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We study a system of infinitely many Riccati equations that arise from a cumulant control problem,
which is a generalization of regulator problems, risk-sensitive controls, minimal cost variance
controls, and k-cumulant controls. We obtain estimates for the existence intervals of solutions of
the system. In particular, new existence conditions are derived for solutions on the horizon of the
cumulant control problem.

1. Introduction

Consider a linear control system and a quadratic cost function:

dx = (Ax + Bu)dt +Gdw, t ∈ [t0, tf
]
; x(t0) = x0,

J(u) = xT(tf
)
Qfx

(
tf
)
+
∫ tf

t0

(
xTQx + uTRu

)
dt,

(1.1)

where A(t) ∈ R
n×n, B(t) ∈ R

n×m, Q(t) ∈ S
n, and R(t) ∈ S

m are continuous matrix functions
for t ∈ [t0, tf], Qf ∈ S

n (Sn is the set of n × n symmetric matrices.), x(t) ∈ R
n is the state with

known initial state x0, u(t) ∈ R
m the control, and w(t) ∈ R

p a standard Wiener process.
Because x is completely determined by the first equation in (1.1) in terms of u, the cost
function J is only a function of u.
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For θ ∈ R, denote by E(eθJ) the (general) expectation of the random variable eθJ . For
i ≥ 1, let

κi =
di

dθi
lnE
(
eθJ
)
|θ=0 (1.2)

be the ith cumulant of the cost J(u). Let {μi}∞i=1 be a sequence of nonnegative real numbers.
Consider the following combination of κi:

κ =
∞∑

i=1

μiκi

i!
. (1.3)

The cumulant control problem, considered in [1], is to find a control u that minimizes
the combined cumulant κ defined in (1.3). This problem leads to the following system of
(infinitely many) equations of Riccati type:

H ′
1 + (A + BK)TH1 +H1(A + BK) +Q +KTRK = 0, H1

(
tf
)
= Qf,

H ′
i + (A + BK)THi +Hi(A + BK) + 2

i−1∑

j=1

HjWHi−j = 0, Hi

(
tf
)
= 0, i ≥ 2,

(1.4)

where ′ = d/dt denotes the derivative to t, A(t) ∈ R
n×n, B(t) ∈ R

n×m, Q(t) ∈ S
n, R(t) ∈ S

m

are as in (1.1), and W(t) = G(t)GT (t) ∈ S
n. K(t) ∈ R

m×n and Hi(t) ∈ S
n are the unknown

matrix functions, which are required to be continuously differentiable for t ∈ [t0, tf]. For
convenience, the time variable t is often suppressed. System (1.4) will be combined with the
following equation

K = −R−1BT
∞∑

i=1

μiHi. (1.5)

If k ≥ 1 is a given integer and μi = 0 for i > k, then κ =
∑k

i=1μiκi/i! is the k-cost cumu-
lant investigated in [2, 3]. In particular, if k = 1, then κ = μ1E{J(u)} and the cumulant
problem is the classical regulator problem that minimizes E(J). If k = 2, then the cumulant
problem is the minimal cost variance control considered in [4, 5]. Interested readers are
referred to [1–6] for the investigations, generalizations, and applications of cumulant con-
trols.

Another important cumulant control occurs when μi = θi−1 for i ≥ 1. In this case,
κ = (1/θ) lnE(eθJ) is precisely the cumulant generating function, and the cumulant problem
is the risk-sensitive control; see, for example, [7]. In this case, (1.4) and (1.5) lead an equation
for the matrix function P(θ; t) =

∑∞
i=1θ

i−1Hi(t):

P ′ +ATP + PA + P
(
2θW − BR−1B′

)
P +Q = 0; P

(
θ; tf

)
= Qf. (1.6)
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As shown in [1], the solution Hi(t) of (1.4) is related to P(θ; t) by the equation:

Hi(t) =
1
i!

∂i

∂θi
[θP(θ; t)] |θ=0 (1.7)

and the equations in (1.4) forHi(t) can be obtained by differentiating (1.6) to θ at θ = 0.
For a feedback control u = Kxwith a given matrix functionK, it was shown in [8] and

[1, Theorem 2] that the ith cumulant κi of J(u) has the following representation:

κi = i!

