
A FUNDAMENTAL INEQUALITY IN THE THEORY OF
EXTENSIONS OF VALUATIONS

BY I. S. COHEN AND OSCAR ZARISKI

1. Let K be a field and let K* be a finite algebraic extension of K, of de-
gree n. Let v be a valuation of K, and let v*, v ,. vg be the distinct
extensions of v to K*. We denote by F and A respectively the value group
and the residue field of v, and by F and A the analogous entities for v.
It is known that (a) the number g of distinct extensions v of v is finite, that
(b) A is a finite extension of A, and that (c) F is a subgroup of F of finite
index. The integers f [A:A] and e index of F in F are respectively
the relative degree and the reduced ramification index of v with respect to v.
The purpose of this note is to prove the following inequality :
(1) ef n.

il

At the end of the note we shall give some conditions under which the equality
sign in (1) is valid.

2. We shall first introduce some notations and recall a few known facts
from valuation theory.

If v and v are valuations of K and if the valuation ring R, of v is a proper
subring of the valuation ring R,, of v’, then we shall write v’ v and we shall
sy that v is composite with v. In the case of valuations of finite rank the
relation v’ v implies that the rnk of v is less than the rank of v.

If v is composite with v and if A’ is the residue field of v, then v determines
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If K* is a separable extension of K, v* any extension of v to K* and p the insepa-
rable factor of relative degree f of v (p characteristic of A), then it seems conven-
ient to designate as the ramification index of v* the product ep (e reduced ramifica-
tion index of v).

A Note by O. Zaristi. A proof of (1) for valuations v of finite rank was found by
me in 1952 (but remained unpublished). A few weeks before his death (in 1955), Cohen
outlined a proof of (1) for valuations of infinite rank in a letter to Oscar Goldman.
Although very sketchy, this outline enabled me to reconstruct the proof that Cohen
must have had in mind, and the present proof is, to the best of my knowledge, a
synthesis of the proofs of both authors. An independent proof of (1) was given by
Roquette at about the same time that Cohen communicated the outline of his proof to
Goldman. Although priority (for the case of valuation of infinite rank) may readily
be conceded to Roquette, the fact that the present note contains, in part, the last piece
of research undertaken by I. S. Cohen before his death makes the publication of this
note both timely and proper.
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uniquely a valuation of A’, as follows: if
representative element of ’ in K, then (’) v(). We write
The residue field of is the same as the residue field A of v.

Conversely, given ny vluation v’ of K and a wluation of the residue
field A’ of v’, there exists a unique valuation
The valuations v’ with which a given wluation v is composite form linearly

ordered set with respect to the relation
If v v’ o nd if r, F’, nd re the value groups of v, ’, and respec-

tively, then is subgroup of F, and F’ F/.
Two valuations v, v2 of K are said to be iependen if there exists no

valuation v such that we hve simultaneously v v nd v v2. A finite
set of valuations v of K is independent if ny two of the wlutions v are
independent.
We shll mke use of the following well-known fcts concerning the exten-

sions of v to K*’
(A) If v nd v* *are two distinct extensions of v to K*, then v v and

(B) If v v o and v* is any extension of v, then v* can be written in one
and only one way in the form v* v’* o V*, where v’* is an extension of v’ to
K* and * is an extension of the valuation of the residue field A’ of v’ to
the residue field A’* of v’*.

(C) If v v o , v’* is any extension of
to the residue field of v’*, then v’* o * is an extension of v to K*.

(D) If v*, v’* are vMuations of K* such that v* is an extension of v and
v’* < v*, then the restriction v’ of v’* to K is such that

(E) With the same notations as in (B), let e, e’, and g be the relative
ramification indices of v* (with respect to v), of v’* (with respect to if), and
of * (with respect to V). Then e
We denote by E(v) the set of all extensions of v to K* and by L(v) the set

of all valuations v’ of K such that v’ < v. For given v and v’ such that v’ < v,
we have, in view of (B), a mpping of E(v) into E(v’). We denote this map-
ping by , ()

By construction, the mapping , has the following property"

(2) , (v*) < v* for any v* in E(v).

