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We study stochastic partly dissipative lattice systems with random coupled coefficients and
multiplicative/additive white noise in a weighted space of infinite sequences. We first show
that these stochastic partly dissipative lattice differential equations generate a random dynamical
system. We then establish the existence of a tempered random bounded absorbing set and a global
compact random attractor for the associated random dynamical system.

1. Introduction

Stochastic lattice differential equations (SLDE’s) arise naturally in a wide variety of
applications where the spatial structure has a discrete character and random spatiotemporal
forcing, called noise, is taken into account. These random perturbations are not only
introduced to compensate for the defects in some deterministic models, but are also rather
intrinsic phenomena. SLDE’s may also arise as spatial discretization of stochastic partial
differential equations (SPDE’s); however, this need not to be the case, and many of the most
interesting models are those which are far away from any SPDE’s.

The long term behavior of SLDE’s is usually studied via global random attractors. For
SLDE’s on regular spaces of infinite sequences, Bates et al. initiated the study on existence of
a global random attractor for a certain type of first-order SLDE’s with additive white noise
on 1D lattice Z [1]. Continuing studies have been made on various types of SLDS’s with
multiplicative or additive noise, see [2–7].

Note that regular spaces of infinite sequences may exclude many important and
interesting solutions whose components are just bounded, considering that a weighted
space of infinite sequences can make the study of stochastic LDE’s more intensive. More
importantly, all existing works on SLDE’s consider either a noncoupled additive noise or
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a multiplicative white noise term at each individual node whereas in a realistic system
randomness appears at each node as well as the couplingmode between two nodes. Han et al.
initiated the asymptotic study of such SLDE’s in a weighted space of infinite sequences, with
not only additive/multiplicative noise but also coefficients which are randomly coupled [8].

In this work, following the idea of [8], we will investigate the existence of a global
random attractor for the following stochastic partly dissipative lattice systems with random
coupled coefficients and multiplicative/additive white noise in weighted spaces:

u̇i = −λui +
q∑

j=−q
ηi,j(θtω)ui+j − fi(ui) − αvi + hi + ui ◦ dw(t)

dt
,

v̇i = −σvi + μui + gi + ui ◦ dw(t)
dt

, i ∈ Z, t > 0,
(1.1)

u̇i = −λui +
q∑

j=−q
ηi,j(θtω)ui+j − fi(ui) − αvi + hi + ai dwi(t)

dt
,

v̇i = −σvi + μui + gi + bi dwi(t)
dt

, i ∈ Z, t > 0,
(1.2)

where ui, hi, gi, ai, bi ∈ R fi ∈ C1(R,R); (i ∈ Z), λ, α, σ, μ > 0 are positive constants; A is the
coupling operator, ηi,−q(ω), . . . , ηi,0(ω), . . . , ηi,+q(ω), i ∈ Z, q ∈ N, are random variables, and
w(t), {wi(t) : i ∈ Z} are two-sided Brownian motions on proper probability spaces.

For deterministic partly dissipative lattice systems without noise, the existence of the
global attractor has been studied in [9–13]. For stochastic lattice system (1.2) with additive
noises, when q = 1, ηi,±1(ω) ≡ 1, ηi,0(ω) ≡ −2 for all i ∈ Z, Huang [4] and Wang et al. [14]
proved the existence of a global random attractor for the associated RDS in the regular phase
space l2 × l2. In this work we will consider the existence of a compact global random attractor
in the weighted space l2ρ×l2ρ, which attracts random tempered bounded sets in pullback sense,
for stochastic lattice systems (1.1) and (1.2). Here we choose a positive weight function ρ :
Z → (0,M0] such that l2 ⊂ l2ρ. If

∑
i∈Z

ρ(i) < ∞, then l2ρ contains any infinite sequences
whose components are just bounded and l2 ⊂ l∞ ⊂ l2ρ. Note that when ρ(i) ≡ 1, our results
recover the results obtained in [4, 14] while l2ρ is reduced to the standard l2. Moreover, the
required conditions in this work for the existence of a random attractor for system (1.2)-(1.1)
in weighted space l2ρ × l2ρ are weaker than those in l2 × l2.

The rest of this paper is organized as follows. In Section 2, we present some
preliminary results for global random attractors of continuous random dynamical systems
in weighted spaces of infinite sequences. We then discuss the existence of random attractors
for stochastic lattice systems (1.1) and (1.2) in Sections 3 and 4, respectively.

2. Preliminaries

In this section, we present some concepts related to random dynamical systems (RDSs) and
random attractors [1, 8, 15] on weighted space of infinite sequences.