(

xT
0Hi(t0)x0 +

∫ tf

t0

tr(Hi(s)W(s))ds

)

, (1.8)

where {Hi}∞i=1 is the solution of (1.4). Consequently (1.3) can be written as

κ =
∞∑

i=1

μi

(

xT
0Hi(t0)x0 +

∫ tf

t0

tr(Hi(s)W(s))ds

)

. (1.9)

In [1] the cumulant control problem was restated as minimizing κ in (1.9) with K as
a control, {Hi}∞i=1 as a state, and (1.4) a state equation. Furthermore, the following result is
proved in [1, Theorem 3].

Theorem 1.1. If the control u = Kx is the optimal feedback control of (1.9), then the solution {Hi}∞i=1
of (1.4) and K must satisfy (1.5).

By Theorem 1.1, it is necessary to solve (1.4) and (1.5) in order to find a solution of a
cumulant control problem. Because of the nonlinearity of (1.4) and (1.5) in {Hi}∞i=1, a global
solution may not exist on the whole horizon [t0, tf] of the cumulant problem. This can be
illustrated by a scalar case of (1.6). Suppose A = 0, B = G = θ = R = Q = Qf = 1, then (1.6)
becomes P ′+P 2+1 = 0 and P(tf) = 1. The solution is P(t) = tan (π/4+tf −t), which is defined
on (s, tf]with s = tf − π/4. So (1.6) has no solution unless t0 > tf − π/4.

By the local existence theory of differential equations, the solutions K and {Hi}∞i=1 of
(1.4) and (1.5) exist on a maximal subinterval (s, tf] ⊂ [t0, tf]. Our interest is to give an
estimate for this interval. In particular, we will obtain conditions that guarantee s = t0. The
idea of our approach is to show that the trace tr(H) of

H =
∞∑

i=1

μiHi (1.10)

satisfies a scalar differential inequality:

z′ + az2 + bz + c ≥ 0; z
(
tf
)
= tr
(
Qf

)
(1.11)

with some functions a, b, c on [t0, tf]. A key of the proof is Proposition 2.1 below. It follows
that tr(H) is bounded by the solution of the Riccati equation:

z′ + az2 + bz + c = 0; z
(
tf
)
= zf , (1.12)
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where zf = tr(Qf). Consequently, the existence interval of (1.12) gives an estimate for that of
system (1.4) and (1.5); see Theorems 2.4 and 3.5 below. By a similar argument, we prove that
the cumulant problem is well posed under appropriate conditions; see Theorems 2.3 and 3.4
below.

In [9] the norm of a solution of a coupled matrix Riccati equation was shown to satisfy
a differential inequality similar to (1.11). Consequently, specific sufficient conditions were
derived for the existence of solutions of the Riccati equation in [9]. Estimates for maximal
existence interval of a classical Riccati equation had been obtained in [10] in terms of upper
and lower solutions. For the coupled Riccati equation associated with the minimal cost
variance control, some implicit sufficient conditions had been given in [11] for the existence
of a solution. In this paper, we use the trace tr(H) to bound the solution of system (1.4) and
(1.5), which generally leads to a better estimate for the existence interval.

2. Comparison Results for Traces

We start with an assumption and some preparations. In this paper we assume that

Qf, Q(t) ≥ 0
(
positive semidefinite

)
for t ∈ [t0, tf

]
;

R(t) > 0
(
positive definite

)
for t ∈ [t0, tf

]
.

(2.1)

For the sequence μ = {μi}∞i=1 in (1.3), we will assume that

μ1 = 1; μi ≥ 0 for i ≥ 1; ρ
(
μ
)
< ∞, (2.2)

where

ρ
(
μ
)
= sup

{
μi

μjμi−j
, i ≥ 2, j = 1, . . . , i − 1

}

. (2.3)

Note that the assumption μ1 = 1 is not essential. The assumption that μi ≥ 0 for i ≥ 1
and Proposition 2.1 below imply that the matrix H in (1.4) is a positive semidefinite series.
The requirement that ρ(μ) < ∞ imposes some growth condition for the sequence μ; see the
proofs of Theorems 2.3 and 2.4.

Also note that if θ = ρ(μ) < ∞, then μi ≤ θμi−1 and μi ≤ θi−1 for all i ≥ 1. Theorem 3.4
below shows that the cumulant control problem is well posed for any sequence μwith a small
ρ(μ). Some examples of ρ(μ) are as follows:

(i) ρ({1, θ, θ2, θ3, 0, . . .}) = θ;

(ii) ρ({1, μ2, 0, 0, . . .}) = μ2;

(iii) ρ({1, μ2, μ3, 0, . . .}) = max{μ2, μ3/μ2}.
We need the following properties of {Hi}∞i=1.