By (C)t this mapping is onto E(v’). If v" < v’ < v then it is clear that

(3) ’
For a given v and for a given extension v* of v to K* we also have a mapping

defined as follows:
(4)

:,: L(v) -- L(v*),

, (v’) , (v*), v’ L(v).
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That k. is indeed a mapping into L(v*) follows from (2). It follows directly
from (D) that k, maps L(v) onto L(v*). It is obvious that k. is an order
preserving mapping and is (1, 1) (note that b.(vp) is always an extension
of v’).

3. We next prove two preliminary lemmas.

LEMMA 1. Let v v’ o , let A be the residue field of v (and hence also of ), and

holds for (v’, K, K*) (i.e., for the valuation v’ a ’* ’*ts extensions Vl V2

v* to K*) and for each of the h tris (, A’, A’,*), then the inequality (1) holds
for (v, K, K*).

Proof. Let-* * -*v,,, ,,, v,,, be ull the extensions of to A,*. Let f:
and e’. be respectively the relative degree and the reduced ramification index,.
of v, with respect to v’, and let ],,t and ,,t, be the corresponding characters
of -*v,,t, with respect to . By assumption, we have

h

g

f’,, 1,e,
al

Hence
h

sl

index of the valuation v8 o vs,t, with respect to v. Since the residue fields of
the valuations , v,,t. coincide respectively with the residue fields of v and
’* -* the integer ]8 , is also equal to the relative degree of v8 o vs, ItV8 o Vs,t

follows that (5) is identical with (1). Q. E. D.
For any valuation v of K we denote by g(v) the number of distinct exten-

sions of v to K*. From the existence of the mapping ,, it follows that g(v)
is a monotone increasing function of v. The next lemma is our principal
auxiliary result.

LEMMA 2. /f L(v) has no last element, then g(v) max.,L(.) {g(v’)}.

Proof. Let go max..,L(v) {g(v’)} and let us fix in L(v) a valuation v0 such
that g(vo) go. To prove the lemma we have to show that the mapping, of E(v) onto E(v), is (1, 1). Let v’, v* be elements of E(v) such that

(6)
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Since L(v) has no last element, and since is a (1, 1) order preserving map-
ping of L(v) onto L(v) (i 1, 2), also L(v) and L(v*) have no last element.
Therefore

R f’l R,,, i 1, 2,
v’*l(v)

where R. denotes the valuation ring of v*. Thus, in order to show that
v* v., we have only to show that L(v*) L(v), and for this it will be
sufficient to show that
Let then v’ be an arbitrary element of L(v). By the definition (4) of h,

the equality b:] (v’) h (vr) (which we wish to establish) is equivalent to

(7)

)/We have either (a) v’ _-< v0 < v or (b) v0 < < v. In case (a) we have ,
,0 , and in this case (7) follows directly from (6). In case (b) we have

i’.’ We observe that since v0 < we have g(v) <- g(v), and
hence g(v’) g(v’o) since v’ e L(u) (and by our choice of vg). Thus E(v) and
E(v) have the same number of elements, and consequently 0 is a one-to-
one mapping of E(v’) onto E(v). Thus, again (7) follows from (6) (and
from the above relation 0 "q’), Q. E. D.

4. We now proceed to the proof of the inequality (1). This inequality
is known for valuations v which are discrete, of rank 1. The proof of this
inequality in that case uses only the fact that the extensions of v to K* are in
that case independent. Therefore our inequality (1) can be regarded as
known whenever the extensions of v are independent, in particular, if g(v) 1.
We shall therefore use induction with respect to g(v).
The case in which the extensions of v to K* are independent is characterized

by the condition that for any v in L(v) the mapping , is (1, 1), or, equiva-
lently, that g(v) g(v) for any v in L(v). We may therefore assume that
there exist valuations v in L(v) such that g(v) < g(v). Let Lo(v) denote the
set of all such valuations v. We assert that Lo(v) has a last element. For,
assume the contrary. Since L0(v) is a linearly ordered set of valuations, the
intersection of the valuation rings R,, v’ e Lo(v), is the valuation ring of some
valuation v0,’ and we have Vo =< v, Vo Lo(v). It is clear that Lo(v) L(v)
(since Lo(v) contains with any valuation v’ also all the valuations v such that
vt < v’). By Lemma 2 we have therefore g(v) maxv,L0(v) {g(v’)}, whence
g(VPo) < g(v), Vo e Lo(v), a contradiction.
Let then v’ be the last element of Lo(v) and let v v’ O. We use the nota-

tions of the proof of Lemma 1. Since g(v’) < g(v), our induction hypothesis
implies that the inequality (1) holds for (v’, K, K*). We now have to con-
sider two cases, according as h g(v’) > 1, or h g(v’) 1.

