GENERALIZED SECOND ORDER DIFFERENTIAL OPERATORS
AND THEIR LATERAL CONDITIONS

BY WiLLiaM FELLER!

1. Introduction

The differential operator
d

(1.1) % = aD? + bD,, a>0, D, =2

defined on an interval s; < s < s, may be reduced to the form
(1.2) A = aD?, a>0

by introducing a new variable z, namely, a solution of 3z = 0. All solutions
of this differential equation are monotonic, and z is determined up to a linear
transformation. Putting

(1.3) m@) = | T dt,

£
we can further reduce 9 to a succession of two differentiations
(1.4) A =D,D,.

It turns out that the canonical form (1.4) has considerable formal advantages
over (1.1).

It will be observed that (1.4) is much more general than (1.1). In fact, the
operator A = D, D, is meaningful for an arbitrary strictly increasing function
m, not necessarily continuous or bounded. (See Section 2 for the definitions.)
This generalization introduces a remarkable simplification and unification of
the theory.? It is usual to transform (1.1) in several arbitrary ways, but the
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2 One has frequently to deal with functions defined, in two contiguous intervals, by
two differential equations joined by so-called ‘‘transition conditions”. In the new
notation such a ‘“‘system’’ reduces to one differential equation, and no transition con-
ditions occur. For a simple example define z and m by

sfors <0

2s for s > 0, ms) = s.

™ z(s) = {
Then (1.4) reduces to D% when s < 0 and 3D? when s > 0, with the ‘“transition con-
dition’’ D;f(0) = 3D¥f(0). Interchanging x and m in (*) leads to the same differential
system with the transition condition D;f(0) = DIf(0). A yearly crop of papers devoted
to series expansions under conditions of this kind now becomes redundant, since the same
general eigenfunction expansion is valid for all our operators. Moreover, due to the
intrinsic characterization of the operators (1.4), it is possible to write down all possible
transition conditions and render them more plausible.
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scale x and the “canonical measure” m are essentially unique and intrinsically
related to the operator (1.4). The latter plays an important role in the
theory of the vibrating string, m representing the distribution of the actual
mass. With the new notation, strings with a positive mass concentrated at
individual points require no special treatment. As a matter of curiosity it is
possible to treat the motion of a continuous string with the entire mass con-
centrated at the rational points.®

It is easy to understand why a treatment of differential operators in the
special form (1.1) is never satisfactory. The formal adjoint of (1.1) is given
by ¥*g = Di(ag) — D,(bg) provided the coefficients @ and b are sufficiently
regular. Without this highly undesirable proviso no formal adjoint of the
form (1.1) exists. By contrast, no difficulties arise in connection with (1.4).
Considered as operator on functions continuous in an interval 8, < z < 8;, it
admits of the formal adjoint A* = D, D, , which is an operator on measures.
(The true adjoint will be discussed in Section 13.)

A perhaps more familiar point of view consists in considering ¥ as an oper-
ator in the traditional Hilbert space H,, defined by the norm

B2—
(15) 7] = /ﬁ @ dn(s).

The operator A then becomes formally self-adjoint. In Section 10 we shall
discuss how to make U a true self-adjoint operator. In Section 11 we shall
take up the same problem for the more desirable (though less familiar)
Hilbert space H,, over the closed interval 8; < x < @, when m is extended to
the boundaries by attributing a positive weight m; to 8; ; the norm in this
space is defined by

(1.6) TFI2 = Iflm + mf8) + maf(Be).

The operators of the form (1.4) are still of a special form, and one is auto-
matically led to the study of the more general operator defined by Uf 4 ¢f,
where ¢ is a function. However, the class of operators of this type does not
admit of an elegant theory free of artificial restrictions. A more natural class
may be obtained as follows. Let ¢ be a solution of the differential equation

(1.7) W+ cp = 0.
In any interval not containing a zero of ¥ we may define a new operator 2y by

1 2 f
. = =D, D,
(‘1 8) Ay f ‘/’D ¥ v

3 A continuous diffusion process in which the total mass is at any time ¢ concentrated
in the set of rationals was discussed by Feller and McKean [4]. It is noteworthy that in
this case the parabolic partial differential equation Deu = DnDyu s equivalent to an in-
finite system of ordinary differential equations.
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(precise definitions are postponed to Section 2). It turns out (see Section 5)
that

1.9 W f = Af + ¢of = DuD.f + of.

Thus U + ¢ may be reduced to the form U, , but operators of this form are
more general. An arbitrary continuous ¢ > 0 defines an operator Ay, (de-
pending on m). If ¢ has a derivative D,y = ¢/, then

1 /
(1.10) Ay f = ZDm{wPf - ¥'f},
implying that each f in the domain of 9y possesses a derivative D, f = f'. If
¥’ is continuously differentiable with respect to m, then (1.10) reduces further
to (1.9) with

(1.11) ¢ = —y'W = —y DD,y

If ¢/ is of bounded variation (without D,, ¢ existing), the coefficient ¢ can no
longer be expressed as a function, but an integrated version of (1.9) remains
valid: for each open subinterval

z2 z2 z2
(112) [C@unan=ng| - ["viray.

1 zy z1
It is thus seen that operators of the form (1.8) give a meaning to the notion
of Af + ¢f for the case where ¢ is, say, a Dirac function.' They permit us to
treat, for example, a vibrating string with an elastic force acting at a single
point just as if the coefficients were continuous. However, the operators 2y
are more general than the integrated version (1.12) of D,, D, + ¢, and more
easy to treat than D, D, + c.

After these explanatory remarks we may describe the main contents of this
paper as follows. Suppose we are given a (not necessarily finite) interval
I:(81, B:) and in it a strictly increasing function m (i.e. a positive measure),
not necessarily bounded at the endpoints 8; . Furthermore, we suppose given
in I a continuous function ¥ > 0. With these data we define an operator

4 Such is the case for ¢ defined by 2¢(z) = 1 4+ | z | . As an <llustrative example con-
sider the operator %, with this ¢ and m(x) = © (—» < & < ). A trivial calculation
shows that %Ay f(x) = Dif(z) for each @ % 0. At the origin both f and D,(f¢™!) must be
continuous, i.e. for each f in the domain of ¥y :

Ay (@) = f"(@), T =0
J*0) = f~(0) = 7(0),

while the value of %y f at the origin is defined by continuity. Now (**) is equivalent
to (1.12) with the Dirac function at the origin: the integral on the left equals
(@) — f'(z1) if (1, 22) does not include the origin, but equals f'(x2) — f'(z1) — f(0)
if & < 0 < @z . Observe that A, in no way involves discontinuous functions, and that
its theory is trivially reducible to special operators of the form D, D, .

")
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Ay, as in (1.8). Observe that y is a solution of the differential equation
Ay ¢ = 0. The most general solution of this equation is defined by

(113) 5@ = (@ [ V) ds + ks p(@), @ el

where k; and k&, are constants. Such a ¢ can have at most one zero, and in
any interval not containing it, we have

(1.14) Ay = Uy .

In other words, our operator is completely determined by the interval I, the
measure m, and the two-parametric family of functions annihilated by it.
The representation in the form (1.8) is therefore essentially unique.

Operators 9y of this sort are a natural generalization® of the familiar second
order differential operators. It is the purpose of this paper to show that the
classical Sturm-Liouville and other theories carry over in a natural way
leading to a theory which is simpler and more uniform.

Before reviewing the main results of the paper we remark that the general
operators Uy are by no means more complicated than the operators U of the
special form (1.4). In fact (see Section 4), each operator U, can be mapped
onto a ““related’’ operator D, D¢ in such a way that no special theory is required.
For all intents and purposes it suffices therefore to study operators of the
special form (1.4). Their analysis simplifies greatly in consequence of their
pleasing property that f > 0 ¢mplies the convexity of f.

In Section 3 we introduce a boundary classification. The boundary points
which we call active correspond to the Grenzkreis type in H. Weyl’s now
classical disjunction (see [7]). However, we subdivide Weyl’s Grenzpunkt
type by introducing the notion of semiactive boundaries. This subclass is
introduced for the discussion of bounded solutions and has no bearing or
meaning when the Hilbert space norm (1.5) is adopted (which explains why

5 The operator & = a D2 4 b D, + ¢, @ > 0, has the two obvious properties: (1) it is of
local character, (2) the minimum property: if f and &f are continuous in a neighborhood
of 2o and f = 0, f(x0) = 0, then ¥f(x0) = 0. It has been shown that the most general
operator with these properties has the form of ¥y except for the possible presence of
singular points at which { reduces to a first order operator. If condition (2) is replaced
by the stronger requirement that at a place of a local minimum z, always &f(z) = 0
(i.e. if the hypothesis f(z,) be deleted), then Uy is of the special form ¥ of (1.4). (Cf.
[1] and [2].)

A point z, is nonsingular if the equation ¢ = 0 admits near xo of two independent
solutions. If y is such a solution and y (x,) = 0, the right side in (1.13) defines ¢ () near
and at zo by continuity. If ¢ has two or more zeros, so does each solution ¢ of 8 = 0,
but the connection (1.13) remains valid.

The condition that y > 0 introduced in the present paper is a restriction introduced to
avoid going into the complex domain. The most general operator & without singular
points is obtained by permitting ¥ to have zeros, but requiring that the right side in
(1.13) remain meaningful. Near a zero of ¢ one has then to use the representation
{ = %y, or use a complex solution ¢ + 7y which is automatically free of zeros.
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it does not occur in the Weyl-Stone theory). It goes without saying that the
type of a boundary point is preserved under the above mentioned mapping of
Ay onto D, Dy .

To continue, consider first the Hilbert space theory with norm (1.5). For
each fixed A the simple mapping f — f™ carries a pair f*, F* satisfying

(1.15) NF* — Y, F* = f*

into a pair f, F' satisfying

(1.16) M — D, D F =,

and the mapping is isometric: || f*||» = || f|ls. Accordingly, as far as Hil-

bert space theory is concerned, it suffices to study the equation (1.16).

In Section 8 it is shown that for each N > 0 there exists a positivity pre-
serving linear transformation &, of norm = 1 carrying each fe¢H,, into a
O\ f = F ¢H,, satisfying (1.16). The solution of (1.16) is unique except when
at least one boundary is active. In each case the range R of ®, is inde-
pendent of \; the operators ®, and /R (the restriction of U to R) are self-
adjoint, & = (\ — %/R)™. (Here A = D, D;.)

In Section 10 we study arbitrary symmetric bounded linear transformations
®) such that F = ©, f satisfies (1.16) for each f e H,,. For a fixed A we de-
scribe the most general possible range of such a transformation by appropriate
“boundary conditions.” Conversely, given a possible range R (i.e. admissible
boundary conditions), we show that fo each X > o there corresponds a &, whose
range coincides with B. Also we find conditions for &, to be positive or to
have norm =< X\ Both ®, and /R are self-adjoint operators. This
analysis corresponds to, and amplifies, the well-known discussion in Chapter
X of Stone’s treatise [6], but uses simpler methods. (A treatment of un-
symmetric operators could proceed .following the methods in Section 12.)

New light is shed on the classical boundary conditions in Section 11, where
we treat the same problem in the enlarged Hilbert space over the closed in-
terval [8; , B:] with norm (1.6). The preceding analysis applies and analogous
results hold except that we get a new type of boundary conditions.® On in-
spection it is seen that they in reality amount to a definition of the operator A
at the boundary, and that no boundary conditions in the ordinary sense occur
as long as the points of the boundary carry a positive weight. The classical
boundary conditions are obtained as a degenerate limiting case of this defi-
nition of % when m; — 0.

[The Hilbert space theory is contained in Theorem 8.1 and Sections 10, 11.
Sections 9, 12-13 have no relation to it, and in the introductory sections all

6 In a disguised form these new boundary conditions occur in the literature as ‘‘time
dependent” or ‘\-dependent’’ boundary conditions. They now require no special
treatment. The same boundary conditions for continuous and for measure-solutions
were discussed in [3].
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parts referring to boundedness may be omitted. For the spectral analysis see
McKean [5].]

As usual in analysis, the Hilbert space approach leads to the most elegant
results. However, our differential operators play an important role in prob-
ability theory, the heat conduction, ete., and it is therefore unavoidable to con-
sider them as operators on set functions and on continuous functions. A
satisfactory theory can be developed, but new problems arise.

For most purposes it is natural to use the space C of functions continuous in
the closed interval I with the traditional norm

(1.17) £l = sup | f(x) |.