Let ρ be a positive function from Z to (0,M0] ⊂ R
+, where M0 is a finite positive

constant. Define for any i ∈ Z, ρi = ρ(i) and

l2ρ =

{

u = (ui)i∈Z
:
∑

i∈Z

ρi|ui|2 <∞, ui ∈ R

}

, (2.1)
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then l2ρ is a separable Hilbert space with the inner product 〈u, v〉ρ =
∑

i∈Z
ρiuivi and norm

‖u‖2ρ = 〈u, u〉ρ =
∑

i∈Z
ρi|ui|2 for u = (ui)i∈Z

, v = (vi)i∈Z
∈ l2ρ. Moreover, define

H =̇ l2ρ × l2ρ (2.2)

with inner product

〈(
u(1), v(1)

)
,
(
u(2), v(2)

)〉

H
=
〈
u(1), u(2)

〉

ρ
+
〈
v(1), v(2)

〉

ρ
, for

(
u(1), v(1)

)
,
(
u(2), v(2)

)
∈ H,

(2.3)

and norm

‖(u, v)‖H =
(
‖u‖2ρ + ‖v‖2ρ

)1/2
for (u, v) ∈ H, (2.4)

thenH is also a separable Hilbert space.
Let (Ω,F,P) be a probability space and {θt : Ω → Ω, t ∈ R} be a family of measure-

preserving transformations such that (t,Ω) �→ θtΩ is (B(R) × F,F)-measurable, θ0 = IdΩ and
θt+s = θtθs for all s, t ∈ R. The space (Ω,F,P, (θt)t∈R

) is called a metric dynamical system. In
the following, “property (P) holds for a.e. ω ∈ Ω with respect to (θt)t∈R

” means that there is
Ω̃ ⊂ Ω with P(Ω̃) = 1 and θtΩ̃ = Ω̃ such that (P) holds for all ω ∈ Ω̃.

Recall the following definitions from existing literature.

(i) A stochastic process {S(t, ω)}t≥0,ω∈Ω is said to be a continuous RDS over
(Ω,F,P, (θt)t∈R

) with state space H, if S : R
+ × Ω × H → H is (B(R+) × F ×

B(H),B(H))-measurable, and for each ω ∈ Ω, the mapping S(t, ω) : H → H, u �→
S(t, ω)u is continuous for t ≥ 0, S(0, ω)u = u and S(t + s,ω) = S(t, θsω)S(s,ω) for
all u ∈ H and s, t ≥ 0.

(ii) A set-valued mapping ω �→ D(ω) ⊂ H (may be written as D(ω) for short) is said
to be a random set if the mapping ω �→ distH(u,D(ω)) is measurable for any u ∈ H.

(iii) A random setD(ω) is called a closed (compact) random set ifD(ω) is closed (compact)
for each ω ∈ Ω.

(iv) A random setD(ω) is said to be bounded if there exist u0 ∈ H and a random variable
r(ω) > 0 such that D(ω) ⊂ {u ∈ H : ‖u − u0‖H ≤ r(ω)} for all ω ∈ Ω.

(v) A random bounded set D(ω) is said to be tempered if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup{‖u‖H : u ∈ D(θ−tω)} = 0, ∀β > 0. (2.5)

Denote by D(H) the set of all tempered random sets ofH.

(vi) A random set B(ω) is said to be a random absorbing set in D(H) if for any
D(ω) ∈ D(H) and a.e. ω ∈ Ω, there exists TD(ω) such that S(t, θ−tω)D(θ−tω) ⊂
B(ω) for all t ≥ TD(ω).
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(vii) A random set A(ω) is said to be a random attracting set if for any D(ω) ∈ D(H), we
have

lim
t→∞

distHS(t, θ−tω)D(θ−tω,A(ω)) = 0, a.e. ω ∈ Ω, (2.6)

in which distH is the Hausdorff semidistance defined via distH(E, F) =
supu∈Einfv∈F‖u − v‖ρ for any E, F ⊂ l2ρ.

(viii) A random compact set A(ω) is said to be a random global D attractor if it is a
compact random attracting set and S(t, ω)A(ω) = A(θtω) for a.e. ω ∈ Ω and t ≥ 0.

Definition 2.1 (see [8]). {S(t, ω)}t≥0,ω∈Ω is said to be random asymptotically null inD(H), if for
anyD(ω) ∈ D(H), a.e.ω ∈ Ω, and any ε > 0, there exist T(ε,ω,D(ω)) > 0 and I(ε,ω,D(ω)) ∈
N such that

⎛

⎝
∑

|i|>I(ε,ω,D(ω))

ρi|S(t, θ−tω)u(θ−tω))i|2
⎞

⎠

1/2

≤ ε, ∀t ≥ T(ε,ω,D(ω)), ∀u(ω) ∈ D(ω). (2.7)

Theorem 2.2 (see [8]). Let {S(t, ω)}t≥0,ω∈Ω be a continuous RDS over (Ω,F,P, (θt)t∈R
) with state

spaceH and suppose that

(a) there exists a random bounded closed absorbing set B(ω) ∈ D(H) such that for a.e. ω ∈ Ω
and any D(ω) ∈ D(H), there exists TD(ω) > 0 yielding S(t, θ−tω)D(θ−tω) ⊂ B(ω) for
all t ≥ TD(ω);

(b) {S(t, ω)}t≥0,ω∈Ω is random asymptotically null on B(ω); that is, for a.e.ω ∈ Ω and for any
ε > 0, there exist T(ε,ω, B(ω)) > 0 and I(ε,ω, B(ω)) ∈ N such that

sup
u∈B(ω)