If h > 1, then each of the integers g, g, g is less than g(v) (since
g -t- g g g g(v)). Hence, inequality (1) holds for each of the
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h triads (0, A’, A’8*). Therefore, inequality (1) holds also for (v, K, K*),
by Lemma 1.
Assume now that h 1. In that case, v’ has only one extension to K*,

but any valuation vr’ such that v’ < v" <- v has exactly g extensions to K*
(in view of the fact that v’ is the last element of Lo(v)). When interpreted
as a property of 0, this property of v’ has the following meaning" the valuation
0 of A’, and every valuation O’ of A’ such that O O, has exactly g extensions
[to the residue field Ar* of the (unique) extension vr* of v to K*]. This means
that the g extensions of 0 are independent. Hence inequality (1) holds for
(0, Ar, At*), and therefore it follows again from Lemma 1 that our inequality
(1) holds for (v, K, K*).

5. The following is a sufficient condition for the equality sign to hold in
(1): if R* is the integral closure of R in K*, then R* is a finite R-module. The
proof runs along lines which are familiar in the case of discrete valuations of
rank 1, and it will be sufficient to give an outline of the proof.

If v**, v=* ,..., vg are the extensions of v to K*, R the valuation ring of
* n-’ ’* * * * * T *v a a wi the maximal 1deal of Ri we set i n R hen 1. g are the only maximal ideals in R*, and the quotient ring of R*
with respect to :? is the valuation ring of v. If denotes the maximal
ideal of the valuation ring R R.v of v, then* Ri.* n R* is a primary
ideal whose radical is , and the extended ideal !l* R*? is the intersec-
tion of the g primary ideal It follows that the vector space R*/*
(over the residue field A R/ of v) is a direct sum of the g vector spaces
@i/ where

We shall prove below the inequality

(8) dim /?* <- eif i- 1,2, ,g.

Assuming for a moment this inequality, we find then that

(9) dim R*/* <= ., e f.
Now assume that R* is a finite R-module. Let {w,, w=,..., w} be a
minimal R-basis of R*. Since R is a valuation ring, a well-known considera-
tion shows that the elements w are linearly independent over K. On the
other hand, these elements obviously span K* over K. Hence m n
[K* :K]. It is also immediate (and is well known) that if denotes the *-residue of w, then the n vectors are linearly independent (over R/),
and, of course, they span the space R*/*. Consequently, by (9), we have
n <= Y’=I ef, and combining this with inequality (1) we find n Y’.= efi,
thus proving our assertion.

It remains to prove (8). We shall give the full details of the proof, for the
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details involved differ to some extent from the consideration used in the
discrete case.

Let us prove (8), for instance, for i 1. We first make some straight-
forward considerations about the value groups r* and F of v* and v respec-
tively. Let G denote the set of all non-negative elements a* of 1* such that
a* < for every positive element of F. If a*, a. are distinct elements of

* * and hence a a F* then0 < a a < a.,G, and if, say, a < a
Thus, distinct elements of G belong to distinct F-cosets, and hence G is a finite
set, consisting of at most e elements.
The significance of the set G is the following" if x* is an element of * then

x* 3" if and only if v(x*) G. For, if x* e * R*, then it is clear
that v(x*) >= (y) v(y) for some y in 3, and hence v* (x*) G since 0 <
v(y) e F. Conversely, if v*(x*) G, then v*(x*) >= v(y) for some y e 3
and hence x* (x*/y) y n R*I 3 R* 3.

It follows from these remarks that if * is any R-submodule of * which
contains 3" as a proper subset, then I* contains elements of least value, and
this minimum value is an element of G. We denote this minimum value
by v* ([*).