This norm lends itself splendidly for the study of U, but not equally well for
Ay . Asin the case of the Hilbert space H,, , there exists (see Section 8) for
each N > 0 a positive transformation &, from C to C such that for each f ¢ C
the transform F = & fhasanorm || F || £ A7 || f||. However, the mapping
which connects (1.15) and (1.16) is no longer norm-preserving. It takes the
space C into the Banach space Cy of functions such that iz is continuous in
the closed interval, Cy being metrized by the norm

(1.18) 17l = 17 = sup [f@W(@)].

Thus all theorems concerning (1.16) and the classical norm || f || translate into
equivalent theorems concerning (1.15) and the norm® (1.18). The following
theorem (proved in Section 9) is therefore of interest:

In order that the equation (1.15) admit for each f* € C a solution F* ¢ C such
that || F* || < M| f*||, it ¢s necessary and sufficient that ¢ be convex upward.?

By analogy with Sections 10-11 we treat in Section 12 the most general
boundary conditions for transformations from C to C inverting A — . How-
ever, while in the case of the Hilbert space norm (1.5) it was natural to re-
strict the theory to symmetric operators, the requirement of symmetry is
meaningless in C. Accordingly, we study arbitrary transformations, and we

7 McKean considers only Green function transformations and symmetric boundary
conditions introduced in [3] and guaranteeing the boundedness of the solutions of (1.16).
The mappings of Section 4 automatically extend his results to all transformations from
H.. to H,, provided each boundary condition involves only one boundary point (see Note
3 to Theorem 8.1). The newer type boundary conditions applying to the enlarged space
H.. require only a redefinition of the Green function on the boundary, and thus Mec-
Kean’s analysis could be extended to them by obvious modifications.

8 Actually several norms are equally applicable to each of the equations (1.15) and
(1.18). For example, for A = D, D, in the interval 0 < z < » the norm | f |, =
sup | f(z)z™ | is fully as good as (1.17).

9 T owe this observation to H. P. McKean, Jr. If y is convex upward, so is each
positive ¢ satisfying %y ¢ = 0. In the special case of operators %, = ¥ -+ ¢ the con-
vexity of ¢ is equivalent to ¢ < 0.
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encounter new “boundary conditions” depending on global functionals, and not
only on the boundary.

Section 13 deals with the transformations on measures which are adjoint to
the transformations constructed in Section 12. We discover here that in
general the adjoint %* to 9 need not be a differential operator.”’ For %* to be
of local character it is necessary and sufficient that the boundary conditions
for A do not involve global functionals, that is, they have to be of the type of
the boundary conditions discussed in Section 11 for H,,. [Sections 12~13 are
independent of Sections 10-11.]

It may be observed that the results of Sections 8-13 can be rephrased in the
terminology of semigroups. In fact, saying that the transformations @, have,
for A > Ao, a common range R is equivalent to saying that the restriction
A/R generates a semigroup.!

2. Definitions and preparations

In a fixed open interval I:(B; , B2) (Where — o = 8; < 8; £ ®) we suppose
given a strictly increasing function m, which is continuous to the right: m(x) =
m(x +). One should conceive of m(z) as the measure of the half-open in-
terval [8; , z], and the notation using measures and derivatives of measures is
really preferable for our purposes, but it seems less popular. We call m the
canonical measure for our operators. Needless to say that m(zx) is finite for
each z, but m need not be bounded near the endpoints 8;. (When 8 < o,
m(B, —) < o, it is possible, and often desirable, to enlarge the interval I by
adding to it the point 8, carrying a positive weight m..)

If m happens to be continuous, the interval I can be referred to m, instead of
x, as a scale parameter. In this case the right derivative of f with respect to
m is defined, as usual, by

+ _ e J@+h) — f@)
@1) Do f@) = lim Ay — m@)
In the general case we keep this definition at each point of continuity of m.
(It is clear that at such points m(z -+ k) in the denominator may be replaced
by m(z + h —) without affecting the limit.) At points of discontinuity we

10 The contents of Sections 12 and 13 are a generalization, but also a great simpli-
fication, of the developments in [3] concerning operators of the special type (1.1). Un-
fortunately, a notational confusion has introduced an error into [3], which is explained
below in footnote 20.

Added in proof. While the present paper was in press the author has received a recent
paper [8] by A. D. Venicelj in which the error mentioned above is pointed out and cor-
rected for operators of the special form D,, D, . In the text we treat lateral conditions
for more general operators and also for the case when the Hilbert space norm is used
and/or the requirement of positivity is dropped. All results of [3] are superseded by the
present paper except that here we refrain from using the terminology of semigroups.

11 On the generation of semigroups by restrictions of operators and the abstract defi-
nition of boundary conditions see [3].
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replace the denominator by the increment of m over the closed interval
[, x 4+ h]. Then

_ Jet+) = flz-)
@2) Duf@ = ey = m—)

is not only the right, but also the left, derivative at . For a derivative
D,, f to exist it is necessary that f be continuous with respect to m, jumps being
permitted at points of discontinuity of m.

As usual D,, exists if D, = D, . The derivative D., is defined by (2.1) and
(2.2), respectively, at points of continuity and discontinuity of m.

When no confusion can arise, we shall occasionally simplify the notation
by inconsistently using the symbol D,, in the meaning of: either D}, or D,
even if D) D, or if only one is defined. (Thus it is clear that when = = 8,
is substituted in D,, f we should read Dj, f(8s).)

We agree that in some interval I, the function f can belong to the domain
of the operator D, D, only if the one-sided derivatives f* = D} f and T =D;f
exist everywhere and are continuous with respect to m. The value of D, D, f is
then defined at each point where the derivative exists. The definition of
A = D,, D, will be completed by specifying the domain: in connection with the
space C of continuous functions we shall require that D,, D, f ¢ C; when the
Hilbert space norm (1.5) is used, we shall naturally require that # = D, f be
absolutely continuous with respect to m and | D F ||n» < «. Under any
circumstances

ﬁ_
23) L Wdm = 176 = [7(a).

Note. It is best to conceive of f/, which is a function of bounded variation,
as inducing a signed measure. The operator D, then changes point func-
tions into set functions, and D,, (a Radon-Nikodym derivative) changes the
measure back into a point function. The formal adjoint D, D,, operates on
set functions, and D,, maps a set function into a point function.

Coming to notations it will be noticed that, as usual, 0 and = denote not
only numbers, but also the obvious functions. However, to avoid confusion,
we shall use the symbol 1 to denote the function which equals 1 everywhere.

Existence of solutions. Let ¢ be a real function such that

f le|dm < o«
To

for each subinterval I, of I. For arbitrarily prescribed constants k; , k, the
classical method of successive approximations shows that there exists a unique
function % defined throughout I and satisfying almost everywhere (m) the
differential equation

(2.4) D, D,u = cu

with the initial conditions



GENERALIZED SECOND-ORDER DIFFERENTIAL OPERATORS 467

(2.5) u@) =k, u@) =k.
More precisely,
(2.6) u(x) = ky + kg,’[ —I—[ dsf cu dm. [’x"(s >
8 B
In fact, putting «® @) = k + ky(z — B8) and
2.7 u"P@) = ky + kel — B) + fﬁ ds /ﬁ cu™ dm
it is seen by induction that
(28) Iu(n+l)(x) _ u(n)(x) | < fﬂ dsfﬂ |c|'|u(n) _ u(n—l) Idm
s K-¢"

provided | # — 8| < & where & is chosen so that
B+

(2.9) 26f leldm < ¢ < 1.
88

It follows that u‘™ converges in the interval (8 — 8, 8 + ) uniformly to a
solution of (2.6), and the argument shows at the same time that v = 0 is the
only solution when k; = %k, = 0. This solution u can be continued by the
same procedure to an arbitrary subinterval of I.

3. Minimal solutions. Classification of boundaries

Consider the operator 2, defined by (1.8) where y > 0 is continuous in
I:(B1, B:). A function ¢ satisfies Uy ¢ = 0 if, and only if,

3.1) Y (p/¥)’ = const.

Note that this relationship is really symmetric in ¢ and ¢ since in each interval
not containing a zero of ¢

(3:2) Vo) = — &W/e)".

The ratio ¢/y is necessarily monotonic, and hence ¢ can have at most one zero.

LemMma 3.1. Among the functions ¢ satisfying (3.1) (or, what amounts to
the same, (1.13)) there exists one, ¢« , such that

(33) / 6209 ds =
. | %
for each B eI. Each solution ¢ of (3.1) which is not a multiple of ¢« satisfies
B2
(3.4) fﬂ ¢ (s) ds < oo, q::(%) —0 as z— B

provided ¢(x) #= 0 for x > B.
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We shall say that ¢ is menimal at 8, . The solution which is minimal at
B1 is defined in like manner.

Proof. Let ¢ be a solution of (3.1) which is independent of . It is seen
from (1.13) that as x — B,

B2
(35)  |6@¥ @ | — @ if, and only i, fﬁ V) ds =

for some (and therefore for each) 8 ¢ I. Because of symmetry this statement
holds also when ¢ and ¢ are interchanged. Since it is impossible that both
¢y and Yo ' tend to == o, it follows that the minimal solution, if it exists,
is determined up to a constant multiplier. On the other hand, if the integral
in (3.5) converges, put

B2
(3.6) ox(z) = ¢(2) fx Y (s) ds.

Then 1[/(111)4);1(.’13) — o as * — B, and therefore (3.3) holds. Thus either ¢
or the solution defined by (3.6) is minimal. The lemma is proved.

(Note that ¥ may be minimal both at 8; and 8:. In this case for each
solution ¢ of (3.1) which is independent of ¢, the ratio ¢/¢ is monotonic and
goes from — ® to . On the other hand, if the solutions ¢4 and ¢« which
are minimal at 8, and B, , respectively, are independent, both may be taken
as positive, and there exist then infinitely many positive solutions of (3.1).)

DeriNtTION 3.1.  Let ¢ > 0 be continuous in I. A solution ¢s of Yyppsx = 0
will be called minimal at B +f (3.3) holds.

DEFINITION 3.2. Let ¢4 be minimal for Ny at Bz, and let ¢ be any solution
of Uy ¢ = 0 which is independent of dx .

The endpoint B, will be called active for Ny if for some (and consequently for
each) B el

B2
3.7 ¢’ dm < .
8

A nonactive endpoint By will be called semiactive if
B2
(3.8 fﬁ | o | dm < .,

Each solution being a linear combination of ¢ and ¢« , it is clear that this
definition does not depend on the choice of ¢. The definition applies to the
left boundary with the integrals extended over (8, B).

In the case of the simple operator ¥ = D,, D, we can put

() = B —z, ox) =1 if B <
ox(x) = 1, () =z if By = oo.
The endpoint B; 1s active for A = D,, D, if, and only f,

(3.9)
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(3.10) fﬁ " dm(z) < .

It vs semzactive if the integral in (3.10) diverges but

(3.11) f:2 B2 — z) dm(z) < o i case B2 < ©
82

(3.12) fﬂ xdm(z) < o incase By = .

Obviously the first inequality in (3.11) is equivalent to'?
B2
(3.13) fﬂ my) dy < o B < .

4. Related operators

Let ¢ > 0 be continuous in 7:(8;, B2). For a fixed B ¢ I define a function
¢ by

(4.1) £(x) = fﬂ ’ Y (s) ds.

This maps I onto an interval [ . (Bf , B’;), and in it we define a monotone
right-continuous function u(¢) by

42) u(®) = L " 9A(s) dm(s)

where x stands for the point mapped on £. In I* we define the operator

We shall say that (2, I) and (2*, I*) are related by the transformation (4.1) —
(4.2). Needless to say that this term will be employed also if £ is replaced
by a linear function ki & + k., say, —¢ (cf. (4.9)).

12 Tn [3] a classification of boundaries was introduced for operators of the special type
aD2 4+ bD, . It was intended for the study of boundedness and/or integrability of
solutions, and did not pay attention to the Hilbert space norm (1.5). This classifica-
tion may be carried over to our more general operators % = D,, D, . Itis basedonly on
the criteria (3.11) and (3.12), and according to it 8. is for U

regular if B2 < o, m(Be—) < »;
exit if not regular, B; < «, and (3.11) holds;
entrance if not regular, B = «, and (3.12) holds;
natural otherwise.
Thus:
regular if By < o, m(B—) <
an active Bz is exit if B2 < 0o, m(B—) =
entrance if B = »

exit if By <

a semiactive Bz 1S .
be {entrance if B = .