∑

|i|>I(ε,ω,B(ω))
ρi|(S(t, θ−tω)u(θ−tω))i|2 ≤ ε2, ∀t ≥ T(ε,ω, B(ω)). (2.8)

Then the RDS {S(t, ω)}t≥0,ω∈Ω possesses a unique global random D attractor A(ω) given by

A(ω) =
⋂

τ≥TB(ω)

⋃

t≥τ
S(t, θ−tω)B(θ−tω). (2.9)

3. Stochastic Partly Dissipative Lattice Systems with
Multiplicative Noise in Weighted Spaces

This section is devoted to the study of asymptotic behavior for system (1.1) in weighted space
H = l2ρ × l2ρ. We first transform the stochastic lattice system (1.1) to random lattice system in
Section 3.1. We then show in Section 3.2 that (1.1) generates random dynamical system inH.
Finally we prove in Section 3.3 the existence of a global random attractor for system (1.1).

Throughout the rest of this paper, a positive weight function ρ : Z → R
+ is chosen to

satisfy
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(P0) 0 < ρ(i) ≤ M0 and ρ(i) ≤ c · ρ(i ± 1), for all i ∈ Z for some positive constants M0

and c.

(e.g., ρ(x) = 1/(1 + ε2x2)q, q > 1/2 [16, 17] and ρ(x) = e−ε|x|, x ∈ Z where ε > 0).

3.1. Mathematical Setting

Define Ω1 = {ω ∈ C(R,R) : ω(0) = 0} = C0(R,R), and denote by F1 the Borel σ-algebra
on Ω1 generated by the compact open topology (see [2, 15]) and P1 the corresponding
Wiener measure on F1. Defining (θt)t∈R

on Ω1 via θtω(·) = ω(· + t) − ω(t) for t ∈ R, then
(Ω1,F1,P1, (θt)t∈R

) is a metric dynamical system.
Consider the stochastic lattice system (1.1) with random coupled coefficients and

multiplicative white noise:

du =
(−λu +A(θtω)u − f(u) − αv + h

)
dt + u ◦ dw(t),

dv =
(−σv + μu + g

)
+ u ◦ dw(t),

i ∈ Z, t > 0, (3.1)

where u = (ui)i∈Z
, v = (vi)i∈Z

; f(u) = (fi(ui))i∈Z
with fi ∈ C1(R,R) (i ∈ Z), g = (gi)i∈Z

,
h = (hi)i∈Z

; λ, α, σ, μ are positive constants; ηi,−q(ω), . . . , ηi,0(ω), . . . , ηi,+q(ω) (q ∈ N) are
random variables on the probability space (Ω1,F1,P1); A(·) is a linear operator on l2ρ defined
by

(A(·)u)i =
q∑

j=−q
ηi,j(·)ui+j ; (3.2)

w(t) is a Brownian motion (Wiener process) on the probability space (Ω1,F1,P1); ◦ denotes
the Stratonovich sense of the stochastic term.

For convenience, we first transform (3.1) into a random differential equation without
white noise. Let

δ(θtω) = −
∫0

−∞
esθtω(s)ds, t ∈ R, ω ∈ Ω1, (3.3)

then δ(θtω) is an Ornstein-Uhlenbeck process on (Ω1,F1,P1, (θt)t∈R
) that solves the following

Ornstein-Uhlenbeck equation (see [2, 15] for details)

dδ + δdt = dw(t), t ≥ 0, (3.4)

where w(t)(ω) = w(t, ω) = ω(t) for ω ∈ Ω1, t ∈ R, and possesses the following properties.

Lemma 3.1 (see [2, 15]). There exists a θt-invariant set Ω̃1 ∈ F1 of Ω1 of full P1 measure such that
for ω ∈ Ω̃1, one has

(i) the random variable |δ(ω)| is tempered;
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(ii) the mapping δ(θtω)

(t, ω) �−→ δ(θtω) = −
∫0

−∞
esω(t + s)ds +w(t) (3.5)

is a stationary solution of Ornstein-Uhlenbeck equation (3.4) with continuous trajectories;

(iii)

lim
t→±∞

|δ(θtω)|
t

= lim
t→±∞

1
t

∫ t

0
δ(θsω)ds = 0. (3.6)

The mapping of θ on Ω̃1 possesses same properties as the original one if we choose
the trace σ-algebra with respect to Ω̃1 to be denoted also by F1. Therefore we can change our
metric dynamical system with respect to Ω̃1, still denoted by the symbols (Ω1,F1,P1, (θt)t∈R

).
Let

x(t, ω) = e−δ(θtω)u(t, ω), y(t, ω) = e−δ(θtω)v(t, ω), ω ∈ Ω1, (3.7)

where (u(t, ω), v(t, ω)) is a solution of (3.1), then (u(t, ω), v(t, ω)) �→ (x(t, ω), y(t, ω)) is a
homomorphism inH. System (3.1) can then be transformed to the following random system
with random coefficients but without white noise:

dx

dt
= −λx +A(θtω)x − e−δ(θtω)f

(
eδ(θtω)x

)
+ δ(θtω)x − αy + e−δ(θtω)h,

dy

dt
= −σy + δ(θtω)y + μx + e−δ(θtω)g

t > 0, (3.8)

Letting z = (x, y), (3.8) are equivalent to

dz
dt

= F(z, θtω), t > 0, (3.9)

where

F(z, θtω) =
(−λx +A(θtω)x − e−δ(θtω)f(eδ(θtω)x) + δ(θtω)x − αy + e−δ(θtω)h

−σy + δ(θtω)y + μx + e−δ(θtω)g

)

. (3.10)

We now make the following standing assumptions on fi, gi, hi, and ηi,j , (j =
−q, . . . , q) i ∈ Z and study in the following subsections asymptotic behavior of system (3.9).

