INEQUALITIES FOR ASYMMETRIC ENTIRE FUNCTIONS ${ }^{1}$

by R. P. Boas, Jr.

Let $p_{n}(z)$ be a polynomial of degree n such that $\left|p_{n}(z)\right| \leqq 1$ in the unit disk $|z| \leqq 1$. The following results are well known.

Theorem A. For $|z|=R>1,\left|p_{n}(z)\right| \leqq R^{n}$.
Theorem B. For $|z|=1,\left|p_{n}^{\prime}(z)\right| \leqq n$.
Theorem A is a simple deduction from the maximum principle (see [11], p. 346, or [10], vol. 1, p. 137, problem III 269). Theorem B is an immediate consequence of S. Bernstein's theorem on the derivative of a trigonometric polynomial (for references see [12], or [2], pp. 206, 231).

When $p_{n}(z)$ has no zeros in $|z|<1$, more precise statements can be made:
Theorem C. For $|z|=R>1,\left|p_{n}(z)\right| \leqq \frac{1}{2}\left(1+R^{n}\right)$.
Theorem D. For $|z|=1,\left|p_{n}^{\prime}(z)\right| \leqq \frac{1}{2} n$.
Theorem D was conjectured by Erdös and proved by Lax [8]; for another proof see [4]. Theorem C was deduced from Theorem D by Ankeny and Rivlin [1].

Since $p_{n}\left(e^{i z}\right)$ is an entire function of exponential type, these theorems suggest generalizations to such functions. Let $f(z)$ be an entire function of exponential type τ, with $|f(x)| \leqq 1$ for real x.

Theorem A'. For all $y,|f(x+i y)| \leqq e^{\tau|y|}$.
Theorem B^{\prime}. For all real $x,\left|f^{\prime}(x)\right| \leqq \tau$.
Theorem A^{\prime} is a simple consequence of the Phragmén-Lindelöf principle (for references see [2], p. 82; see also [11], pp. 346-347). Theorem B^{\prime} is Bernstein's generalization of Theorem B (see references on Theorem B).

In this note I obtain theorems for entire functions which generalize Theorems C and D . To see what to expect, note that $p_{n}\left(e^{i z}\right)$ is an entire function $f(z)$ of exponential type of a special kind: if $h(\theta)$ is its indicator, we have $h(-\pi / 2)=n$, but $h(\pi / 2)>-n$ unless $p_{n}(z)=c z^{n}$. If $p_{n}(z)$ has no zeros in $|z|<1, f(z)$ has no zeros in $y>0$, and moreover (since $\left.p_{n}(0) \neq 0\right) h(\pi / 2)=0$.

Let us consider, then, entire functions $f(z)$ of exponential type τ with $|f(x)| \leqq 1$ for real $x, h(\pi / 2)=0$ (hence necessarily $h(-\pi / 2)=\tau$, and $f(z) \neq 0$ for $y>0$.

Theorem 1. For $y<0,|f(x+i y)| \leqq \frac{1}{2}\left(e^{\tau|y|}+1\right)$.
Theorem 2. For all real $x,\left|f^{\prime}(x)\right| \leqq \frac{1}{2} \tau$.
Received May 8, 1956.
${ }^{1}$ Research supported by the National Science Foundation.

Theorems 1 and 2 include Theorems C and D, so that we have new proofs of these theorems.

We can vary the form of Theorems 1 and 2 to a certain extent by reducing the asymmetry of the indicator diagram and applying the theorems as they stand to $e^{-i \sigma z} f(z)$ with a suitable σ.

To illustrate Theorems 1 and 2, consider functions of the form

$$
\begin{equation*}
f(z)=\int_{0}^{\tau} e^{i z t} d \alpha(t), \quad \int_{0}^{\tau}|d \alpha(t)|<\infty \tag{1}
\end{equation*}
$$

If $\alpha(t)$ is not constant in any interval $0 \leqq t \leqq a, a>0$, we have ([2], p. 108) $h(\pi / 2)=0$ and $h(-\pi / 2) \leqq \tau$. Theorems 1 and 2 then apply to this $f(z)$ if (in particular) $d \alpha(t)=\varphi(t) d t$ and $\varphi(t)$ is positive and decreasing, since [9] $f(z)$ then has all its zeros in the lower half plane. (If we take $x=0$ in this special case we find the inequality $\int_{0}^{\tau} t \varphi(t) d t \leqq \frac{1}{2} \tau \int_{0}^{\tau} \varphi(t) d t$ which is a special case of Chebyshev's inequality ([7], p. 168).) However, it is clear that if all the derivatives of $f(z)$ satisfied the conditions of Theorems 1 and 2, we should obtain a contradiction by repeated applications of Theorem 2. Unless $t=0$ is an isolated discontinuity of $\alpha(t)$ (as it is when $f(z)=p_{n}\left(e^{i z}\right)$), all the derivatives of $f(z)$ have the same indicator as $f(z)$; hence not all the derivatives of $f(z)$ can be free of zeros in the upper half plane. Similar reasoning leads to the following more general result.