A B, which is neither active nor semiactive is natural, and conversely.
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To each function f continuous on I we let correspond a function f* defined
on I'* by means of the inverse mapping to (4.1) as f* = fy ™, i.e. by

(4.4) @) = 7=®) v (@)
Clearly
(4.5) Ay = - U*

in the obvious sense. The following theorem is now trivially verified:

TarorREM 4.1. For each f

(46) [a5fau= [ am

If \F — Uy F = f, then \F* — U*F* = f*  With the norms introduced by
(1.17), (1.18) we have

(4.7) [0 =11l

In particular, y* = 1 and Ay ¢ = 0 implies A¥¢* = 0. Recalling that ¢
is minimal for ¥, at B; if, and only if, for each solution ¢; of %y ¢; = 0 which
is independent of ¢ the ratio ¢(x)¢r'(z) — 0 as x — B, , we get

LevmMma 4.1.  The mapping | — f* carries solutions of Ay ¢ = 0 into solutions
of W¥¢* = 0, and the property of minimality is preserved.

The type of the boundary 8. for 2, depends on the integral (3.7), i.e. on
the behavior of m near the endpoint 8.. To investigate the relationship
between the types of B, and 85 , we must therefore replace the interval I by
a subinterval (8, 8:) and apply the mapping to it. The convergence of all
integrals occurring in the criterion then depends only on a vicinity of the right
endpoint, and (4.6) together with Lemma 4.1 show directly the truth of

TuroreM 4.2. The endpoint B; 1s for Ay of the same type (active, semiactive,
or neither) as the endpoint B; is for A*.

Note that %, ¢ = 0 may admit of several positive solutions in which case
Ay = Ay (see Theorem 5.1). Thus Ay may be mapped in several ways on
operators of the simpler type D,D;. (Under any circumstances different
such mappings are available in each proper subinterval of I, and in particular,
for neighborhoods of the endpoints.) For example, in (0, «)

(4.8) Dn D, f = &'D,, 22D, (fz ™).

Thus the operator A = D,, D, in (0, ) s related to the operator of the same type
A* = D, D; by means of

E'-'l
(4.9) E=a w® = - f & dm(s).
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Here f*(£) = f(¢ )¢, and the endpoint « corresponds to 0. This transforma-
tion enables us always to reduce the study of the behavior of solutions near a
boundary B; = <« to the nez'ghborhood13 of 0.

5. A basic identity and its corollaries

We suppose that in the interval I the monotonic function m and the con-
tinuous ¥ > 0 are given; we consider the operator 9, defined by (1.8) and
other operators of the same type obtained by varying ¢ while keeping m fixed.

Lemma 5.1. Let U > 0 and V be functions such that Ay U and A,V exist
and are continuous in I. Then

(5.1) UV — V-%U =U-AV.

Proof. For each subinterval («, 8) of I we have

B 8
(5.2) fa Uy V-dm = f Uy a{y’ (V'S

where the prime indicates differentiation with respect to the variable of
integration. A simple integration by parts leads hence to

[ v L0 - 1)

o () )

This is the integrated version of (5.1), and the lemma is proved.

8

a

(56.3) s

a

TueoreM 5.1.  If ¢ is a positive solution of Ay ¢ = 0, then
(5.4) Ay = Ay .

(That is to say, the representation (1.8) has an intrinsic character, independ-
ent of the choice of the null-solution y.)
Proof. Set U = ¢ in (5.1).

LemMma 5.2. We have
(5.5) WV —cV =WV where ¢ = U_I-QIW U.

In particular: given an arbitrary integrable function c, in the neighborhood of
any point 1t 1s possible to reduce the operator Ay — c to the form Wy involving the
same canonical measure m.

13 In the terminology of [3] explained in the preceding footnote this means that an
exit boundary may be transformed into an entrance boundary, and vice versa. A theorem
such as “at an exit boundary a solution of N\u — €u = 0 approaches a finite limit’’ is
equivalent to ‘‘at an entrance boundary the ratio u(x)/x approaches a finite limit”” ete.
This may serve to explain the formal advantages and simplicity of the present approach.
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Proof. Divide (5.1) by, U to obtain (5.5). We are free to choose U as a
solution of Ay U — c¢U = 0 (see Section 2 concerning its existence).

Lemma 5.3. (Wronski identity). If Aus — Ypu; = 0, where ¢ = 1, 2 and
X\ is a constant, then

(5.6) ui(us/w)’ = const.
In particular, Mu; — Dy Dyu; = 0 implz'és
(5.7) U Ue — Up Uy = const.

Progf. Clearly (5.6) is a special case of (5.3). When u; and u. are differ-
entiable with respect to x, then (5.6) reduces to (5.7). [Note that (5.7) holds
both for the right and the left derivative.]

6. The homogeneous equation

For simplicity of exposition we first consider the reduced operator ¥ of
(1.4)in aninterval I: — o =< 3 <z < B = . We are interested in solu-
tions u of the equation

(6.1) Mo — Dy u’ =0, A>0

defined throughout 7; here A is a constant.

For an arbitrary point 8 e I there exists (see Section 2) a solution w satis-
fying the initial conditions u(8) = 1,47(8) = 0. Remembering that D, u' > 0
implies that u' increases, i.e. that u is convex, we see that v = 1. It follows
from Lemma 5.2 that the operator A — D,, D, is identical with the reduced
operator [, , and we can apply Lemma 3.1 to conclude that there exist solu-
tions usx and uss of (6.1) which are minimal, respectively, at 8 and 8,. For
each 8 eI we have then

8 B2
(6.2) f uxi(x) de = o, f uxs(x) do = o.
8 8

1

Near 8; the solution uy, is positive, and hence convex. If it were increasing,
there should exist an & > 0 such that us«(z) > e(x — a) for ¢ > «, which
contradicts the condition that the second integral in (6.2) diverges for each 3.
Thus us is positive and decreasing near 3, ; this implies that us. is convex and
decreasing throughout 7. We have thus

TueoreM 6.1. For each N > 0 the equation \u — Au = 0 admits of two
positive convex solutions usy and use such that usx, T while use | throughout the
interval I, and that (6.2) holds.

(This condition determines the solutions up to a multiplicative constant.
We shall say that wu; <s minimal at B..)

The remaining part of this section is devoted to a study of the solutions
near B3, , and the interval (8; , 8:) may be replaced by an arbitrary subinterval
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(8, B2). Needless to say that the left boundary is subject to the same analysis.
Integrate (6.1) to get

x4
(6.3) uwt(z) = ut(B) + fﬂ . \u dm, g < .

For a positive, decreasing u the left side is < 0 while the integrand is > 0.
Accordingly —u*(8) is an upper bound for the integral for all z > 8. We
have thus

LemMa 6.1. For each positive decreasing solution w of (6.1) and each B el
B2
(6.4) f udm < .
8

This lemma applies, in particular, to the solution u« minimal at 8, and will
be used prominently in the next section.

For the reader’s convenience we shall first take up the case 8, < « and
reduce the case B, = o to it. However, this separation is by no means
necessary, and the case 8, = « can be treated directly by means of the simple
estimates here used for B, < .

Consider again the solution u of (6.1) satisfying the initial conditions
u(B) = 1,u"(8) = 0. It is obvious from (6.3) that u*(z) > A{m(z) — m(8)}
for each > B. Therefore u* can be integrable over (8, 8;) only if

B2 B2
65) ® > [ﬂ {m(z) — m(@)} do = fﬂ @ — y) dmy).

On the other hand, (6.3) shows that
(6.6) ut(@) < €u@){m@) — m@)}, x> 8,

and therefore (6.5) implies that log % has an integrable derivative. In other
words, v remains bounded at @ if, and only if, (6.5) holds. Remembering
that every solution of (6.1) is a linear combination of % and wus we see that in
this case all solutions of (6.1) remain bounded at g, .

Suppose now that m remains bounded at B3, , that is, suppose 8; < « and
m(B:—) < . Then (6.5) holds, and each solution % remains bounded.
Moreover, in view of (6.3) the derivative u™(z) approaches a finite limit u™(8)
as ¢ — B2. In this case the boundary point 8, may be treated just as an in-
terior point, and the classical method of successive approximations (see Sec-
tion 2) shows that to arbitrary constants 4, B there exists exactly one solution
of (6.1) such that

(6.7) u(B) =4, u (B) = B.

In particular, us2(82) = 0 and wux2(8:) < 0.

Next suppose that m(8:—) = o« but that (6.5) holds. We have seen that
in this case all solutions # remain bounded at 8. From (6.3) we see that
ut(x) — o for each increasing u, and therefore no solution « independent of
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usx2 has a bounded derivative; in particular, there does not exist a positive
decreasing solution independent of us, . It is clear from (6.4) that u4(82) = 0.
For the sake of completeness we show that ux2(8:) < 0. Because of the con-
vexity of uss we have us(s)(8a—s)" < —uda(s) < —ufa(B) for each s > 8,
and hence we conclude from (6.3) that

(6.8) — k(@) > — uky(8) {1 -\ j: B — s) dm(s)}.

We may choose 8 so close to 8, that the integral in (6.5) is smaller than (2\) ™.
Then —uf,(x) > —3uty(8) for each x > B, and hence

—uxa(Bs) Z —}uks(8) > O,
as asserted.
Finally, when (6.5) does mot hold, each solution u independent of us is
unbounded at 8, , while (6.4) implies that us2(82) = ux2(82) = O.
Recalling Definition 3.2 we can summarize these findings in the following
theorem (only part (i) has a bearing on the Hilbert space approach).

THEOREM 6.2. Let By < .

(1) If Ba is active (that is, if m(Bs—) < ), each solution u of (6.1) and its
derwative u™ approach finite limits at B, . Exactly one w satisfies the terminal
condition (6.7), and hence there exist independent postitive decreasing solutions.
For the minimal usx we have usx(B2) = 0 and ux(B:) # 0.

(i) If Bs is semiactive (that is, m(B;—) = o but (6.5) holds), each u is
bounded at B , but | w'(z) | = «© as x — B, except if w is a multiple of ux . The
latter is the only positive decreasing solution and ux(Bs) = 0,0 > ux(By) > — .

(iii) If B is meither active nor semiactive, then usx(B2) = wx(B2) = 0. Each
u independent of usx 1s unbounded.

It has been pointed out in Section 4 that the transformation (4.9) permits
us to reduce the case 8, = « to the case B2 < . Without loss of generality
we may suppose ;1 < 0 < 8 = ®. Then (4.9) carries the boundary point
o for D,, D, into the left endpoint 0 for D, D;, and the type of the boundary
does not change. There exists in (0, ) a one-to-one correspondence between
the solutions % of Aw — D,, D,u = 0 and the solutions * of Mu* — D, D;u* = 0
established by the relation u*(¥) = fu(t™"). Applying the last theorem to
u* and reading it in terms of % we have

THEOREM 6.3. Left 8, = .
(i) If o is an active boundary (that is, if [* a2 dm < «), then for each solu-
tion u of (6.1)

(6.9) u(x) = Az + B + o(1), z—> ©

where A and B are constants. To prescribed A, B there exists exactly one solu-
tion u satisfying the terminal condition (6.9). The minimal solution usx | B > 0.

(i) If « s semiactive (i.e. [T22dm = o but [* xdm < ), then for each
solution u which s near « increasing
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(6.10) 2 u(x) > A < o, but Az — u(x) = © asx — ©,

The minimal solution usx | B > 0, and no solution independent of u« zs bounded
at o,

(i) If [Txdm = o, then ux | 0. For each solution u independent of us
we have xu(x) — £ .

In reality the last two theorems can be formulated jointly using the nota-
tion (3.9). With this notation, however, the formulation applies at once to
the more general operator Ay of (1.8). A glance at Theorem 4.1 and Lemma
4.1 will show that the last two theorems are a special case of the following
(which, for brevity, we state explicitly only for active boundaries).

TaEOREM 6.4. The equation
(6.11) M — ¢ D, (2D (™)) = 0, A>0

admits of two independent positive solutions us; such that (6.2) holds.

Let ¢ be a solution of Wy = O which is al B, positive but not minimal, and let
o be the solution of Ay ¢« = 0 which is minimal at By . Then:

If B: is active, for each solution w of (6.11)

Ap(x) — u(x)
(6.12 ulz) —4, === ¥ LB
) 5() @

where A and B are constants. To arbitrarily prescribed A, B there exists exactly
one u satisfying (6.12). In particular uss ¢~ — 0.

as x — P

(The parts of Theorems 6.2-6.3 relating to nonactive boundaries can be
translated in like manner.)
It follows in particular that when S, is active

B2
(6.13) f,; wdm < o

for each solution u of (6.11). In other words, if 8. is active for Uy , it is active
also for A — Ay . The corresponding statement for classical differential
operators was formulated by H. Weyl [7].