Proposition 2.1. Suppose {Hi}∞i=1 is a solution of (1.4) on some interval [s, tf] with a givenK, then
eachHi(t) ≥ 0 for t ∈ [s, tf].
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Proof. The formula of the ith cumulant κi in [8] implies that κi is nonnegative for all x0. It
follows from the representation (1.9) thatHi(t0)must be positive semidefinite. This argument
continues to hold with t0 replaced by any s ∈ [t0, tf].

Next we verify some properties related to matrix trace that are needed for our analysis.
For A ∈ R

n×n, denote by tr(A) =
∑n

i=1aii the trace of A, and λ1(A) and λn(A) the smallest and
largest eigenvalue of A, respectively.

Proposition 2.2. (a) For all A,B ∈ R
n×n, tr(A) = tr(AT ), tr(AB) = tr(BA).

(b) For all A ∈ R
n×n, B ∈ S

n, B ≥ 0,

λ1(A) tr(B) ≤ tr(AB) ≤ λn(A) tr(B). (2.4)

(c) If A,B,C ∈ S
n, then

tr(ABC) = tr(ACB). (2.5)

(d) If A, B, C ∈ S
n are all ≥ 0, then

tr(AB) ≤ tr(A) tr(B), (2.6)

tr(ABC) ≤ tr(A) tr(B) tr(C), (2.7)

1
n
λ1(A) tr (B)2 ≤ tr

(
AB2

)
. (2.8)

Proof. The properties in (a) are obvious by the definitions of trace and matrix multiplication.
Some of the inequalities in (b)–(d) might be known, but the authors were not able to find
proofs in existing literature. So we include our proofs of (b)–(d) below for readers’ conve-
nience.

To prove (b), let T be a unitary matrix such that B = T ∗DT where D is diagonal with
eigenvalues λi(B) of B, i = 1, . . . , n. Then

tr(AB) = tr(AT ∗DT) =
n∑

i=1

(TAT ∗)iiλi(B), (2.9)

where (TAT ∗)ii is the entry of TAT ∗ at (i, i). Let vi be the ith row of T , which is a unit vector.
Then (TAT ∗)ii = viAv∗

i ∈ [λ1(A), λn(A)]. Since λi(B) ≥ 0, we have

λ1(A)λi(B) ≤ (TAT ∗)iiλi(B) ≤ λn(A)λi(B). (2.10)

This implies (2.4).
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To show (c), use the symmetry of A, B, and C; we get that tr(ABC) =
∑

ijkaijbjkcki =∑
ijkajicikbkj = tr(ACB).

Inequality (2.6) follows from part (b) and the fact that λn(A) ≤ tr(A) since A ≥ 0.
To show (2.7), first note that tr(ABC) ≤ λn(AB)tr(C) by (2.4); then it remains to show

that λn(AB) ≤ λn(A)λn(B). Choose a v ∈ R
n with vTv = 1 such that λn(AB) = vTABv. By

Schwartz inequality,

vTABv ≤
√
vTA2v

√
vTB2v ≤

√
λn(A2)

√
λn(B2). (2.11)

Since A,B ≥ 0, we have λn(A2) = λn(A)2 and λn(B2) = λn(B)
2. Therefore, λn(AB) ≤

λn(A)λn(B).
For (2.8), using notations in the proof of (b), we first get

tr
(
AB2

)
= tr
(
AT ∗D2T

)
=

n∑

i=1

(TAT ∗)iiλ
2
i (B) ≥ λ1(A)

n∑

i=1

λ2i (B). (2.12)

Then (2.8) follows from the inequalities

n∑

i=1

λ2i (B) ≥
1
n

(
n∑

i=1

λi(B)

)2

≥ 1
n
tr (B)2. (2.13)

Now we estimate the existence intervals of solutions of (1.4) and (1.5). First, let K be
given and {Hi}∞i=1 be the solution of system (1.4). We have the following result, which will be
used in the proof of Theorem 3.5