(H1) g = (gi)i∈Z
, h = (hi)i∈Z

∈ l2ρ.
(H2) Let

η(ω) = sup
{∣
∣ηi,−q(ω)

∣
∣, . . . ,

∣
∣ηi,0(ω)

∣
∣, . . . ,

∣
∣ηi,+q(ω)

∣
∣ : i ∈ Z

} ≥ 0, q ∈ N. (3.11)
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η(θtω) (<∞) belongs to L1
loc(R) with respect to t ∈ R for each ω ∈ Ω1.

E
(
η
)
= lim

t→±∞
1
t

∫ t

0
η(θtω)ds <∞, (3.12)

and η(ω) is tempered, that is, there exists a θt-invariant set Ω10 ∈ F1 of full P1 measure
such that for ω ∈ Ω10,

lim
t→+∞

e−βtsup
t∈R

∣
∣η(θ−tω)

∣
∣ = 0, ∀β > 0. (3.13)

In the following, we will consider ω ∈ Ω10 ∩ Ω̃1 and still write Ω10 ∩ Ω̃1 as Ω1.

(H3) min{λ, σ} > q̃E|η(ω)| = limt→±∞(1/t)
∫ t
0(q+

∑q

k=0 c
k)η(θtω)ds, where q̃ = q+

∑q

k=0 c
k.

(H4) There exists a function R ∈ C(R+,R+) such that

sup
i∈Z

max
s∈[−r,r]

∣
∣f ′

i(s)
∣
∣ ≤ R(r), ∀r ∈ R

+. (3.14)

(H5) fi ∈ C1(R,R), fi(0) = 0, sfi(s) ≥ −b2i , b = (bi)i∈Z
∈ l2ρ, and there exists a constant a ≥ 0

such that f ′
i(s) ≥ −a, for all s ∈ R, i ∈ Z.

3.2. Random Dynamical System Generated by Random Lattice System

In this subsection, we show that the random lattice system (3.9) generates a random
dynamical system onH.

Definition 3.2. We call z : [0, T) → H a solution of the following random differential equation

dz
dt

= F(z, θtω), z = (zi)i∈Z
, F = (Fi)i∈Z

, (3.15)

where ω ∈ Ω0, if z ∈ C([0, T),H) satisfies

zi(t) = zi(0) +
∫ t

0
Fi(z(s), θsω)ds, for i ∈ Z, t ∈ [0, T). (3.16)

Theorem 3.3. Let T > 0 and (P0), (H1), (H2), (H4), and (H5) hold. Then for any ω ∈ Ω1

and any initial data z0 = (x(0), y(0)) ∈ H, (3.9) admits a unique solution z(·;ω, z0) =
(x(·;ω, z0), y(·;ω, z0)) ∈ C([0, T),H) with z(0;ω, z0) = z0.

Proof. (1) Denote E = l2 × l2, we first show that if z0 ∈ E and (h, g) ∈ E, then (3.9) admits a
unique solution z(t;ω, z0, h, g) ∈ E on [0, T) with z(0;ω, z0, g, h) = z0. Given z ∈ E, ω ∈ Ω1,
and (h, g) ∈ E, note that F(z, ω) is continuous in z and measurable in ω from E ×Ω1 to E.
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By (3.2) and (H2),

‖A(ω)x‖ =

⎡

⎢
⎣
∑

i∈Z

⎛

⎝
q∑

j=−q
ηi,j(ω)xi+j

⎞

⎠

2
⎤

⎥
⎦

1/2

≤ (
2q + 1

)
η(ω) · ‖x‖. (3.17)

By (H4),

∥
∥
∥f

(
eδ(ω)x

)∥
∥
∥ ≤ max

{
R
(
eδ(ω)‖x‖

)
, a
}
· eδ(ω)‖x‖, (3.18)

and therefore

‖F(z, ω)‖E ≤
(
λ +

(
2q + 1

)
η(ω) +max

{
R
(
eδ(ω)‖x‖

)
, a
}
+ |δ(ω)| + μ

)
· ‖x‖

+ (α + σ + |δ(ω)|) · ∥∥y∥∥ +
∣
∣
∣e−δ(ω)

∣
∣
∣ · (‖h‖ +

∥
∥g

∥
∥
)
.

(3.19)

For any z(1) = (x(1), y(1)), z(2) = (x(2), y(2)) ∈ E, and for some ϑ ∈ (0, 1)

∥
∥
∥f

(
eδ(ω)x(1)

)
− f

(
eδ(ω)x(2)

)∥
∥
∥ ≤ max

{
R
(
eδ(ω)

(
(1 − ϑ)

∥
∥
∥x(1)

∥
∥
∥ + ϑ

∥
∥
∥x(2)

∥
∥
∥
))
, a
}

· eδ(ω)
∥
∥
∥x(1) − x(2)

∥
∥
∥.