7. Green functions

As before let ¢ > 0 be continuous in the open interval 7:(8; , 82). We recall
from Lemma 5.3 that for any two solutions of Au — 9y u = 0 we have

us(uy/us)’ = const.
and this constant is zero only if 4; and w, are dependent.

DeriNiTiON 7.1. For fized N let w; and uy be two tndependent solutions of
M — Wy u = 0 normed by the condition

(7.1) s (un/us)’ = 1.
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The Green function Gy for (y,I) corresponding to the ordered pair uy, s
is the function of two varidbles defined by

m@u(y)  for B <z <y <B
(7.2) G’A(x’ y) =
u@)m(y) for B <y <z <B.

We denote by ®, the transformation which takes a function defined in I into
the function F = ©, f defined for x ¢ I by

B2
(73) F(z) = fﬁ Gr(z, 1) (y) dm(y),

the domain of ®) consisting of those f for which the integral exists in the sense of
absolute convergence.

The Green function Gy , and the transformation &, , will be called minimal if
u; 18 minimal at the boundary 8; , 1 = 1, 2. (Cf. Theorem 6.1.)

The basic mapping described in Section 4 takes the operator Ay into the
operator %* = D, D; defined in an interval I*: (8%, 83 ). The variable z becomes
a function of £ and the solutions u; are mapped into solutions u; of

(7.4) Mt — D, Dyui =0,

where u; (£) = wi()/i(x).
The norming condition (7.1) can be rewritten as

(1 'lz_.’il'%>'}=1
(75) v {<¢> vy (¢
or
(7.6) us-Dyuy — uy-Deus = 1.

Thus the ordered pair u; , us satisfies the norming condition (7.1) relative to
the operator A*, and we can form the Green function GX corresponding to
(A*, I*), namely
wi@us(n)  for BL <E<n<f
(7.7) REn =1 . « «
uz (Huz ()  for By < n < &< Bs.

Tt induces the transformation ®x taking f* into the function F* defined by
H

(7.8) @ = [ G ) dutn).
1

A simple inspection shows now that the function F* defined in I* by (7.8) is
identical with the image F /i of F = &, f under the mapping (4.4). We have
thus the simple but useful

TueoreM 7.1. The mapping of Section 4 taking the operator Ny into the
related operator A* = D, D; induces an tsomorphism between the corresponding
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transformations ®y and & . If ®y is minimal for Ay , then &% is minimal
for A*,

Consequently, we may restrict further consideration to operators of the
simple form % = D,, D, and reformulate all results for the general %, . The
advantage of considering only the operator ¥ is merely formal: the formulas
become more pleasing to the eye, and the argument is more intuitive due to
the fact that the positive solutions of A\u — u = 0 are convex.

TuroreM 7.2. Let G\ be a Green function for A = D,, D, and I:(B;, Bs),
formed by means of two solutions w; such that u, ts increasing and u, decreasing.
Then

(1) Each bounded continuous f is mapped into a bounded continuous F such
that

(7.9) ANF — D, F' =f.
Furthermore,
(7.10) 0=<f=<1 implies 0O SANF =<1

(i) If f is square integrable with respect to m, then F is bounded and abso-
Lutely continuous with respect to m; the equation (7.9) holds m-almost everywhere,
and

(7.11) g F2 dm =f 12 dm.
Proof. We have
B2 z+ '
(112) F@) = 0@ [ (Gn) dnw) + 6@ [ @uw dno).

The solutions u; being monotonie, it follows directly from Lemma 6.1 that the
integrals converge absolutely for each bounded f. For the special choice

f = 1 we get, remembering that w{u; — u;u3 = 1 and the monotonicity of u.,

A (x)

82 z+
uy() L N dus(y) + us(x) fﬂ 1 dus(y)
1+ w(@)uz (B2) — we(x)ui (@) =1

(7.13)

This proves (7.10).
If f is continuous and m has a continuous derivative with respect to «, then
(7.12) may be differentiated formally to obtain

B2 2+
A1) F@ = @ [ ) dn) + @@ [ @uw) ).

To verify the general validity of (7.14) denote the right hand member by
®(z). A simple integration by parts shows that

B
(7.15) [ #@ dz = ) - FG@),
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showing that F* equals almost everywhere a derivative of F. The right con-
tinuity of ® implies that ® = FT everywhere. Now each term in (7.14) is
continuously differentiable with respect to m; remembering that D,ui =
Mu; and wius — wiu, = 1, we see that differentiation of (7.14) leads to (7.9).
This proves the first part of the theorem.

Suppose that f is square integrable. Lemma 6.1 implies that u, is square
integrable over each interval (z, 8z), and therefore the first integral in (7.12)
converges absolutely. A similar argument applies to the second integral,
and a trivial modification of the above reasoning shows the validity of (7.13)
and the assertion relative to (7.9). It remains to prove (7.11). Now by
Schwarz’ inequality and (7.10)

B2 B2
NF(z) = N f Gr(z, Pf’(y) dm(y) - f Gr(z, y) dm(y)
(7’1 6) 81 B1

B2
< ]ﬂ Gz, D) dmly).

Integrate this inequality with respect to m using Fubini’s theorem. Since
G\ is symmetric, a renewed application of (7.10) leads to (7.11). The
theorem is proved.

8. The minimal transformation

In this section N is an arbitrary positive number.

TueoreM 8.1. Let H,, be the Hilbert space defined by (1.5). Let Gy be the
minimal Green function for the operator A = D,, D, and the interval

I:(B <z < By).

The corresponding transformation™ ®, of (7.3) is a symmetric, self-adjoint
transformation with norm || & ||l. = N, Its domain is the entire Hilbert
space H.,, , and its range R is defined as follows:

(1) If neither Bi nor Bs s active, the range R coincides with the set A of all
functions F such that AF exists m-almost everywhere and both F and UF are
square integrable (m).

(1) If B: is active, the range R 1s the subset of A conststing of those functions
for which

F(z) — 0 asx— B if|Bi| < o
(8.1)

Fx) =o(|lz|) asz—B;i of |B:i]| = .
In other words, for arbitrary f e H,, there exists exactly one solution F ¢ R of

NF — AF = f. The restriction of U to R 7s a self-adjoint operator.
Note. It is clear from Theorem 7.1 that the present theorem applies

14 Strictly speaking we are dealing with the restriction of ®, to H,, (and, similarly, in
the next theorem with the restriction to C). It seems foolish, however, to introduce a
new letter in each case.
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equally to arbitrary operators Uy, the general formulation of the boundary
condition (8.1) being: if B, is actite, then

(82) F(z) = o(¢()) as z—8;

where ¢ ts an arbitrary solution of Ayd = 0 which is positive but not minimal af
B:. The range R is independent of A\, and thus ®&, is the resolvent of ¥ if no
boundary is active, and the resolvent of the restriction /R otherwise. The
range R is obviously dense in the Hilbert space H,.

Proof. By Theorem 7.2 the transformation @, is positive, symmetric,
and has H,, for domain. It is therefore self-adjoint. The inequality (7.11)
implies || & |» = N'. We next show that the range of ®, is contained
in R. This statement is tautological if neither boundary is active. Suppose,
then, that 8 is active. Formula (7.12) applies with u; standing for the solu-
tion us; which is minimal at 8;. By Theorems 6.2 and 6.3 the the solution
u; is square integrable over (8, B2), and therefore the first integral in (7.12)
approaches 0 as & — (8, while the second remains bounded. If 8, < «, then
u; is bounded and u; — 0 as x — B;. If B, = o, then w3 = O(x) and
uz = O(1). In the first case F(x) — 0, in the second F(xz) = O(1), as asserted.
It remains to prove that, conversely, R is contained in the range of @, .
Choose an arbitrary Fo ¢ R, and set f = AFy — AF,. Then f is square in-
tegrable, Fo e B, and F = &, f e R. It follows that u = F, — F is a solution
of Mu — Au = 0 and v e R. However, by Theorems 6.2 and 6.3, u = 0 is
the only solution with these properties, and hence F = F, as asserted.

TaroreMm 8.2. Let C be the Banach space of functions continuous in the
closed interval [B: , Bz] with the norm (1.17). Let Gh be the minimal Green func-
tion for W = D,, Dy and I:(By, Bs).

The transformation &y is a positive linear transformation from C to C with
norm || & || < N7\ Its domain is C, and the range R is defined as follows: Let
A be the set of all functions F € C such that AF ¢ C.

(i) R = A i#f, and only if, the boundaries are at infinity or, in case of
| B:| < oo, this B; is neither active nor semiactive.”

(i) If|B:| < « and B; is either active or semiaclive, then

(8.3) Flx) —0 as z— B

for each F ¢ R, and R consusts of all F € A satisfying (8.3).

In other words, for each f € C there exists exactly one F' € R satisfying the equa-
tion \F — UF = f. The operator ® is the resolvent of A or of the restriction
A/R.

Proof. Referring again to Theorem 7.2, we first prove that F ¢ C, that is,
that F(x) approaches limits as z — 8;. Consider two special cases. (i) Sup-
pose that f vanishes identically in some neighborhood of 8;. In this neigh-

15 In the nomenclature of footnote 12 it is required that neither boundary be regular
or exit.
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borhood F reduces to a constant multiple of u,, and therefore a finite limit
F(B,) exists. In particular, F(3;) = 0 when 8, < «. (ii) Letf = 1. By
(7.13) in this case \F' = 1 — pyu; — p2us (where p; = 0 if u; is unbounded at
B2). Again it is clear that F' approaches a limit #(8;) and 0 < F(B8,) < A ™.
We are now in a position to consider an arbitrary f ¢ C. It can be split into
a sum f = f(B2)1 + fi + f. of three functions, of which the first is constant,
the second vanishes identically in some neighborhood of 85, and the third
satisfies the inequality |f.| < e. The transform of f(8;)1 + f; has been
shown to approach a limit as * — ;. By (7.10) the transform F; = @, f,
satisfies the inequality N\ || Fz || < e. Accordingly, the oscillation of F = ©, f
near 3, is smaller than e\, and it follows that the limit F(8,) exists.'®

From (7.10) we see that || ®, || = A™. To show that each F = @, f satisfies
(8.3) suppose that 8; < c and that g, is semiactive. Then u, | 0, while %,
remains bounded at 8;. It follows that the first term on the right in (7.12)
approaches 0 as x — B3, and it suffices to prove that w(x)m(z) — 0. Now
forx > B

(84)  w(x)m(x) < us(x)m(B) + fﬂ ’ us(y) dm(y) < us(x)m(B) + ¢

provided B is chosen close enough to 8:. It follows that lim sup us(x)m(z) <
g or ugm — 0 as asserted. When 3, is finite and active, the fact that F — 0
is trivial since m remains bounded. We have thus proved that the range of
®, is contained in R. The last step of the proof of Theorem 8.1 applies here
without change to show that R is contained in the range of &, and this
completes the proof.

The contrast between the last two theorems is striking. An infinite active
boundary gives rise to nonuniqueness (i.e. a boundary condition) in the Hil-
bert space H,, , but not in C; a finite semiactive boundary gives a boundary
condition in C but not in H,, . Actually a finite semiactive boundary may
be transformed into an infinite semiactive boundary (Section 4), and it is
clear therefore that in the latter case the absence of a boundary condition is
imposed only by the extraneous norm condition.

To be specific, the last theorem asserts that

(8.5) 0=\&H1=s1

and the second equality sign holds only in the case of uniqueness (i). Exactly
the same argument can be applied not only to the function 1, but to any posi-
tive solution ¢ of Ap = 0. For example, if the basic interval I is (0, =)
we get

(8.6) 0 = \&hz = 7,

16 For an application in Section 9 we note that we have proved AF(8:) = f(82) if f > 0
and B, < «. [Incidentally, this is not true if 82 = « and « is semiactive.]
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with the second equality sign holding if infinity is neither an active nor a
semiactive boundary, in which case A&, x = o(z) asz — . Theorem 8.2 is
contained in the following which does not refer to any particular norm and
shows how &, acts on unbounded functions.

TaeorREM 8.3. Suppose —xo =3, <0 <Py £ . Let L be the set of all
Sfunctions | which are continuous in the open interval I:(By, B2) and for which
flx)a™ tends to a finite imit as x — B;. Let A be the subset of those F ¢ L for
which AF eL (where A = D,, D,). Let &, be the transformation (7.3) asso-
ciated with the minimal Green function for (U, I).