Theorem 2.3. Suppose ρ(μ) < ∞ and K in (1.4) is given. Let a1, b1, and c1 be functions on [t0, tf]
satisfying

a1 ≥ 2ρ
(
μ
)
tr(W), b1 ≥ 2λn(A + BK), c1 ≥ tr

(
Q +KTRK

)
. (2.14)

(a) If {Hi}∞i=1 is a solution of system (1.4), then z = tr(H) satisfies the differential inequality

−z′ ≤ a1z
2 + b1z + c1, z

(
tf
)
= tr
(
Qf

)
. (2.15)

(b) If the equation

−z′ = a1z
2 + b1z + c1, z

(
tf
)
= tr
(
Qf

)
(2.16)

has a solution on [t0, tf], then system (1.4) has a solution {Hi}∞i=1 on [t0, tf] such thatH =
∑∞

i=1μiHi

is convergent.
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Proof. (a) Denote F = A + BK. Multiplying the equation in (1.4) for Hi by μi and sum over i,
we obtain

H ′ + FTH +HF +Q +KTRK + 2
∞∑

i=2

μi

i−1∑

j=1

HjWHi−j = 0. (2.17)

Taking traces of both sides of (2.17) gives

−z′ = tr
(
FTH +HF

)
+ tr
(
Q +KTRK

)
+ 2

∞∑

i=2

μi

i−1∑

j=1

tr
(
HjWHi−j

)
. (2.18)

Note that W = GGT ≥ 0 and by Proposition 2.1, Hi, H ≥ 0 for t ∈ [tf , tf]. Proposition 2.2 (a),
(b), and (c) imply that

tr
(
FTH +HF

)
= 2 tr(FH) ≤ 2λn(F) tr(H) = b1z,

tr
(
HjWHi−j

) ≤ tr(W) tr
(
Hj

)
tr
(
Hi−j

)
.

(2.19)

By (1.4) and definition (2.3) of ρ(μ), we have

2
∞∑

i=2

μi

i−1∑

j=1

tr
(
HjWHi−j

) ≤ 2
∞∑

i=2

μi

i−1∑

j=1

tr
(
Hj

)
tr(W) tr

(
Hi−j

)

≤ 2ρ
(
μ
)
tr(W)

∞∑

i=2

i−1∑

j=1

μjμi−j tr
(
Hj

)
tr
(
Hi−j

)

= 2ρ
(
μ
)
tr(W)

( ∞∑

i=1

μi tr(Hi)

)2

= 2ρ
(
μ
)
tr(W) tr (H)2 ≤ a1z

2.

(2.20)

Substituting (2.19) and (2.20) into (2.18) and using the definition of c1 in (2.14)we get

−z′ ≤ b1z + c1 + a1z
2. (2.21)

(b) Suppose that (2.16) has a solution z∗(t) on [t0, tf]. By local existence theory, system (1.4)
has a solution {Hi}∞i=1 on a maximal interval (s, tf] ⊂ [t0, tf]. By (a), tr(H) satisfies inequality
(2.15); that is tr(H) is a lower solution of (2.16). By a comparison theorem of lower-upper
solutions, tr(H) ≤ z∗(t) on (s, tf]. Since series (1.10) is positive semidefinite, it follows thatH
andHi are all bounded and (1.10) is convergent on (s, tf]. Since {Hi}∞i=1 satisfies system (1.4),
eachHi is in fact continuously differentiable on [s, tf]. If s > t0, then the local existence theory
implies that {Hi}∞i=1 can be extended further to the left of s, a contradiction to the maximality
of (s, tf]. Therefore s = t0 and (1.4) has a solution on (t0, tf], which can be extended to [t0, tf].

Now consider system (1.4) and (1.5). We have
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Theorem 2.4. Denote R̂ = BR−1BT . Let a2, b2, and c2 be functions on [t0, tf] satisfying

a2 ≥ − 1
n
λ1
(
R̂
)
+ 2ρ tr(W), b2 ≥ 2λn(A), c2 ≥ tr(Q). (2.22)

(a) Suppose K and {Hi}∞i=1 are solutions of (1.4) and (1.5) on some (s, tf]. Then on (s, tf], z =
tr(H) satisfies

−z′ ≤ a2z
2 + b2z + c2, z

(
tf
)
= tr
(
Qf

)
. (2.23)

(b) Suppose the equation

−z′ = a2z
2 + b2z + c2, z

(
tf
)
= tr
(
Qf

)
(2.24)

has a solution on [t0, tf], then system (1.4) and (1.5) have solutions K and {Hi}∞i=1 on [t0, tf].