(3.20)

Also

∥
∥
∥A(ω)x(1) −A(ω)x(2)

∥
∥
∥ =

∑

i∈Z

⎧
⎨

⎩

q∑

j=−q
ηi,j(ω)

(
x
(1)
i+j − x

(2)
i+j

)
⎫
⎬

⎭

1/2

≤ (
2q + 1

)
η(ω) ·

∥
∥
∥x(1) − x(2)

∥
∥
∥.

(3.21)

It then follows that

∥
∥
∥F
(
z(1), ω

)
− F

(
z(2), ω

)∥
∥
∥
E
≤ (α + σ + |δ(ω)|) ·

∥
∥
∥y(1) − y(2)

∥
∥
∥

+
[
λ +

(
2q + 1

)
η(ω) + μ + |δ(ω)|

+eδ(ω) max
{
R
(
eδ(ω)

(
(1 − ϑ)

∥
∥
∥v(1)

∥
∥
∥ + ϑ

∥
∥
∥v(2)

∥
∥
∥
))
, a
}]

·
∥
∥
∥x(1) − x(2)

∥
∥
∥.

(3.22)

For any compact set D ⊂ E with supz∈D‖z‖ ≤ r, defining random variable ζD(ω) ≥ 0 via

ζD(ω) =
(
λ +

(
2q + 1

)
η(ω) + μ + |δ(ω)| +max

{
R
(
eδ(ω)r

)
, a
}
· eδ(ω)

)
r

+ (α + σ + |δ(ω)|)r +
∣
∣
∣e−δ(ω)

∣
∣
∣ · (‖h‖ +

∥
∥g

∥
∥
)
,

(3.23)
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we have

∫ τ+1

τ

ζD(θtω)dt <∞, ∀τ ∈ R, (3.24)

and for any z, z(1), z(2) ∈ D,

‖F(z, ω)‖E ≤ ζD(ω),
∥
∥
∥F
(
z(1), ω

)
− F

(
z(2), ω

)∥
∥
∥
E
≤ ζD(ω)

∥
∥
∥z(1) − z(2)

∥
∥
∥
E
. (3.25)

According to [15, 19, 20], problem (3.9) possesses a unique local solution z(·;ω, z0, g, h) ∈
C([0, Tmax), E) (0 < Tmax ≤ T) satisfying the integral equation

z(t) = z0 +
∫ t

0
F(z(s), ω)ds, for t ∈ [0, Tmax). (3.26)

Wewill next show that Tmax = T . Since the set C0(R) of continuous random process in t
is dense in the set L1(R) (see [18, 21]), for eachω ∈ Ω1, there exists a sequence {η(m)

i,j (t, ω)}∞
m=1

of continuous random process in t ∈ R such that

lim
m→∞

∫T

0

(
η
(m)
i,j (s,ω) − ηi,j(s,ω)

)
ds = 0, ∀T > 0,

∣
∣
∣η

(m)
i,j (t, ω)

∣
∣
∣ ≤

∣
∣ηi,j(θtω)

∣
∣ ≤ ∣

∣η(θtω)
∣
∣, ∀t ∈ R.

(3.27)

Consider the random differential equation with initial data z0 ∈ E :

dz(m)

dt
=

⎛

⎝
−λx(m) +Am(t, ω)x(m) − e−δ(θtω)f(eδ(θtω)x(m)) + δ(θtω)x(m) − αy(m) + e−δ(θtω)h

− σy(m) + δ(θtω)y(m) + μx(m) + e−δ(θtω)g

⎞

⎠,

(3.28)

where

(
Am(t, ω)x(m)

)

i
=

q∑

j=−q
η
(m)
i,j (t, ω)xi+j . (3.29)

Follow the same procedure as above, (3.28) has a unique solution z(m)(·;ω, z0, g, h) ∈
C([0, T (m)

max), E), that is,

z(m)
i (t) = z0 +

∫ t

0
F(m)
i

(
z(m)(s), ω

)
ds, for t ∈

[
0, T (m)

max

)
, (3.30)
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and by the continuity of Am(s,ω) in s, there holds

dz(m)
i

dt

=

⎛

⎜
⎝

−λx(m)
i +

(
Am(θtω)x(m))

i − e−δ(θtω)fi
(
eδ(θtω)x

(m)
i

)
+δ(θtω)x

(m)
i − αy(m)

i +e−δ(θtω)hi

− σy
(m)
i + δ(θtω)y

(m)
i + μx(m)

i + e−δ(θtω)g

⎞

⎟
⎠.