Then @y s a closed linear transformation from L to L. Its domain s L, and
its range R coincides with A if, and only if, neither boundary is active or semi-
actwe. If B; 1is active or semiactive, then R coincides with the subset of those
F € A for which

(8.7) F(z)a™ —0 x - B;.

The proof is a mere repetition of the preceding one; the assertion follows
also from Theorem 8.2 by the standard mapping procedure introduced at
the end of Section 4.

CoroLLARY TO THEOREM 8.2. Let Cy be the Banach space of functions con-
tinuous in I metrized by the norm (1.18). The minimal Green function for
A, induces a bounded transformation ®\ from Cy to Cy with norm N7,

It is clear that in this statement ¥ may be replaced by an arbitrary positive
solution of 9y ¢ = 0, and that the boundary conditions are inferred from (8.3).

Note on the term “minimal”. It is readily seen from Theorems 8.1 and 8.2
that for any positive bounded transformation @, from C to C (or from H,,
to H,,) which transforms each f into a solution F of AF — 9F = f one has
G\ f = © fforeachf = 0. This observation will be amplified in Sections 10
and 12.

9. The role of convexity

We have just seen that for the most general operator 2, , defined by an
arbitrary continuous ¢ > 0, there exists a minimal Green function for each
A > 0. It leads to an inversion &, of A — Uy , and ®, is a positive operator
such that A& ¢ = ¢. This means that with the norm (1.18) A®\ becomes
norm nondecreasing. Unfortunately we are not always free to accept this
norm, and very often we are tied to the traditional Banach norm (1.17). The
question then arises (in particular in probability theory and heat conduction)
whether the operator A&, corresponding to ¥y is norm preserving or decreasing
(“a transition operator”) when the familiar norm (1.17) is used. In other
words, we ask: what conditions must ¥ satisfy in order that

9.1 A1 =1,

The answer is found in
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TaEOREM 9.1. Let &, be the transformation (7.3) associated with the minimal
Green function for (Ny, I) where ¢ > 0 in I. In order that (9.1) hold for all
A > \o, it s necessary and sufficient that ¥ be convex downward (the graph of
¥ lying below the chords).

In this case each positive solution ¢ of Ay = 0 s convex downward, and (9.1)
holds for each X > 0.

Proof. In the special case ¢ = 1 the operator 9, reduces to ¥ = D,, D, :
the relation (9.1) is then contained in (7.10) and all solutions of 2y ¢ = 0 are
linear functions, hence convex. The assertion is therefore true in the special
case ¢ = const., and we shall from now on assume that y s not constant.

It is convenient to break up the remainder of the proof into minor lemmas.

LemMma 9.1, Ify is convex downward, so is each posttive solution ¢ of Ay = 0.

Proof. Since ¢ is convex downward and not constant, it either decreases
near (3; or increases near 3, . Assume the latter. Being convex, ¢ increases at
least linearly, and hence the integral over ¢ (x) dz convergesat 8, . It follows
that

B2
(9.2) o(z) = ¢(z) f; ¥7(s) ds

defines that solution of %y ¢ = 0 which is minimal at 8,. We prove that this
¢ is convex downward.

In view of the assumed convexity, ¥ possesses a monotonically increasing
right derivative ¢*. Trom (9.2) we see that also the right derivative

62
93) $@ =" @ [ 76 ds — v
exists for each x e I. Forxz < z + h < 8, we have

B2
St h) — 6" = Wa+h) - v @) [ 976 ds
a+h
9.4) ) f V) ds — 7o + 1) + 97

z+h
> — f V) W) ds — ¥z + h) + 97 (@) = 0.

Hence ¢ increases and ¢ is convex. If ¢ is not minimal at 8; , then the same
argument applies at 8; , and we see that the two minimal solutions are linearly
independent and convex. Every positive solution of [, ¢ = 0 being a positive
linear combination of the minimal solutions, the lemma is proved.

LemMma 9.2. Let Fy = &\ f be the transform defined by (7.3) when G s
the minsmal Green function for N = D, D,. If f is continuous in I and
f(x) = 0 as x— B; (7 = 1, 2), then \NF\ — f as A — o uniformly in I.
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Proof. (This lemma is known and proved for completeness only.) Sup-
pose first that f € R, where R is the range described in Theorem 8.2. Then Af
exists, and we conclude from

(9.5) N — UF = f
that
(9.6) NIF, — 227, = Uf,

and that AF\ e R. It follows that AF, = G\(Uf), and Theorem 8.2 asserts
that A || AR || = || Af||. Thus from (9.5)

(9.7) A = 7= XA — 0, A— o,

The assertion is therefore proved for f e B. However, each f which vanishes
at the boundaries is in the closure of R, and a routine application of the tri-
angle inequality shows that || AF» — f || — 0 for each f in this closure.

LevMma 9.3. Adhering to the notations of the preceding lemma, suppose that
there exists a function f > 0 such that

(9.8) ANy S f

for each N > No. Then f > 0 s convex upward.
Conversely, suppose that f is convex upward and that the interval I is finite
(— 0 < B < B < ©). Then (9.8) holds for all N > 0.

Proof. A comparison of (9.8) and (9.5) shows that (9.8) is equivalent to
AFy < 0. In this case D, F) decreases, and F) is convex upward. Let I be
a closed subinterval of I, and construct a function f© such that f®(z) =
f) forz e I® and 0 = f®@) = f(z) for z e I and f@(x) > 0asxz—B;. Put
F” = & f©. By Lemma 9.2

(9.9) AV(z) = AFO(x) — fO%) = f@), zel,

It follows that AF\(x) — f(x) for each x ¢ I and hence f is convex upward.
This proves the first part of the lemma.

Conversely, suppose that f is convex upward and | 8; | < «. We recall the
footnote 15 to Theorem 8.2 according to which

Suppose now that (9.8) is false, and let I’ = (z;, x;) be a maximal subinterval
of I such that AF\(z) > f(z) for x e I’. In view of (9.10) the endpoints of I’
must be interior points, i.e.

(9.11) AM(z) — flxs) = 0, = 1,2,

But inside I’ we have AFy\ > 0. Hence F) is convex downward, and the same
is true of the difference AF» — f. Remembering (9.11) we conclude that
MF(z) < f(zx) for x € I’, which contradicts the definition of I’. The lemma is
proved.
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Completion of the proof. Suppose that (9.1) holds for all A > A\, and put
®v1 = H,. Using Theorem 7.1 we wish to reformulate (9.1) in terms of the
related operator A* = D, D;. The variable z becomes a function of £ and
H, and 1 are mapped, respectively, into the functions defined by F\(¢) =
Hy(x) () and f(§) = ¢ *(z). Here Fy = ©; f, where @y corresponds to the
minimal Green function for A*. Now (9.1) states that A\Fy < ffor A > ),
and the preceding lemma shows that f is convex upward, i.e. that D{f is
decreasing. But Dff = ¢’Df(¢™") = — D}y, and therefore ¢ is convex down-
ward.

Conversely, suppose that y is convex downward. By Lemma 9.1 all posi-
tive solutions of Ay ¢ = 0 are convex downward, and since ¥, = ¥, , there is
no loss of generality in assuming that ¢ is not minimal either at 8; or 8, . The
transformation (4.1) then maps the interval I = (8;, ;) on a finite interval
I* = (Bf , B’;), and f becomes a function of ¢ which is convex upward. The
last lemma then asserts that N, < ffor all A > 0, and the theorem is proved.

10. Self-adjoint operators

We consider the Hilbert space H,, defined by (1.5) and propose to investi-
gate the most general closed symmetric linear operator & which, for a fixed
A > 0, associates with each f ¢ H,, an element F ¢ H,, such that

(10.1) (¢ AN — UF = f, A =D,D,

for almost all x e/ = (B1, B2). Since the domain of ®, is the entire space,
®» is a bounded self-adjoint operator. .

Let @’{'i" be the minimal Green function for (%, I), and &\ the induced
transformation. Both F = @&, f and F™'" = & 'f satisfy (10.1), and there-
fore w = F — F™™ must be a solution of

(10.2) M — Aw = 0.
Let w; and w, be two independent solutions of (10.2). It is then clear that
(10.3) G f = & f + w-df° + wy-d?,

where ®§* stands for a bounded linear functional, i.e. an element of H,, . It
follows that ®, is a kernel transformation with F = ©, f being defined by

(104) F(z) = j; 72 G (z, Pf(y) dm(y), zel
where

(105) G, 9) = G, y) + @V @) + w@)3? ).

The further condition that @, be symmetric reduces (10.5) to the form

(10.6) @z y) = G@ 1) + 2 puNw.@w,@),

4I=

where the p;,(\) are constants, piz(A) = pua(A).
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If w, and w, (i.e. if all solutions of (10.2)) are square integrable (m), then the
symmetric matrix P(\) = (p;;(A\)) may be chosen arbitrarily, and (10.6) de-
fines a transformation of the required form. Such is the case when both
boundaries are active. If only B is active, three coefficients p;;(\) must van-
ish; if neither endpoint is active, the minimal @ " is the only transformation
of the desired type.

When for each A > 0 the coefficients p;;(\) are chosen in an arbitrary man-
ner, no natural connection between the corresponding &, must be expected.
In particular, even though (A — )&, reduces to the identity, &, will not
represent the resolvent of any fixed operator. Only if the range R of &, is
independent of N does ®, represent the resolvent'’ of an operator, namely
G\ = {A — A/R}™" where A/R is the restriction of 9 to R. This %/R as well
as &, is then self-adjoint.

We are thus confronted with the following questions:

(1) Given a self-adjoint ®, , determine its range R.

(2) Describe the most general possible range R.

(3) Given R, determine the coefficients p;;(\) in such a way that &, will
have the prescribed range R.

(4) Find the conditions under which the transformation &, will be positive,
or norm-decreasing, etc.

The case of one active boundary is simpler than the case of two active
boundaries, and can be derived from it in trivial fashion by equating certain
coefficients to zero. We shall therefore suppose that both 8, and B, are
active. First we take up the case where | 8; | < «. It will be observed that
the same calculations apply to infinite intervals (and, indeed, to the general
operator 2y). The only advantage (and only purpose) in a separate treat-
ment of finite intervals is the appearance of the classical boundary conditions
under their traditional form, unobscured by a new symbolism.

TueoreM 10.1. Let i and B be active boundaries, | B;| < . For some
fized X > 0 let &\ be a bounded self-adjoint transformation taking each f ¢ H,,
mito & f = F e H,, such that (10.1) holds almost everywhere (m). Then:

(a) There exist two boundary conditions which are either of the form'®

—F*B) + 7 F(B) + mz F(Bs) = 0,

(10.7)

F~(B) + mn F(By) + mu F(B2) = O,
where
(1073) M = To1,

17 The so-called resolvent equation @\ — @, = (» — A) @, G, is anobvious consequence
of (10.1): substracting (10.1) for two values of the parameter we get »{®, — &} —
A{®, — &) = A\ — »), . This is equivalent to the resolvent equation ¢f, and only if,
the ranges of ® and ©, coincide.

18 In (10.7) it is understood that F is continuous in the closed interval and F~(8;) =
lim F+(z) = lim F~(x). In (10.8) the case =1 = 0 is included with the obvious interpre-
tation that it implies F(81) = 0. If m = m = 0, the boundary conditions (10.8) are
F(ﬂl) = F(ﬂz) = 0, ie. O = @:;un‘



486 WILLIAM FELLER

or of the form
(10.8) ari'F(B) = amF(B) = mF () — mF (8).

The range R of ® consists of those F ¢ H,, which satisfy the boundary conditions
and the trivial requirement AF ¢ H,, .

(b) Conversely: to arbitrarily prescribed coefficients w;; (or w;, o) there cor-
responds a o such that for each N > N\, there exists exactly one transformation

O of the described sort whose range R s characterized by the prescribed boundary
condition.

Note 1. Given the coefficients in the boundary conditions, the explicit form
of the coefficients p;;(A) is found in (10.22) for the boundary conditions (10.7),
and in (10.23)—(10.25) for the conditions (10.8).

Note 2. If w2 = wy = 0in (10.7), the transformation @, is induced by the
Green function G formed by means of two solutions satisfying one boundary
condition each.

Note 3. The condition ms = 2 is imposed merely by the requirement of
symmetry. The arguments go through also when m; % 7. See Section 12
for more general unsymmetric transformations.