Proof. (a) Substituting K = −R−1BTH into system (2.17) we get

−H ′ = ATH +HA −HR̂H +Q + 2
∞∑

i=2

μi

i−1∑

j=1

HjWHi−j , (2.25)

where R̂ = BR−1BT . Taking traces of both sides of (2.25) gives

− tr
(
H ′) = tr

(
ATH +HA

)
− tr
(
HR̂H

)
+ tr(Q) + 2

∞∑

i=2

μi

i−1∑

j=1

tr
(
HjWHi−j

)
. (2.26)

As in the proof of previous theorem, we have

tr
(
ATH +HA

)
= 2 tr(AH) ≤ 2λn(A) tr(H) ≤ b2z,

2
∞∑

i=2

μi

i−1∑

j=1

tr
(
HjWHi−j

) ≤ 2ρ
(
μ
)
tr(W)z2.

(2.27)

Using the fact that H, R̂ ≥ 0 and (2.8), we have

tr
(
HR̂H

)
= tr
(
R̂H2

)
≥

λ1
(
R̂
)
tr (H)2

n
. (2.28)

By combining (2.28), (2.27), and (2.26)we obtain (2.23).
(b) Suppose that (2.24) has solution z∗(t) on [t0, tf]. By local existence theory, system

(1.5) and (1.4) have solutionsK and {Hi}∞i=1 on amaximal interval (s, tf] ⊂ [t0, tf]. By part (a),
tr(H) satisfies inequality (2.23) on (s, tf]. It follows that tr(H) ≤ z∗ on (s, tf], which implies
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that K and {Hi}∞i=1 are continuously differentiable on [s, tf]. If s > t0, then local existence
theory implies that K and {Hi}∞i=1 can be extended further to the left of s, a contradiction
to the maximality of (s, tf]. Therefore s = t0, and system (1.4) and (1.5) have solutions on
[t0, tf].

3. Well-Posedness and Sufficient Existence Conditions

In this section we will derive specific conditions that ensure that the scalar equations (2.16)
and (2.24) have solutions on [t0, tf]. Consequently we will obtain sufficient conditions for the
well-posedness of the cumulant control and the existence of solutions of (1.4) and (1.5).

First we consider an autonomous scalar equation

z′ + h(z) = 0, t ≤ tf ; z
(
tf
)
= zf , (3.1)

where z is a polynomial with degree ≥ 2. Assume for some k ≥ 0 that h(z) has k distinct zeros
z1 < · · · < zk. Let z0 = −∞ and zk+1 = ∞. Since h(z) is locally Lipschitz, the solution z(t) of
(3.1) exists and is unique for every zf for t in amaximal interval, say (σ, tf ]. If zf = zi for some
i = 1, . . . , k, then z(t) = zi for all t. If zf ∈ (zi, zi+1) for some i = 0, 2, . . . , k, then z(t) ∈ (zi, zi+1)
for t ∈ (σ, tf]. This implies that for t ∈ (σ, tf], −z′(t) = h(z(t)) has the same sign as h(zf). In
particular, as t ∈ (σ, tf] decreases, z(t) is strictly increasing if h(zf) > 0 and decreasing if
h(zf) < 0. Denote ẑf = limt→σ+z(t). Then

ẑf =

{
zi+1 if h

(
zf
)
> 0,

zi if h
(
zf
)
< 0.

(3.2)

The following is a well-known fact in stability theory of differential equations.

If h′(zi) < 0, then ẑf = zi for every zf ∈ (zi−1, zi+1), (3.3)

where ′ = d/dz. Indeed, h′(zi) < 0 implies that h(zf) < 0 for zf ∈ (zi, zi+1) and h(zf) > 0 for
zf ∈ (zi−1, zi). In either cases, ẑf = zi by (3.2).

Consider (1.12) as an example. We have the following.

Proposition 3.1. Denote Δ = b2 − 4ac and z1,2 = (−b ±
√
Δ)/2a if Δ ≥ 0. Then

(a) ẑf = −c/b for all zf if a = 0 and b < 0;
(b) ẑf = z2 if Δ ≥ 0 and a(zf − z1) < 0;
(c) ẑf = sgn(a)∞ if Δ < 0 or Δ ≥ 0 and a(zf − z1) > 0.