(3.31)

Note that

(
Am(θtω)x(m)

)

i
· x(m)

i ≤ η(θtω) ·
∣
∣
∣x

(m)
i x

(m)
i−q + · · · + x(m)

i x
(m)
i + · · · + x(m)

i x
(m)
i+q

∣
∣
∣,

−ae2δ(θtω) ·
(
x
(m)
i

)2 ≤
(
eδ(θtω)x

(m)
i

)
· fi

(
eδ(θtω)x

(m)
i

)

≤ R
(
eδ(θtω)

∥
∥
∥x(m)

∥
∥
∥
)
· e2δ(θtω)

(
x
(m)
i

)2
, t ∈ [0, T],

(3.32)

multiplying (3.31) by
(

μx
(m)
i 0

0 αy
(m)
i

)

and sum over i ∈ Z results in

d

dt

(

μ
∥
∥
∥x(m)

∥
∥
∥
2
+ α

∥
∥
∥y(m)

∥
∥
∥
2
)

≤ [−min{λ, σ} + 2a + 2δ(θtω) + 2
(
2q + 1

)
η(θtω)

]

·
(

μ
∥
∥
∥x(m)

∥
∥
∥
2
+ α

∥
∥
∥y(m)

∥
∥
∥
2
)

+
(
2μ
λ
‖h‖2 + 2α

σ
‖g‖2

)

e−2δ(θtω).

(3.33)

Applying Gronwall’s inequality to (3.33)we obtain that

μ
∥
∥
∥x(m)

∥
∥
∥
2
+ α

∥
∥
∥y(m)

∥
∥
∥
2 ≤ e2at+

∫ t
0[2δ(θsω)+2(2q+1)η(θsω)]ds

(
μ‖x(0)‖2 + α∥∥y(0)∥∥2

)

+
(
2μ
λ
‖h‖2 + 2α

σ

∥
∥g

∥
∥2
)(

e2at+
∫ t
0[2δ(θsω)+2(2q+1)η(θsω)]ds

)

·
(∫ t

0
e(min{λ,σ}−2a)s−2δ(θsω)+

∫s
0 [2δ(θrω)+2(2q+1)η(θrω)]drds

)

.= κ(t), t ∈
[
0, T (m)

max

)
,

(3.34)

where κ(t) ∈ C([0, T),R) is independent of m, which implies that the interval of existence of
z(m)(t) is [0, T), and z(m)(·;ω, z0, g, h) ∈ C1([0, T), E).

By (3.34),

∣
∣
∣x

(m)
i

∣
∣
∣
2
+
∣
∣
∣y

(m)
i

∣
∣
∣
2 ≤ κ(t)

min
{
μ, α

} , ∀m ∈ N, t ∈ [0, T). (3.35)
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Since |F(m)
i (z(m)(t), θtω)|

2 ≤ K2(T,ω) for some K(T,ω) > 0 and t ∈ [0, T), then for any t, τ ∈
[0, T), m ∈ N,

∣
∣
∣z(m)

i (t) − z(m)
i (τ)

∣
∣
∣ =

∫ t

τ

∣
∣
∣F(m)

i

(
z(m)(s), θsω

)∣
∣
∣ds ≤ K(T,ω) · |t − τ |. (3.36)

By the Arzela-Acoli Theorem, there exists a convergent subsequence {z(mk)
i (t), t ∈ [0, T)} of

{z(m)
i (t), t ∈ [0, T)} such that

z(mk)
i (t) −→ zi(t) as k −→ ∞, t ∈ [0, T), i ∈ Z, (3.37)

and zi(t) is continuous on t ∈ [0, T). Moreover, |zi|2 ≤ κ(t)/min{μ, α} for t ∈ [0, T). By (3.27),
(3.35), assumption (H2), and the Lebesgue Dominated Convergence Theorem we have

lim
k→∞

∫ t

0

(
η
(mk)
i,j (s,ω) − ηi,j(θsω)

)
ds =

∫ t

0
lim
k→∞

(
η
(mk)
i,j (s,ω) − ηi,j(θsω)

)
ds = 0,

lim
k→∞

(
η
(mk)
i,j (s,ω) − ηi,j(θsω)

)
= 0, for a.e. s ∈ [0, T],

lim
k→∞

∫ t

0

(
η
(mk)
i,j (s,ω)x(mk)

i (s) − ηi,j(θsω)xi(s)
)
ds = 0.

(3.38)

Thus replacingm bymk in (3.31) and letting k → ∞ give

zi(t) = (z0)i +
∫ t

0
Fi(zi, θsω)ds for t ∈ [0, T). (3.39)

By the uniquness of the solutions of (3.9), we have zi(t) = zi(t) for t ∈ [0, Tmax). By (3.34),
‖z(t)‖2E ≤ κ(t)/min{μ, α} for t ∈ [0, Tmax), which implies that the solution z(t) of (3.9) exists
globally on t ∈ [0, T).