TerorEM 10.2. (a) In order that the transformation &, of Theorem 10.1b
be positive for all N sufficiently large, it is necessary and suffictent that me < 0
(¢n the case of the boundary condition (10.7)) or mmwe = 0 (in the case (10.8)).

(b) In order that &\ be positive and

(10.9) MG1=1
for all \ sufficiently large, it is necessary and sufficient that
(10.10) me 20, ma+ w220, i=1,2
or
(10.11) m = 0, m = 0, a >0,
respectively. In this case &, is positive, and (10.9) holds for all N > 0.
For A&, 1 = 1 4t s necessary and sufficient that ws; + m2 = 0O or m = w2 = %,

o = 0, respectively.

Proof. The two solutions w; in (10.6) may be chosen at will, but it is most
convenient to let w; be the solution of (10.2) determined by the conditions

(10.12) wi(Br) = wa(Be) = 1, wi(B2) = we(B1) = 0.

(In other words, wi(x) = Uxe(x)/us2(81) and we(x) = usi(x)/us1(B2) Where
Us; 18 minimal at B8;.) We shall require the derivatives

Wy = —’wf(ﬁl), wir = Wi (),

wn = —ws (B), wp = Wy (By).

It is clear that all these quantities depend on .

(10.13)
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Lemma 10.1. The mairiz @ of the elements w;; satisfies the conditions

(1014) w11 > 0, wag > 0, Wi = W1 < 0.
As\— @
(1015) Wi —> 0, wie —> 0.

Proof. By (5.7) the Wronskian w;ws — wjw, is constant. At the left
boundary it reduces to —ws; , at the right to —wiz. Hence wis = wy. The
signs in (10.14) are determined by the fact that w; decreases, while w, in-

creases. Finally, if 8, < 2 < z 4+ h < B, then (10.2) and the convexity of
we imply
z-+h—

(10.16) 1 = we(z 4+ h) = )\fx+h_w(s) dm(s) = >\w+(x)f (s — x) dm(s),
a+ x4

and it follows that w*(z) — 0 as A\ — o for each fixed x < 8. This implies
that w2 — 0 and also that wy — <. The latter can be concluded equally
from the fact that the Wronskian is constant.

Proof of Theorem 10.1(a). TFor each f ¢ H,, we have from (10.6)

(10.17) F=F" 4+ 3 py(Nwi- wj, f),
,J
where (g, f) is an abbreviation for the inner product
B2
(10.18) @n =] ain
61
By Theorem 8.1 the function Fmi» has the boundary values 0, and hence
2
(10.19) F(8) = 2 pii(N) (s, \F — UF).
J=
Repeated integration by parts leads to

B2
(1020) M@ 1) = fﬁ F dw; = wp F(B) + wi F(B)

— (=1)F'@) + (w;,UF),
and (10.19) takes on the form

(10.21) F) = j:él PN F(Bi) — j}::l (—=1)'pi;(NF'(8)).

We have now to distinguish two cases.

Case I. The matrix P(\) with elements p;;(A) is not singular. Premulti-
plying (10.21) by P~*(\), we are led to the boundary conditions (10.7) with the
matrix II = (m;;) given by

(10.22) Io=P'0) — Q.

Thus each F in the range satisfies (10.7). Conversely, suppose that F ¢ Hn ,
AF ¢H, , and that (10.7) is true. Setf = AF — UF and FF = @G, f. Both
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F and F satisfy (10.1), and hence F — F is a solution of (10.2),i.e. F —F =
prws + powy. Now both F and F satisfy (10.7), and hence pa(\)p: -+
pie(A\)p2 = 0. Since P is nonsingular, this implies p; = p, = 0, and it follows
that (10.7) is a necessary and sufficient condition on the range.

Case II. The matrix P()) is singular. Since it is symmetric, it is neces-
sarily of the form

(10.23) PO = T< ™om :2>

m Ty
Multiply the equations in (10.21) by m and —m , respectively, to obtain
(10.24) m F(8) = m F(By).

If m = m2 = 0 we have F(8)) = F(8;) = 0. Otherwise each equation in
(10.21) reduces to (10.8) with
2

(10.25) T = o+ Wi Wi W+
1

@j=

This completes the proof of the first part.

Proof of Theorem 10.1(b). Prescribe an arbitrary symmetric matrix
I = (m;;). Inview of (10.15) the diagonal elements in the matrix IT 4  will
be dominant for all A sufficiently large. It follows that for such A a matrix
P()) satisfying (10.22) exists, and the kernel (10.6) defines the transformation
® of the desired kind. This argument applies equally to (10.8) and (10.23).

Proof of Theorem 10.2(a). It is clear from (10.17) and (10.19) that ®, is
positive if, and only if, p;;(A\) = 0. Referring again to (10.15) we see that, for
sufficiently large A, the diagonal elements of II + Q are positive, while the
corner elements approach ms . For P(\) = (II 4+ ©)™" to be positive, it is then
necessary and sufficient that m2 < 0. Similarly, in the case (10.23) the con-
dition m 7 = O is necessary and sufficient.

Proof of Theorem 10.2(b). We have

B2 B2 ,
(10.26) A w; dm = dw; = wy + wa.

B1 81
Substituting f = 1 into (10.17) we find therefore
(10.27) A (z) = 1 — wy(x) — wolx) + Z;c'wi(x)pij()\)wik'

e
This shows that (10.9) holds if, and only if
(10.28) > piNwje = 1, i=12.
gk

In other words, in order that &, be positive and (10.9) hold, it is necessary
and sufficient that the row sums of P(\)2 be < 1 and P(\) = 0. If (10.10)
holds, then P(A) = 0 for all A = 0, and the row sums of P(\)II are positive.
However POVNII = 1 — P(\)Q, and therefore (10.10) is a sufficient condition
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for each A > 0. On the other hand, in the case of the boundary condition
(10.7) the matrix P(\) converges to a diagonal matrix, and hence P(\)Q =
1 — P(MII can have row sums =< 1 only if II (which is independent of \) has
nonnegative row sums. Thus (10.10) is necessary and sufficient. The same
argument applies, in a simpler form, to the case of the matrix (10.23). The
two theorems are proved.

If B, = « the symbols F(B:) and F(B;) are senseless, and the same is true
of formulas (10.12)—(10.13). However, the theorems and the proofs remain
valid with a slight reinterpretation of the symbols. Instead of the basic
Lemma 10.1 we use

LeMMA 10.2. If By = oo, let wy be that solution of (10.2) for which
(10.29) () — 1 as x— o,
and define wy similarly. Put

(10.30) wp = lim {zwi(z) — w;(x)}, i=1,2,
and define w; similarly in case By = — o (and by (10.13) if B > — ). If
both boundaries are active, these quantities are finite and satisfy (10.14)-(10.15).

Proof. By Theorem 6.3 the limit of 2 w(x) exists for each positive solution
of (10.2). Now

x

(10.31) A f: swy dm(s) = f: s dws(s) = {swz(s) — wa(s)} X

From (6.9) it follows that sw. is square integrable over (8;, 8:) and therefore
2wy (x) — we(x) approaches a limit monotonically as x — . Rewriting the
Wronskian in the form
! /
we(x)wi(x) — wi(z)ws(z)
032y , -
= {rw(zr) — wy@)}-2a"wi(x) — {rwi(z) — w@)} 27 w(),

we see the validity of the arguments in the proof of Lemma 10.1.

- Consider now (10.17), and remember that the derivative of Fmi» satisfies
(7.14). Tt is seen at once that in the case of an active boundary at « the
limits
(10.33) lim z'F(z) and  lim {aF'(x) — F(x)}

exist and are finite. With these quantities the proof of Theorem 10.1 applies
without change and we have

TueoreM 10.3. Theorem 10.1 applies also to the case B2 = « provided the
symbols F(Bs) and F~(8;) appearing in the boundary conditions are replaced by
the limits appearing in (10.33).
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In the case of an operator Ny , Theorem 10.1 still applies with F(B:) and
F(B) to be replaced, respectively, by

. F(x) . 20,3, F(x)
(10.34) il_glz o) and al;r;ﬁ ¢’ (x)-D, )’

where ¢ s a solution of Ay ¢ = 0 which is at Bz positive but not minimal.

The last formulation combines Theorems 10.1 and 10.2: in the case B < o
we set ¢ = 1; in the case B, = «, however, ¢ = .

11. Self-adjoint operators in closed intervals

Consider a finite interval I:(8;, B2) in which m remains bounded: in other
words, we suppose that both boundaries are finite and active. It is then
natural to extend the measure m to the closed interval I':[8; , B:] by attributing
the weights m; and m. to the two points of the boundary. This leads to in-
troducing the Hilbert space H,, over I defined by the inner product

B2+ Ba— 2
ay o= [ edm= [ fgdm+ X mis6)6).

For sake of definiteness we shall suppose m; > 0 and my > 0, although the
argument applies equally when only one boundary point carries a positive
weight.

So far the operator ¥ = D,, D, is defined only in the interior of I. We shall
presently see that, essentially, there exists only one way of defining 2 at the
boundaries, provided we require that all functions in the domain of U be con-
tinuous in 7.

A linear transformation &, mapping each feH, into a solution F of
AF — UF = fis necessarily of the form (10.5) where ®® is a functional in
the enlarged Hilbert space H,,. If such ®, is bounded and symmetric, it
must be induced by a kernel G, obtained by extending the kernel Gy of (10.6)
to the boundaries in accordance with the requirement that ¥ be continuous.
Supposing that the solutions w,; are specified by (10.12) we shall have

Gr(x, y) = Gh(x, ) B <,y < B

B, y) = paMwi(y) + paN)w(y), B <y <P

(11.2) Gh(@, B5) = PuNwi(z) + pai(Nwe(), B <z <Py
Gh(8:, B5) = Pii(N), n,j =12

(For example, the function f defined by f(z) = 0 for 2 < B, and f(8:) = 1 is
mapped into pu()\)wl + pzlo\)’u)z.)

The matrix P(\) of the coefficients p;;(A\) completely determines the trans-
formation @, . Given ®,, the operator U at g; is defined for each F in the
range of G, by AF(B:) = AF(B:;) — f(B8:;). Formally this definition depends
on \. However, repeating the argument of Section 10 we are able to find all
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possible ranges, that is, all possible definitions of . Given a possible range
R (i.e. a possible definition), we can construct the corresponding G, .

TevorREM 11.1. The Theorems 10.1 and 10.2 remain valid for the enlarged
Hilbert space with tnner product (11.1) provided that the boundary conditions
(10.7) are replaced by

—F*(B) + mu F(B) + meF(B:) + my AF(B) = 0

(11.3)

F7(B) + ma F(B1) + w2 F(B:) + ms AF(By) = O,
and (10.8) by
(114) aWIlF(Bl) = Ol1r2_1F(ﬁ2) =m F+(ﬂl) — F_(,32)

+ m AF(B1) + m AF(By).

It should be observed that when m; # 0, m, & 0, equations (11.3) represent
a definition of N at the boundary rather than “boundary conditions”. The
classical boundary conditions appear as a degenerate limiting case. The
theorem asserts that, for sufficiently large A, an operator &, inverting N — 9
and acting from H,, to conttnuous functions is possible only if U is defined as
indicated. In the case m; = 0 the boundary point 3, has measure zero, and no
definition of % is required. However, nonuniqueness persists, and the range
R must be specified by means of a lateral condition.

The proofs of Section 10 carry over to the present situation almost without
change. In the construction of ®, to given boundary conditions the relation
(10.22) defining the matrix P(\) in the nonsingular case now takes on the
form

0
(115) PO =1 + 9 + M, M= <m‘ )
0 my

In the singular case of a matrix of the form (10.23) the coefficient T' is now
given by

2 2
(11.6) TV =a+ Z wz‘j’ll',,;7l'j+>\2m1'7l'%,

=1 i=1
replacing (10.25).

12. Positive operators in C

We turn to the problem of finding the general form of the solutions of
A — YF = f when f, F are bounded continuous functions, % = D, D,,
A > 0. Theorem 7.1 enables us to translate the results into statements con-
cerning the general operator 2y .

The minimal Green function of Section 8 provides a solution Fmi», This
solution is unique except if at least one boundary is finite and either active or
semiactive. In this case new solutions F are formed by adding to Fmir g
bounded solution w of A\w — Aw = 0. Such a w has finite limits at both
boundaries, and therefore F and 9F have finite limits at B; whenever f(z)
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tends to a limit as ¢ — 8;. Thus we are dealing with linear transformations
from C to C (see (1.17)): the operator A is defined at the boundary points by the
requirement of continuity.