Proof. If a = 0, then h(z) = bz + c, which has root z1 = −c/b. Since h′(z1) = b < 0, ẑf = z1 by
(3.3). This shows (a).

Next we prove (b) and (c). First assume a = 1. If Δ < 0, then h(z) > 0 for all z. So
ẑf = ∞ by (3.2). Next consider the case Δ ≥ 0, in which −∞ < z2 ≤ z1 < ∞. If zf > z1, then
h(z f ) > 0, which implies that ẑf = ∞. If zf < z1, then we have either h(zf) > 0 when zf < z2
or h(zf) < 0 when z2 < zf < z1. In either cases, we have ẑf = ∞ by (3.2). This finishes the
proof of (b) and (c)when a = 1. If a/= 1, then consider y = az, which satisfies y′+y2+by+ac = 0
and y(tf) = azf , and the conclusions follow from the special case just proved.
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Write (3.1) as dz/h(z) + dt = 0 and integrate it against t from tf to σ, then we get

tf − σ =
∫ ẑf

zf

dz

h(z)
. (3.4)

Note that if ẑf is finite, then ẑf must be a zero of h(z). It follows that
∫ ẑf
zf
[1/h(z)]dz = ∞

and (σ, tf] = (−∞, tf]. If ẑf is infinite, then
∫ ẑf
zf
(dz/(h(z))) must converge because h(z) has a

degree ≥ 2. In summary, we have the following.

Proposition 3.2. Suppose h(z) is a polynomial of degree ≥ 2. Then
(a) ẑf is finite if and only if the solution z(t) of (3.1) exists on (−∞, tf].
(b) ẑf = ±∞ if and only the solution z(t) of (3.1) exists on a finite maximal interval (σ, tf]

with length tf − σ =
∫±∞
zf

[1/h(z)]dz.

Applying Proposition 3.2 to (1.12)we obtain the following.

Proposition 3.3. (a) If either a = 0 and b < 0, or a(zf − z1) < 0 and Δ ≥ 0, then the solution of
(1.12) exists on (−∞, tf].

(b) If either Δ < 0 or Δ ≥ 0 and a(zf − z1) < 0, then the solution of (1.12) exists on a finite
interval (σ, tf] with

tf − σ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√
|Δ|

(
π

2
− arctan

2azf + b
√
|Δ|

)

if Δ < 0,

2
2azf + b

if Δ = 0, a
(
zf − z1

)
> 0,

1√
Δ

ln

∣∣∣∣∣
zf − z2

zf − z1

∣∣∣∣∣
if Δ > 0, a

(
zf − z1

)
> 0.

(3.5)

Proof. Part (a) directly follows from Proposition 3.1(a) and Proposition 3.2 (a) (b).
For part (b), first assume thatΔ < 0. Then ẑf = sgn(a)∞ and az2+bz+c = a[(z − z1)

2+
d2], where d =

√
|Δ|/2|a|, z1 = −b/2a. So

tf − σ =
∫ ẑf

zf

dz

az2 + bz + c
=

1
ad

arctan
z − z1
d

∣∣∣∣

±∞

zf

=
1
ad

(
±π
2
− arctan

zf − z1

d

)
=

2
√
|Δ|

(
π

2
− arctan

2azf + b
√
|Δ|

)

.

(3.6)

Next assumeΔ = 0 and a(zf −z1) > 0. Then ẑf = sgn(a)∞ and az2+bz+c = a(z − z1)
2,

where z1 = −b/(2a). We have

tf − σ =
∫±∞

zf

1

a(z − z1)2
dz = − 1

a(z − z1)

∣∣∣∣

±∞

zf

=
1

a
(
zf − z1

) =
2

2azf + b
. (3.7)
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Finally when Δ > 0 and ẑf = sgn(a)∞, we have az2 + bz + c = a(z − z1)(z − z2) and

tf − σ =
∫±∞

zf

1
a(z − z1)(z − z2)

dz =
1

a(z1 − z2)
ln
∣∣∣∣
z − z1
z − z2

∣∣∣∣

±∞

zf

=
1√
Δ

ln

∣∣∣∣∣
zf − z2

zf − z1

∣∣∣∣∣
. (3.8)

Now we show that the cumulant control problem is well posed by Theorem 2.3 and
Proposition 3.3.