(2) Next we prove that for any z0 ∈ H and (h, g) ∈ H, (3.9) has a solution
z(t;ω, z0, h, g) on [0, T) with z(0;ω, z0, h, g) = z0. Let z1,0, z2,0 ∈ E and h1 = (h1,i)i∈Z

,
h2 = (h2,i)i∈Z

, g1 = (g1,i)i∈Z
,g2 = (g2,i)i∈Z

∈ l2. Let z(m)
1 (t, ω), z(m)

2 (t, ω) be two solutions
of (3.28) with initial data z1,0, z2,0 and h, g replaced by h1, h2, g1, g2, respectively. Set
d(m)(t) = z(m)

1 (t)− z(m)
2 (t) = (d(m)

1 (t), d(m)
2 (t)) ∈ E ⊂ H. Take inner product 〈·, ·〉H of (d/dt)d(m)

with d(m) and evaluate each term as follows. By (P0), (H1), (H2), and (H4),

∣
∣
∣
∣

〈
Am(θtω)d

(m)
1 , d

(m)
1

〉

ρ

∣
∣
∣
∣ ≤ q̃η(θtω)

∥
∥
∥d

(m)
1

∥
∥
∥
2

ρ
,

〈
f
(
eδ(θtω)x

(m)
1

)
− f

(
eδ(θtω)x

(m)
2

)
, d

(m)
1

〉

ρ
≥ −aeδ(θtω)

∥
∥
∥d

(m)
1

∥
∥
∥
2

ρ
,

〈
f
(
eδ(θtω)x

(m)
1

)
− f

(
eδ(θtω)x

(m)
2

)
, d

(m)
1

〉

ρ
≤ R

(
eδ(θtω)

(∥
∥
∥x

(m)
1

∥
∥
∥ +

∥
∥
∥x

(m)
2

∥
∥
∥
))
eδ(θtω)

∥
∥
∥d

(m)
1

∥
∥
∥
2

ρ
,

〈
h1 − h2, d(m)

1

〉

ρ
≤ ‖h1 − h2‖2ρ ·

∥
∥
∥d

(m)
1

∥
∥
∥
2

ρ
;

〈
g1 − g2, d(m)

2

〉

ρ
≤ ∥
∥g1 − g2

∥
∥2
ρ ·
∥
∥
∥d

(m)
2

∥
∥
∥
2

ρ
.

(3.40)
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It then follows that

d

dt

(

μ
∥
∥
∥d

(m)
1

∥
∥
∥
2

ρ
+ α

∥
∥
∥d

(m)
2

∥
∥
∥
2

ρ

)

≤ [−min{λ, σ} + 2a + 2δ(θtω) + q̃η(θtω)
]

·
(

μ
∥
∥
∥d

(m)
1

∥
∥
∥
2

ρ
+ α

∥
∥
∥d

(m)
2

∥
∥
∥
2

ρ

)

+
(
2μ
λ
‖h1 − h2‖2ρ +

2α
σ

∥
∥g1 − g2

∥
∥2
ρ

)

e−2δ(θtω).

(3.41)

For T > 0, applying Gronwall’s inequality to (3.41) on [0, T] implies that

μ
∥
∥
∥d

(m)
1 (t)

∥
∥
∥
2

ρ
+ α

∥
∥
∥d

(m)
2 (t)

∥
∥
∥
2

ρ
≤ CT

(

μ
∥
∥
∥d

(m)
1 (0)

∥
∥
∥
2

ρ
+ α

∥
∥
∥d

(m)
2 (0)

∥
∥
∥
2

ρ
+ ‖h1 − h2‖t2ρ +

∥
∥g1 − g2

∥
∥2
ρ

)

(3.42)

for some constant CT depending on T , and thus

∥
∥
∥z(m)

1 (t) − z(m)
2 (t)

∥
∥
∥
2

H
≤ C̃T

(∥
∥
∥z(m)

1 (0) − z(m)
2 (0)

∥
∥
∥
2

H
+ ‖h1 − h2‖2ρ +

∥
∥g1 − g2

∥
∥2
ρ

)

, (3.43)

where C̃T is a constant depending on T . Denote by Ẽ = l̃2 × l̃2, where l̃2 = l2 with the
norm ‖ · ‖ρ. By (3.43), there exists a mapping Φ(m) ∈ C(Ẽ × Ẽ, C([0, T],H)) such that
Φ(m)(z0, g, h) = z(m)(t;ω, z0, g, h), where z(m)(t;ω, z0, g, h) is the solution of (3.28) on [0, T)
with z(m)(0;ω, z0, g, h) = z0. Since l̃2 is dense in l2ρ, themappingΦ(m) can be extended uniquely

to a continuous mapping Φ̃(m) : H ×H → C([0, T],H).
For given z0 ∈ H and (g, h) ∈ H, Φ̃(m)(z0, g, h) = z(m)(·;ω, z0, g, h) ∈ C([0, T],H) for

T > 0. There exist sequences {z0n} ⊂ Ẽ, {(hn, gn)} ⊂ Ẽ such that

‖z0n − z0‖E −→ 0, ‖hn − h‖ρ −→ 0,
∥
∥gn − g

∥
∥
ρ −→ 0 as n −→ ∞. (3.44)

Let z(m)
n (t) = Φ̃(m)(z0n, hn, gn) = Φ(m)(z0n, hn, gn) = z(m)(t;ω, z0n, hn, gn) ∈ Ẽ be the solution of

(3.28), then it satisfies the integral equation

(
z(m)
n

)

i
(t) = (z0n)i +

∫ t

0
Fi
(
z(m)
n , θsω

)
ds. (3.45)

By the continuity of Φ̃(m), we have for t ∈ [0, T),

z(m)(t;ω, z0n, hn, gn
)
= Φ̃(m)(z0n, hn, gn

)n→∞−→ Φ̃(m)(z0, h, g
)
= z(m)(t;ω, z0, h, g

) ∈ H. (3.46)

Thus for each i ∈ Z,

(
z(m)
n

)

i
(t) −→ z(m)

i (t) := z(m)
i

(
t;ω, z0, h, g

)
as n −→ ∞ uniformly on t ∈ [0, T). (3.47)
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Moreover, {(z(m)
n )i(t)} is bounded in n. Let n → ∞, then we have

z(m)
i (t) = (z0)i +

∫ t

0
Fi
(
z(m), θsω

)
ds, (3.48)

and z(m)
i (t) satisfies the differential equation (3.31).