The object of our study is linear transformations & (A > 0) mapping each
f eC into a solution &, f = F of A\F — AF = f such that

(12.1) 0=sf=1 implies 0=A\F=1

Our problem is to construct the most general family {&\} of such transforma-
tions having a common range R. The restriction A/R of ¥ to R is then an
operator independent of A\, and

(12.2) G = — A/R)"

coincides with the resolvent of U/R. In the language of semigroup theory,
A/R generates a transition semigroup, and we are constructing the most
general transition semigroup. This has important applications in the theories
of diffusion and Markov chains.

We proceed to describe the general form of the possible ranges R and then to
construct the corresponding &, . 4

DeriniTioN 12.1. By boundary conditions of the general type we mean two
independent’® equations

82
P F(B) — oy FT(8) + 1 AF(BY) + fﬂ F'(@)e() dz = 0,

(12.3)
B2
p2 F(B) + a2 F(B) + mUAF(B) + j; F'(2)¢2(x) dx = 0,
where
(124) Pi g 0; [ = 07 T4 g 07
B2
(12.5) sl wl, wzo [Tr@d <,

and, of course, p; + o; + 7, + & # 0.
Boundary conditions of the special type are two equations

(12.6a) F(B1) = F(B),
pF(B) — a1 FT(B) + o2 F(B2) .
o AF@) + nAPB) + fﬁ @@ da =0,
where p > 0,0, > 0, 7, > 0,
(127) e, [ 1@ de < e,
[:1

(12.6b)

andp~+ o1+ os+ 11+ 72+ ¢ = 0.

19 Since ¢ decreases and {» increases, the two equations (12.3) are necessarily inde-
pendent unless o; = 7; = 0 and ¢; = const. In this case (12.6a) holds.
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A range R of the general [special] type consists of all F ¢ C such that AF ¢C
and F satisfies boundary conditions of the general [special] type.

Tueorem 12.1. Suppose that |B;| < « and that both boundaries are
active.

(a) Let {&} (A > \o) be a family of operators from C to C with a common
range R such that (12.1)—(12.2) hold. Then R is necessarily® of the form de-
scribed in Definition 12.1.

(b) Conversely, to each R of Definition 12.1 and each N > 0, there corresponds
a &\ whose range is R and such that (12.1)—(12.2) hold.

(¢) In order that \&\1 = 1, 4t is necessary and sufficient that p, = p, = 0
(or p = 0 in the special case (12.6)).

Proof. (a) Set-up. Asin the proof of Theorem 10.1, let w; be the solutions
of Mw — Yw = O satisfying the boundary conditions w;(8:;) = 1, wi(B:) =
we(B1) = 0. We are again concerned with transformations of the form
(10.3) where O™ corresponds to the minimal Green function and 7 is a
bounded linear functional. KEach such functional is represented by a func-
tion of bounded variation (signed measure) in the closed interval I:[8,, B
To simplify the writing we introduce the following notation for the inner
product:

B2+
(12.8) (f, dt) = fﬁ _Ja

where ¢ is of bounded variation (we always suppose ¢ continuous on the right).
Note that the integral contains contributions from the two boundaries.
Putting

(12.9) Fy=G®f =&,
we can rewrite (10.3) in the form
(12.10) Fy = F™ 4 w;-(f, d®) + we-(f, dB)

where (for fixed A, 7) the functions & are of bounded variation. Since
FY™(8:) = 0, we have

(12.11) @) = (f, dd).

Thus ®, is a positive transformation if, and only if, the & are nondecreasing.
Furthermore

(12.12) AGRL =1 — wy — we,

20 Theorem 12.1 generalizes the main result of [3] concerning operators of the special
form aD2 + bD, . Unfortunately the formulation in [3] contains an error: Due to a
notational confusion it was erroneously claimed that the functions {; are necessarily
bounded whereas, in reality, only their integrals need be finite. The old proof is more
complicated and is completely superseded by the present one.
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which shows that A&, 1 = 1 if, and only if, the variation of 2@ is < 1, i.e.
(12.13) MeB +) — V(e —)) S L

Fach pair of nondecreasing ®™ satisfying this condition defines a posttive
transformation ®, such that \&1 = 1, and all transformations of the desired
kind are obtained in this way. A function F e C is in the range of this &, if,
and only if, AF ¢ C and

(12.14) F(8:) = O\F — UAF, o), i=1,2.

In fact, the necessity of this condition is obvious from (12.11). Conversely,
define f = \F — 9UF and F\ = &, f. Then F — F, = w is a solution of
Av — Yw = 0 vanishing at both boundaries, and hence F = F) .

(b) Construction of the ranges. Suppose that for each X > Ao We are given
two nondecreasing & of variation < A such that (12.10) defines a trans-
formation ® with range R independent of . We want to show that R is
defined by boundary conditions as described in Definition 12.1.

Choose a fixed F ¢ R. For each A > )\ equation (12.14) holds. Letting
A — o through an appropriate sequence, we may suppose that P — $2
where {; is nondecreasing and of variation £ 1. (The convergence is to be
interpreted in the usual way as convergence at all points of continuity of ¢,
i.e. as “weak star” convergence.) Then F satisfies the boundary condition
F(B:) = (F, df;) which is obviously a special case of (12.3) except if it reduces to
the tautology F(8:,) = F(8,), i.e. except when 2§’ (z) — 0 for z < 8, and
AV (8, +) — 1. In this case the limiting function ¢, attributes unit mass to
B2 and mass zero to the interval [8;, Ba].

Let this be true. Then

(12.15) ANQUAF, dBP) — AF(By).

An integration by parts permits us to rewrite (12.14) in the form

B2 , o~
(12.16) “MFB) + fﬁ @) () do
+ (QIF, d@é)‘)) = 0’ O é a(x) é 1

b
(where we disposed of the arbitrary additive constant by setting
&M (B, —) = 0). Finally put

B2
(12.17) A0 = [ 2P() da.
81
Letting N — « through an appropriate sequence we may suppose that

(12.18) AT — ¢

where { = 0 is an increasing function and

I\

B2
(12.19) f f@dr=1—0¢=1.
B1
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Clearly
B2 B2
(1220) A7'(N)- fﬂ F'(z) \&P(z) do — fﬂ F'(2)i(z) dz + oF ().

Divide (12.16) by o(\) = a(\) + A(\) + X, and let A — o« in such a way
that (12.18) holds. Taking, if necessary, a further subsequence A — <« such
that

(1221) a\)o ' \) = pz, AN =5, AT — 7,

we see that the second equation in (12.3) holds with {; = & and oy = do.
Since ps + 72 + 6 = 1, we have p; + 72 + o2 + {2 # 0, and we have thus
verified the validity of the two equations (12.3).

However, we have to consider the possibility that these two equations are
linearly dependent, i.e. that both reduce to the statement F(8:) = F(B,).
This can occur only if & and ®" are the same and (12.10) takes on the
special form

(12.22) Fn = F™ 4+ (w + w)-(f, da™).

The above argument can now be repeated with trivial changes. The first
passage to the limit 2™ — ¢ will reduce to a tautology whenever ¢ is constant
in the interior of (8;, B;) but attributes unit mass to the set consisting of the
two boundary points. In this case the right side in (12.15) is to be replaced
by p1 AF(B1) + p2 AF(B), where p; = 0, pr + p: = 1. In the integration by
parts leading to (12.16) we replace? the norming V(B —) = 0 by d® ® =0
where 8 is an arbitrary fixed point, 81 < 8 < 8. The limiting function ¢ is
capable of negative values and may be unbounded at both ends.

(¢) Uniqueness. We have shown that our ranges satisfy the described
boundary conditions, but it remains to show that each F satisfying the
boundary conditions is an element of the range (assuming, of course, that
AF ¢ C). Thisis equivalent to saying that no solution w # 0 of A\w — Jw = 0
satisfies the boundary conditions. A direct verification of this assertion is
easy, but not necessary for our purposes. In fact, we shall prove that for
each A > 0 there exists exactly one transformation &, whose range satisfies the
prescribed boundary conditions. On the other hand, ®, is determined only
up to a multiple ®;-w of a bounded solution w of Aw — Yw = 0 which satisfies
the boundary conditions. It follows that no such solution #0 can exist.

Before proceeding to the existence proof, we digress to give

(d) An alternative form® of the boundary conditions. The boundary con-

21 Otherwise (12.18) would reduce to A71(\)®M (x) — p: for each = ¢ (81, B2), and,
instead of deriving a new boundary condition, we would once more verify that F(8,) =
F(B2).

22 Tt, is equally possible to proceed with a direct calculation using the original form of
the boundary conditions and the quantities w;; of (10.13). The new form of the bound-
ary conditions has the advantage of leading to the general form (12.44) when no posi-
tivity is required.
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ditions (12.3) are equivalent to

(12.23) 2;1 as F8) + 7. 9F @) + [ ﬂ AP(2)-2:2)- dm(z) = 0,
where

1220 (o) =0 )

and the z; are convex upward and such that

2:(Bs) = o4, 21(82) = z(B) = 0,
—21(B) 1, 2(B) = o

To pass from (12.3) to (12.23), define the constants c; by

(12.25)

B2
(12.26) j‘;l (c; — ¢ de = oy,
and put
B2 z
1220) 2@ = [ —-a@dy, ak) = [ﬂ (e — ¢2 () do.

A simple integration by parts now transforms (12.3) into (12.23). Con-
versely, it is clear that the coefficients «;; may be prescribed subject to the
conditions ey 4+ aiz = 0, ap £ 0, @ = 0; and the convex z; may be chosen
arbitrarily subject only to (12.25). Then an integration by parts leads back-
ward from (12.23) to (12.3).

Similarly, the boundary condition (12.6b) may be rewritten in the form

B2
(1228) pF(8) + n AF(B) + 7 AF(By) +fﬁ AP (x) 2(z)- dm(z) = 0

where
(12.29) @) = oy + j; (¢ — ¢(2)) do 8 = o

(e) The construction. For a given N > 0 we propose to determine the
&;" in (12.10) so that the ensuing ®, will have a range satisfying the boundary

conditions (12.23). For this purpose we introduce the notation

B2 X
(12:30) i) = fﬂ ™ (2, 1)aly) dmy)
and
82
(12.31) gsi = \ A z; w; dm
1

(remember that m is defined in the open interval and hence that no contribu-
tions from the boundaries appear in (12.31)).
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Multiply (12.10) by 2, and integrate to obtain the two equations
B2 B2 2 N
(12.32) M| Przidm =\ f fZidm + 2 qii - (f, d@{).
81 61 i=1

By using the relation UF), = A\ — f it becomes evident that F) satisfies the
boundary conditions (12.23) if, and only f,

2 B2
(12.33) ; M(f. dd) = /ﬂ flze — NZ;} dm + 7, f(B,)

where the matrix M is defined by

M = <0l11 + qu + Ay a + qu \
(1234) a9 + qu ag + @2 + A2

_ (P1+)\7'1+C1+(I11 "'01+912 )

—Cz + ga p2 + N2 4+ c2 + g/’

We next prove that for each A > 0 this matriz possesses an inverse M~ with
elements M7} = 0.

Clearly M;; > 0. Remembering that w,(82) = 0 and 2(8:)) = 0 we get

B2 , B2 , ,
(1235) M21 = —C2 + [ 22 dw1 = —C — j wy 29 dzx.
© 61 B1
Now w; < 0, while 2 decreases from #3(8;) = c.. It follows that
B2
(12.36) My < —c;+ ¢ f (—wy) de = 0,
81

and similarly My, < 0. Hence M3} = 0.
Premultiplication of (12.33) by M leads to an explicit form for ®" and
we have the following result:

In order that the range of the transformation (12.10) satisfy the boundary
condilion (12.3) [or the equivalent form (12.23)] it is necessary and sufficient that
®® be absolutely continuous (m) within the open interval (8; , B.) with a density
d@f)\) 2 _
2 M3 {2 — N2}

am =1

(12.37)

and that & attaches weight M; r; to the boundary B; .
In the case of the special boundary condition (12.6) [or (12.28)] and the trans-
Sformation (12.22), condition (12.37) s replaced by

\)
(12.38) % = Mz —\2)

and the weights are M "7, where

B2
(12.39) M = p -+ Ny + A2+ A ; (wy + wa)z dm.
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Note. The above result may be formulated more elegantly in the case
a; > 0, by extending the measure m to the boundary in such a way that
(12.37) holds also on the boundary. We know that Z; vanishes at both
boundary points. In view of (12.25) the function 2; — AZ; equals ¢; at 8; and
0 at the other boundary. It follows that +f m is extended to the closed interval
181, B2] by attributing weight m; = 7:/a; to B: , then & is defined by the density
(12.37) [or (12.38)] throughout the closed interval, and no special reference to 8;
is required.