Theorem 3. If $f(z)$ is an entire function of exponential type τ, such that $h(\pi / 2)=0$ for $f(z)$ and all its derivatives, and $f(z)$ is bounded on the real axis, then every half plane $y>a \geqq 0$ contains zeros of infinitely many derivatives of $f(z)$.

If $f(z)$ has the form (1) with $d \alpha(t)=\varphi(t) d t$ and $\varphi(t)$ positive and increasing, all the zeros of $f(z)$ and its derivatives are in $y \geqq 0[9]$. If $d \alpha(t)=\varphi(t) d t$ and $\varphi(t)$ is an integral, the zeros are always asymptotic to the real axis [5]; Theorem 3 shows, however, that the zeros of the derivatives of $f(z)$ cannot be uniformly asymptotic to the real axis.

The condition $h(\pi / 2)=0$ in Theorem 3 will hold for all the derivatives of $f(z)$ unless 0 is a pole of the Borel transform of $f(z)$.

We deduce Theorem 1 from the following theorem.
Theorem 4. If $g(z)$ is an entire function of exponential type τ, i^{f} $|g(x)| \leqq M$ for all real x, and if

$$
\begin{equation*}
|g(z)| \leqq|g(\bar{z})|, \quad y<0 \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
|g(x+i y)| \leqq M \cosh \tau y, \quad y<0 \tag{3}
\end{equation*}
$$

This is ostensibly a generalization of a theorem of Duffin and Schaeffer [6], in which $g(z)$ is real on the real axis, so that $|g(z)|=|g(\bar{z})|$; but it is actually a corollary of the Duffin-Schaeffer theorem.

To prove Theorem 4, let $\bar{g}(z)$ be the conjugate of $g(z)$, and consider $G(z)=$ $g(z) \bar{g}(z)$, an entire function of exponential type 2τ. We have $|G(x)| \leqq M^{2}$ for real x; and $G(x)$ is real and non-negative on the real axis. Hence $G(z)-\frac{1}{2} M^{2}$ is real on the real axis, with absolute value bounded by $\frac{1}{2} M^{2}$. By the DuffinSchaeffer theorem,

$$
\begin{gathered}
\left|G(z)-\frac{1}{2} M^{2}\right| \leqq \frac{1}{2} M^{2} \cosh 2 \tau y \\
|g(z) \bar{g}(z)| \leqq \frac{1}{2} M^{2}(\cosh 2 \tau y+1)=M^{2} \cosh ^{2} \tau y
\end{gathered}
$$

Since $|g(z)| \leqq|\bar{g}(z)|=|g(\bar{z})|$ for $y<0$, the conclusion follows.
The same reasoning shows (as A. C. Schaeffer has pointed out) that, whether or not (2) holds, at least one of $g(x+i y), g(x-i y)$ satisfies (3). (For another proof of this, see [3].)

To prove Theorem 1, put $g(z)=f(z) e^{-\frac{1}{2} i \tau z}$. Then $|g(x)| \leqq 1$ and $g(z)$ is of exponential type $\tau / 2$; moreover, the indicator h_{g} of g satisfies $h_{g}(-\pi / 2) \leqq$ $h_{g}(\pi / 2)$. Since $g(z)$ has no zeros for $y>0$, by a theorem of B. Levin (see [2], p. 129) we have $|g(z)| \leqq|g(\bar{z})|$ for $y<0$. Hence, by Theorem 4

$$
|f(z)| \leqq e^{\frac{1}{\tau}|y|} \cosh \frac{1}{2} \tau y=\frac{1}{2}\left(e^{\tau|y|}+1\right)
$$

for $y<0$.
To prove Theorem 2, consider the same function $g(z)$. By another theorem of Levin (see [2], p. 226, 11.7.5), the function $g^{\prime}(z)-(\alpha+i \beta) g(z)$ also has no zeros for $y>0$ if $\beta \geqq 0$. That is, if $y>0$ and $\beta \geqq 0$,

$$
\begin{equation*}
f^{\prime}(z)-\left(\frac{1}{2} i \tau+\alpha+i \beta\right) f(z) \neq 0 \tag{4}
\end{equation*}
$$