If for a given element * of G there exists an element x* in ’ such that
v(x*) a*, then the set of all elements y* of @* such that v*(y*) >- a* is
an R-submodule l* of @* which contains 3" as a proper subset and is such

* * (s

_
e) those ele-that v*(/*) a*. If we denote by a, a, a

ments of G which are v*-values of elements of *, where we assume that,
0 < a* < a <... < a,, then we obtainin this fashion a strictly descend-
ing chain of R-submodules of *
(10) fp ?I* > ?* >... > L* > L*+, 3",

,
where [’ is the set of all y* in * such that v(y*) >__ a It is clear that
for i 2, 3, s + 1, the module ?I consists of M1 the elements y* in *,
such that v(y*) > a_.

The subspaces of f/3* correspond in (1, 1) fashion to the R-submodules,of g’ which contain 3". Since s _<- e, the inequality dim /3 < ef
?l_/I -< f for i 2, 3,...,will be established if we prove that dim * *,

s + 1. Here ?I_/?I (= (?1_/3")/(*/3")) is regarded as a vector space,
over R/3. Let then x, x. ,.. x+ be any f + 1 elements of I_*.
We fix in * y*?1_ an element of least value v* (y*) *a-, and we set z,x/y* (j 1, 2,..., f + 1). Then the z. belong to the valuation ring of
v’, and since fl is the relative degree of v*, it follows that we can find elements
u, u, ..., u+ in R, not all in 3, such that vt(uz* + uz* +,+ u+z/+) > 0. We have then

,+ + + >
,

and therefore ux + ux + + u+x+ e I. This establishes the
l_./ =< f and completes the proof.inequality dim * *
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If R* is not a finite R-module, then it may very well happen that we have
the strict inequality in (1). Thus, in an example of F. K. Schmidt (dis-
cussed in O. ZARISK1, The concept of a simple point of an abstract algebraic
variety, Trans. Amer. Math. Soc., vol. 62 (1947), p. 24), one has the case in
which n p characteristic of K (p > 0), K* is a purely inseparable exten-
sion ofK, g 1, el fl 1.

It is well-known that R* is always a finite R-module in the following special
case. v is a discrete valuation of rant 1 and K* is a separable extension of K.
Hence in this case we always have the equality sign in (1).

It may be observed that our preceding result concerning the finiteness of
the R-module R* can be inverted if v is a discrete valuation of rank 1. We
have namely the following result" if v is a discrete valuation of rank 1 and if
the equality sign holds in (1), then R* is a finite R-module. This follows easily
from the above proof of the inequalities (8). Namely, since r now is the
group of integers, it follows easily that s el and that the elements al as,

a8 are now equM to 0, 1/el, (o 1/)e respectively and that

dim -1/I fl
(for the proof of this last equality one uses the approximation theorem for the
set of extensions v, v v of v). Hence

dim R*/* -_ ef n.
*( R*We can fix a set of n elements us,t) in (i 1, 2,

e. 1;t 1, 2, ..., f) such that

U.,t) 8i/ei
(11) ., .(,:)

,g; si 0, 1,

ifji

and such that the 3*-residues of these n-elements form a basis of the vector
space R*/3* (over R/3). It is clear that these n elements also form a basis
of K*/K. We show that they form also an R-basis of R*.
Let z* be any element of R* and let

Z* E a(i) u*(i) (i
si,ti si,ti asilti e g.

i,si,ti

Upon factoring out a coefficient a of least value in v we can write z* in the
form z* by*, where b e K,

y* b) ,()
i, ti si,ti ]si,t E R,

i,si,ti

and where not all the coefficients b are in . Let, say, ,, , . Then it
follows from (11) that v’ (y*) is one of the numbers O, 1/e, ,( el 1)/e, hence
is less than 1. On the other hand we have v(y*) -t- v(b) v*(z*) >-_ O.
Hence v(b) is necessarily a nonnegative integer, and thus 5 e R. Conse-

(i) ,
quently a), b.o,, R, showing that the elements . form an R-basis
of R*.
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If K* is a Galoisian extension of K (and v is an arbitrary valuation of K),
then the following results can be established:

(1) The quotient n/Zef is a power p of the characteristic p of K
(p 0, _-> 0). This integer may be referred to as the ramification deficiency
of v.

(2) If the residue field A of v is of characteristic zero, then the equality
sign holds in (1).
For the proofs of (1) and (2) we refer the reader to the forthcoming book

Commutative Algebra (vol. 2) of Zariski and Samuel.
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