() Vertfication of the norm conditions. Lemma 9.3 guarantees that
2; — NZ; = 0. Since M:} = 0, it follows that (12.37) defines nondecreasing
3. Multiplying (12.12) by z; and integrating, we get, remembering (12.30)
and (12.31),

B2

(12.40) A \ {2 —NZ;} dm = gqa + ¢aa.
1

For the special choice f = 1 the right side in (12.33) reduces therefore to
(1241) 0= {ga+ gao+ nA\" = {(Ma+ Mo — p\ S { Mo+ Mo\

with the equality sign holding only if p; = 0. Premultiplying the two equa-
tions (12.41) by the positive matrix M, we find that the variations of &
are = 1, and equal to 1 only if p; = p» = 0.

The same argument applies to (12.38) and completes the proof.

TaroreEM 12.2. In the case where B2 is semiactive, Theorem 12.1 remains true
except that in the boundary conditions o, = 0.

Progf. The novel feature is that with a semiactive boundary m(B:) = «,
and therefore the boundedness of AF no longer implies that F’ is bounded.
The above proof requires no change up to (12.19), but (12.20) makes no sense.
Now

(12.42) F(x) — F(8) = fﬂ :“ AF - dm,
and hence
(12.43) Fl@ym™(z) — AF(B) r— By,

Thus the behavior of F’ near 8, is determined by %F(8,) instead of by F (8z).
It is possible that for each F in the range AF(8;) = 0. This then constitutes
a special boundary condition of the form (12.3), and no further argument is
required. Otherwise choose F so that AF(8;) > 0. It is then obvious that
(12.20) holds with ¢F~(8;) replaced by ¢’AF(B8z). Thus the term containing
F~(B:) drops out. The actual construction of ®, requires no change (and
simplifies somewhat due to the absence of a term in the boundary condition).

Note. From (12.14) it is easy to deduce the general form of the boundary
conditions when &, is not positivity preserving or norm-decreasing. In-
tegrating twice by parts and adjusting the two arbitrary constants so as to
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eliminate the terms F(8;) we see easily that in general the range of @, will be
determined by two equations of the form

B2+
(12.44) F() = f F)- iz,

B1—

The boundary conditions (12.22) are a special case and show the particular
form required for ®&, to be positive.

13. The adjoint transformations

Let M be the Banach space of functions of bounded variation (signed
measures) on the closed interval I:[8;, 8], the total variation serving as
norm, Considered as transformation from C to C, each &, has an adjoint
®% mapping each 7 ¢ M into another element II = ®xr ¢ M. By using the
notation (12.8) for inner products, the adjoint ®x is defined by (®\f, dr) =
(f, dr). If ®, is defined by a kernel

(13.1) 6 = [ G, i) dmo),
then the equation

B2
(13.2) P(y) = fﬂ iz, y) dr(a)

defines a continuous m-density, and

(133) (o) — Wit = [

2
P(y) dm(y)
EN
defines the transform I = Gy
Consider first the case of a symmetric kernel G», for example, the minimal
Green function Gy of Section 8. If 7 has a continuous density p = dx/dm,

then P = ®, p, and hence

(13.4) AP — YP = p.
Integrating with respect to m we find

(13.5) \I — D, P = 7 + const.
or

(13.6) NI — D, D, I = r 4+ const.

In other words, A* = D,D,, appears as the formal adjoint of the differential
operator A = D,, D,. Tt is easily verified by integration by parts that (13.6)
holds almost everywhere when G is an arbitrary Green function and = an
arbitrary function of bounded variation.

The minimal Green function Gy provides for each X > 0 a solution of (13.6)
for given w e M. This solution is unique except if there exists a » of bounded

variation such that almost everywhere (m)

(13.7) N — Dy Dyo = 0.
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In this case it is readily seen that u = D, v is a solution of
82

(13.8) A — DpD,u =0, f |u|dm < o
61

and, conversely, each u satisfying (13.8) gives rise to a solution of (13.7) which
is of bounded variation. Referring to Section 6 we see that the case of non-
uniqueness arises if, and only if, a boundary B; is either active or infinite and
semzactive.

Thus an active boundary causes nonuniqueness for the inversion both of
A — A dn C and for N — A* tn M ; a semiactive boundary 3; causes nonuniqueness
wn the first case when | B; | < o, and in the second case when | B;| = .

Whenever nonuniqueness occurs the range R* of ® is determined by ap-
propriate boundary conditions. With symmelric kernels these boundary
conditions are the same in the spaces C and M so that no further discussion
is required. However, an altogether new situation confronts us when &, has
an unsymmetric kernel G.

For sake of definiteness let us consider the transformation &, of Theorem
12.1 determined by the boundary conditions (12.3). The formulas are
simpler and more pleasing in the nondegenerate case o1 # 0, o2 ¥ 0 when
formal elegance can be achieved by extending the measure m to the closed
interval I:(8, Ba); by definition, the points B; carry the weights

(13.9) my = mi/o1, my = 1/0y,

respectively. (The case o; = 0 may be treated directly by the same method,
or by a passage to the limit.)

TarorREM 13.1. Let m be defined in the closed interval I in accordance with
(13.9). Let ®) be that inverse to A — A, X > 0, whose range R is determined by
the boundary conditions (12.3) supposing 0 < my, my < « (&, is described in
Theorem 12.1). Then:

() The adjoint &% maps each function of bounded variation (signed measm'e)
xon I into IL = ®&x such that 11 is absolutely continuous with respect to m and its
density P = dIl/dm s continuous in I. (It is given by (13.19)-(13.20).)

(ii) There exists an operator *, independent of N\, such that

(13.10) ®r = (A — an

(i.e. O is the resolvent of A* and A* a formal adjoint to 3 = D,, D,).
In the case when the monotone functions {1 and ¢ occurring in the boundary
conditions (12.3) as well as = have denstties

_ _4h _ a5 _dm
(13.11) m = d——m, ne = am’ = am’



GENERALIZED SECOND ORDER DIFFERENTIAL OPERATORS 501

the identity \IL — U*I = = may be expressed in terms of the density” P =
dIl/dm as follows:

(13.12) AP(z) — Dy D, P(z) — P(B)o1 m(x) — P(B:)o2 na(x) = p(x)

for B < x < B, and

(13.13) AP(Br) — PBmmi — mi'Ay P = p(By), k=12
where the operator A; s defined by™

(1314) AP = (—1)*lim {P'(z) — P(B)o1" £1(x) + PB2)oz" £2(2)}.

2>k

Note 1. Observe that in the interior I the operator A* reduces to the dif-
ferential operator D, D,, if, and only if, 5; = 0, that is, if {; = const. in the
open interval I. In this case the boundary conditions (12.3) take on the
form (11.3) known from the Hilbert space theory (except that the symmetry
condition i, = y is no longer required). In other words, the classical
boundary conditions with the added terms v, AF(B;) are the only boundary con-
ditions making the adjoint A* again a differential operator.

Note 2. Integrating (13.12) and adding to (13.13) we find the identity

Ba+ 2 Bo+
(13.15) A fﬁ ) P(y) dm(y) + ’;P(ﬁk)azl pr = fﬂ B p(y) dm(y).

Since ®x is positive, (13.15) shows that A | ® || = 1 if, and only if,
o1 = pz = 0. This, of course, follows also from Theorem 12.1, (c).
Proof. The transformation O, is induced by the kernel

2

(13.16)  Gh(z,y) = R (x,p) + ) wi(@) M7 {2;(y) — NZ;(y)}

)=

where 8, £ z, y = B, and Gi™ is the minimal Green function for A and the
interval I (see (12.37) and the note following (12.39)). In other words, the
transform II = ®~ has the density P = dII/dm defined by

7,J=

2
(1317)  P(y) = P™™(y) + 21 (w; , dD)M7; {2i(y) — NZi(y)}
where 8, = y =< B; and
. B2
(13.18) P™"(y) = fﬂ GY " (x, y) dn(y);

the notation (f, dr) for inner products was introduced in (12.8).

23 The explicit form of 2* in the general case without densities is, of course, obtained
by integrating (13.12) and introducing the original set functions I, {; , = instead of their
densities. Observe that this integration changes the term D,, D, P into D, D,, II.

24 A special case of Theorem 13.1 is treated in [3]. However, due to the error men-
tioned in footnote 20 only the case of bounded ¢; was treated, and therefore the analogue
to (13.13) in [3], Section 22, has a more restricted form.
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For y = B; we get from (13.17) (see again the note following (12.39))
(13.19) P, = é (w; , dM3; oj,
and (13.17) may more conveniently be rewritten in the form
1320 PG) = P0) + X PO () — M),

The continuity of P is obvious. To prove (13.12) we recall the definition
(12.27) of z; according to which

(13.21) D.zy = —c1 + ¢, Dota = ¢ — (.

Thus 9; = D, D,z;, by the definition (13.11). Since APmi» — YPmir = p
and \Z; — UZ; = z;, the assertion (13.12) follows on operating with ¥ on
(13.20).

The relations (13.13) are less obvious. The minimal Green function is
formed by means of the two solutions ws , w: , which are minimal at 8; and
Bz, respectively. They satisfy the boundary conditions wi(82) = w»(81) = 0,
wi(8;) = 1, and their Wronskian equals wi(8) = —wr (). It follows
(cf. (7.14)) that

ppming s __ wi(@) [T wi(z) (™~
(13.22) DIP™™(z) = w60 dous ws(y) dr(y) +ww1) » wi(y) dr(y).
Hence .
(13.23) (=1)'lim D, P™™(z) = —f : w;(y) dr(y).
z->B; B+

Remembering that = attaches weight m; p(8;) to 8; we can rewrite (13.23) as
(1) liI;} D, P™™(z) = m; p(8;) — (w;, dr)
(13.24) '

2
msp(B) — X P M,
(cf. 13.19).
Next, Z; = Oy " z;, and hence we have by analogy with (13.23)

. B2—
(1325) (—=1)'lim D, Z(z) = — fﬂ . wi(Y)ziy) dm(y) = —\"'g;;

z->B;
(using the notation (12.31)).
We now differentiate (13.20) with respect to y using (13.24), (13.21), and
(13.25). 1In this way we find for the operators defined in (13.14)
2 .
(1326) Ax P = mi p(B) + ; PB)oi { =M + (=1 cr + ga).

Finally, by using the definition (12.34) of the matrix M it is seen that within
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the braces we have the elements of a diagonal matrix, p; + A7;, and thus
(13.26) reduces to

(1327) A P = my p(ﬁk) - )\P(Bk)mk - P(Bk)pk 0‘}:1.

Dividing by m; we get (13.13).

To complete the proof of the theorem it remains to verify (13.10), namely,
that (13.12)~(13.13) admit of only one solution. Now consider the P(3;) for
the moment as two parameters. If these are given, (13.12) admits of exactly
one solution such that P(z) — P(B;) as x — B;. Equations (13.13) then
represent two algebraic linear equations for the two unknowns P(8;) and
P(Bs). We know that to arbitrarily prescribed p(8;) there exists at least one
solution, namely the one furnished by ®x . It follows that the determinant
of the system can not vanish, and hence the solution is unique. The theorem
is proved.

Note. We have shown that the operator A* is completely determined by
(13.12)~(13.13) without any boundary conditions. In the limiting case
me = 0 the boundary B, carries no mass, and it is senseless to talk about a
density P = dII/dm at the individual point 8.. However, P(8;) remains
defined by the requirement of continuity P(8:) = lim P(z) as x — 8. Mul-
tiply the second equation in (13.13) by my; and pass to the limit m; — 0.
We get formally

(1328) P2 P(ﬁz) + (] Az P =0.

In this case it is senseless to talk about U* at 8, . However, the operator A*
defined by (13.12)—(13.13) s now to be restricted by the boundary condition
(13.28). Thus, exactly as in the case of the Hilbert space (see Section 11)
the boundary conditions appear as a limiting case of the definition of operators on
the boundary. Incidentally, when the functions {; appearing in the boundary
conditions (12.3) are bounded, then A; P reduces to a linear combination of
P'(8), P(B1), P(B:), and (13.28) reduces to a boundary condition of the
classical type.
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