Since $|f(x)| \leqq 1$ for real x and $h(\pi / 2) \leqq 0$, we have $|f(x+i y)| \leqq 1$ for $y \geqq 0$. Thus if λ is any complex number of modulus greater than $1, f(z)-\lambda$ satisfies the same hypotheses as $f(z)$. Hence we also have, for $y>0$ and $\beta \geqq 0$, and all λ with $|\lambda|>1$,

$$
\begin{equation*}
f^{\prime}(z)-\{f(z)-\lambda\}\left(\frac{1}{2} i \tau+\alpha+i \beta\right) \neq 0 \tag{5}
\end{equation*}
$$

We now show that (4) and (5), with $|f(z)| \leqq 1$, imply $\left|f^{\prime}(z)\right| \leqq \frac{1}{2} \tau ;$ since this is true for all $y>0$ it is also true for $y=0$.
To simplify the notation, put $i f^{\prime}(z)=w, f(z)=\zeta, \frac{1}{2} \tau-i \alpha+\beta=a+i b$, with $a \geqq \frac{1}{2} \tau$. Then (4) and (5) become

$$
\begin{align*}
w-\zeta(a+i b) & \neq 0 \tag{6}\\
w-(\zeta+\lambda)(a+i b) & \neq 0 \tag{7}
\end{align*}
$$

where $|\zeta| \leqq 1$, and the inequalities hold for all λ with $|\lambda|>1$, all $a \geqq \frac{1}{2} \tau$, and all real b. There is no loss in generality from taking $\frac{1}{2} \tau=1$. If $\zeta=0$, (7) with $a=1$ and $b=0$ says that $w \neq \lambda$ and so $|w| \leqq 1$. If $\zeta \neq 0$, we may assume that ζ is real and positive (otherwise consider we instead of w). Then let $\zeta=\sin \psi, 0<\psi \leqq \pi / 2$.

The points $w=u+i v$ with $|w|>1$ may be divided into three sets:
(i) The set of points with $|v| \leqq \cos \psi$ and $u \leqq 0$;
(ii) The set of points with $|v| \leqq \cos \psi$ and $u>0$;
(iii) The set of points with $|v|>\cos \psi$.

We proceed to show that each of these sets is excluded by (6) or (7). (The reasoning is most easily followed on a figure.)

Set (i) is a subset of the set (iv) of points with $|w|>1$ and $u \leqq 0$. In set (iv), $|w-\zeta| \geqq|w|>1$, and so, for any w in (iv), $w=\zeta+(w-\zeta)=$ $\zeta+\lambda,|\lambda|>1$, contradicting (7) with $a=1, b=0$.

Set (ii) is a subset of the set (v) of points with $|w|>1$ and $u>\zeta$, since $u^{2}>\zeta^{2}$ if $u^{2}+v^{2}>1$ and $v^{2} \leqq 1-\zeta^{2}$. In set (v), $\Re(w / \zeta)>1$ and this contradicts (6).

For w in set (iii), consider (for definiteness) the case when $v>\cos \psi$. If $\zeta<1$, take $\lambda=(1+\varepsilon) i \cos \psi-\zeta$, with $\varepsilon>0$; then $|\lambda|>1$ and

$$
\Re\left(\frac{w}{\zeta+\lambda}\right)=\frac{v \sec \psi}{1+\varepsilon}>1
$$

provided ε is small enough, contradicting (7). If $\zeta=1$, take $\lambda=-1+i \varepsilon$, and then

$$
\mathfrak{R}\left(\frac{w}{\zeta+\lambda}\right)=v / \varepsilon>1
$$

if ε is small enough, again contradicting (7).
We see that (6) and (7) actually restrict $f^{\prime}(z)$ to a proper subset of the unit disk.

References

1. N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math., vol. 5 (1955), pp. 849-852.
2. R. P. Boas, Jr., Entire functions, New York, 1954.
3. --, Inequalities for functions of exponential type, Math. Scand., vol. 4 (1956), pp. 29-32.
4. N. G. de Bruisn, Inequalities concerning polynomials in the complex domain, Neder. Akad. Wetensch., Proc., vol. 50 (1947), pp. 1265-1272 = Indagationes Math., vol. 9, pp. 591-598.
5. M. L. Cartwright, The zeros of certain integral functions, Quart. J. Math., Oxford Ser. (1), vol. 1 (1930), pp. 38-59.
6. R. Duffin and A. C. Schaeffer, Some properties of functions of exponential type, Bull. Amer. Math. Soc., vol. 44 (1938), pp. 236-240.
7. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, 1934.
8. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., vol. 50 (1944), pp. 509-513.
9. G. Pólya, Über die Nullstellen gewisser ganzen Funktionen, Math. Zeit., vol. 2 (1918), pp. 352-383.
10. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Berlin, 1925.
11. M. Riesz, Über einen Satz des Herrn Serge Bernstein, Acta Math., vol. 40 (1916), pp. 337-347.
12. A. C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., vol. 47 (1941), pp. 565-579.

Northwestern University

Evanston, Illinois