Theorem 3.4. For any number L > 0 there is ρ0 > 0 such that the series
∑∞

i=1μiκi/i! in (1.3) conver-
ges for each matrix K and sequence μ with ||K||∞ < L and ρ(μ) < ρ0.

Proof. Suppose that K is a matrix function with ||K||∞ < L. Choose a1, b1, and c1 as follows:

a1 = 2ρ
(
μ
)‖ tr(W)‖∞, b1 = 2‖λn(A + BK)‖∞ + 1, c1 =

∥∥∥tr
(
Q +KTRK

)∥∥∥
∞
.

(3.9)

Note that c1 ≤ ‖tr(Q)‖∞+L2‖R‖∞, which depends only on L. In addition, a1 → 0 as ρ(μ) → 0.
It follows that when ρ(μ) is sufficiently small, h(z) = a1z

2 + b1z + c1 has two real roots

z1,2 =
−b1 ±

√
b21 − 4a1c1

2a1
< 0 (3.10)

with z2 → −c1/b1 and z1 → −∞ as ρ(μ) → 0. In particular, since zf ≥ 0, we have h(zf) > 0
and so ẑf = ∞. Proposition 3.3 implies that

tf − σ =
1

√
b21 − 4a1c1

ln

∣∣∣∣∣
zf − z2

zf − z1

∣∣∣∣∣
. (3.11)

So tf−σ → ∞ as ρ(μ) → 0. In particular, (2.16) has a solution z(t) on [t0, tf]when ρ(μ)
is sufficiently small. By Theorem 2.3 (b), system (1.4) has a solution {Hi}∞i=1 such thatH con-
verges.

Finally we apply Proposition 3.3 to (2.24) to give a sufficient existence condition for
(1.4) and (1.5) and the cumulant control problem. Choose

a2 = max
t0≤t≤tf

(
− 1
n
λ1
(
R̂
)
+ 2ρ tr(W)

)
, b2 = 2max

t0≤t≤tf
λn(A), c2 = ‖ tr(Q)‖∞. (3.12)

Theorem 3.5. System (1.4) and (1.5) have solutions K and {Hi}∞i=1 on [t0, tf] if

tf − t0 ≤
∫ ẑf

zf

1
a2z2 + b2z + c2

dz, (3.13)
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where ẑf is defined as in (3.2) with h(z) = a2z
2 + b2z+ c2. In particular, system (1.4) and (1.5) have

solutions K and {Hi}∞i=1 on [t0, tf] if one of the following holds.
(a) a2 = −λ1(R̂)/n + 2ρ tr(W) < 0.

(b) a2 > 0, b2 < 0, Δ = b22 − 4a2c2 ≥ 0 and zf < z1, where z1 = (−b2 +
√
b22 − 4a2c2)/2a2.

Proof. The general conclusion follows directly from Proposition 3.3 and Theorem 2.4. In the
case (a), h(z) = 0 has two roots z1 < 0 < z2. Since zf = tr(Qf) ≥ 0, a2(zf − z1) < 0. In the case
(b), h(z) = 0 has two solutions z2 ≤ z1. So a2(zf − z1) < 0 also holds. The conclusion follows
from Propositions 3.1 and 3.2 and Theorem 2.4.

Note that in Theorem 3.5 condition (a) holds if B has full rank (i.e., λ(R̂) > 0) and ρ(μ)
is sufficiently small, while condition (b) holds if the system in (1.1) is stable (i.e., b2 < 0) and
the product ρ(μ)‖tr(Q)‖∞ is relatively small. The cumulant control problem has an optimal
control under each of these conditions.

As an existence theorem, Theorem 3.5 gives one of the very few existence results for
a Riccati differential system of infinitely many equations. In terms of the cumulant controls
that lead to the system (3) and (4), Theorem 3.5 generalizes the corresponding results in [1, 5]
for risk-sensitive controls (where μ = {1, θ, θ2, . . .}) and in [2, 4] for finite cumulant controls
(where μ has only finite nonzero components). Numerical examples for risk-sensitive and
finite cumulant controls satisfying the conditions in Theorem 3.5 may be found in [3–6].

4. Conclusions

In general it is very difficult to determine the existence interval of a differential Riccati equa-
tion (or system). By the approach in this paper, we can at least give an estimate for the exis-
tence interval of the Riccati system. Such an estimate leads to sufficient conditions for the
existence of solutions to the Riccati system and the cumulant control problem.
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