

left regular representations of over X are X-representations if and only if X
is introverted. The conditions (1)-(4) of 8 can be rephrased as"
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(X1) X is an amenable subspace of m().
(X) There exists a net {.} of finite means X-convergent to invariance in

().
(X3) Every bounded (right or left) X-representation r is weakly ergodic under

a net of finite averages of the .
(X4) The right and left regular representations of over X are weakly ergodic

under the nets (r and I,} respectively.

The theorem quoted from Day [10] becomes now: (X4) implies (XI) implies
(X) implies (X3); if X is introverted, (X) implies (X4). The proofs go as in
[10]: see also Rosen [19] for the case where X is the space of continuous func-
tions on a topological semigroup.
Theorem 8.1 goes with the strong topology on 2(B) replacing the uniform

topology and with the M:ackey topology in 1(2). This is a consequence of
two facts for each b in B: (a) If a net {t} in the unit sphere U of B* is w*-
convergent to t, then in m(2), b is w*-convergent to t b. (b) U is w*-
compact, so its image in X is w*-compact and therefore determines a
r-neighborhood of 0 in 1(2).
9 goes through, with m(Z) replaced by an amenable, introverted subspace

X, though the proof looks back a little farther than does 9 into the proof
of the ergodic theorem in [10] and [13] to get the appropriate information
about (P, the product of r(2) and 1(2). Applying this to the discussion of
of 7 gives: If X is an.amenable introverted subspace of re(Z), then there is just
one invariant mean in X* if and only if the ergodic subspace of the corresponding
5 is all of X.
Theorem 8 and Corollary 11 of Day [10] and the similar theorem of Dixmier

[4] for topological semigroups have the following common generalization:
Let G be a group and let X be an amenable subspace of m(G); then every bounded
X-representation of G over a Hilbert space H is equivalent to a unitary representa-
tion.

1. Topological semigroups

In case there is a topology in 2 in which multiplication is continuous,
natural choice for X is the space C(2) of continuous real-valued functions on
2. C(2;) is a lattice, is invariant, and contains e, but it is not always intro-
verted or amenable.

DEFINITION 1. A topological semigroup is called WCR (for weakly con-
tinuously representable) if the regular representations over C(Z) are C(Z)-
representations.

This happens if and only if C(2;) is introverted, and if and only if x and
x are continuous for every x in C(Z) and in C(Z)*. As Rosen [19] points

out, discrete semigroups and compact semigroups are WCR; it is easily seen
that the additive group of real numbers is not WCR. Looking back now
through 10, we find Rosen’s result that in a WCR semigroup, C(Z) is amena-
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ble if and only if all of the bounded weakly continuous representations of 2
are weakly ergodic, and if and only if the regular representations over C(2)
are weakly ergodic. Also Lorentz’s theorem curries over to an amenable,
introverted C(2). Rosen [19] also observes that if there is an invariant mean
only on the space of uniformly continuous functions on a group G, then
Eberlein’s results [13] on weak almost periodicity carry over almost intact
to the continuous wap functions on G.
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