Multiply equation (3.31) by
(

μρix
(m)
i 0

0 αρiy
(m)
i

)

and sum over i ∈ Z, we obtain

d

dt

(

μ
∥
∥
∥x(m)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)

∥
∥
∥
2

ρ

)

≤ [−min{λ, σ} + 2a + 2δ(θtω) + q̃η(θtω)
]

·
(

μ
∥
∥
∥x(m)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)

∥
∥
∥
2

ρ

)

+
(
2μ
λ
‖h‖2ρ +

2α
σ

∥
∥g

∥
∥2
ρ

)

e−2δ(θtω),

μ
∥
∥
∥x(m)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)

∥
∥
∥
2

ρ
≤ e2at+

∫ t
0[2δ(θsω)+q̃η(θsω)]ds

(
μ‖x(0)‖2ρ + α

∥
∥y(0)

∥
∥2
ρ

)

+
(
2μ
λ
‖h‖2ρ +

2α
σ

∥
∥g

∥
∥2
ρ

)(
e2at+

∫ t
0[2δ(θsω)+q̃η(θsω)]ds

)

·
(∫ t

0
e(λ+σ−2a)s−2δ(θsω)+

∫s
0 [2δ(θrω)+q̃η(θrω)]drds

)

.= κρ(t), t ∈ [0, Tmax)

(3.49)

Similar to the process (3.35)–(3.39) in part (1), we obtain the existence of a unique solution
z(t;ω, z0, g, h) ∈ H of (3.9) with initial data z0 ∈ H, which is the limit function of a
subsequence of {z(m)(t;ω, z0, g, h)} in H for t ∈ [0, T). In the latter part of this paper, we
may write z(t;ω, z0, h, g) as z(t;ω, z0) for simplicity.

Theorem 3.4. Assume that (P0), (H1), (H2), (H4), and (H5) hold. Then (3.9) generates a continuous
RDS {ψ(t, ω)}t≥0,ω∈Ω1

over (Ω1,F1,P1, (θt)t∈R
) with state spaceH:

ψ(t, ω)z0 := z(t;ω, z0) for z0 ∈ H, t ≥ 0, ω ∈ Ω1. (3.50)

Moreover,

ϕ(t, ω)(u0, v0) := eδ(θtω)ψ(t, ω)e−δ(ω)(u0, v0) for (u0, v0) ∈ H, t ≥ 0, ω ∈ Ω1, (3.51)

defines a continuous RDS {ϕ(t, ω)}t≥0,ω∈Ω1
over (Ω1,F1,P1, (θt)t∈R

) associated with (3.1).

Proof. By Theorem 3.3, the solution z(t;ω, z0) of (3.9) with z(0;ω, z0) = z0 exists globally on
[0,∞). It is then left to show that z(t;ω, z0) = z(t;ω, z0, h, g) is measurable in (t, ω, z0).

In fact, for z0 ∈ E and (h, g) ∈ E, the solution of (3.9) z(t;ω, z0, h, g) ∈ E for t ∈
[0,∞). In this case, function F(z, t, ω, h, g) = F(z, t, ω) is continuous in z,h, g and measurable
in t, ω, which implies that z : [0,∞) × Ω1 × E × E → E,(t;ω, z0, h, g) �→ z(t;ω, z0, h, g) is
(B([0,∞) × F1 × B(E) × B(E),B(E))-measurable.
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For z0 ∈ H and (h, g) ∈ H, the solution z(t;ω, z0, h, g) ∈ H for t ∈ [0,∞). For any
givenN > 0, define TN : H → E, (u, v) = ((ui), (vi))i∈Z

→ TN(u, v) = ((TN(u, v))i)i∈Z
by

(TN(u, v))j =

{(
uj, vj

)
if
∣
∣j
∣
∣ ≤N,

0 if
∣
∣j
∣
∣ > N,

(3.52)

and write

zN
(
t;ω, z0, h, g

)
= z

(
t;ω, TNz0, TN

(
h, g

))
. (3.53)

Then TN is continuous and for any z0 ∈ H, (h, g) ∈ H, and

z
(
t;ω, z0, h, g

)
= lim

N→∞
z
(
t;ω, TNz0, TN

(
h, g

))
. (3.54)

Thus z : [0,∞)×Ω1×E×E → H is (B([0,∞))×F0×B(E)×B(E),B(H))-measurable. Observe
also that (Id, Id, TN, TN) : [0,∞) × Ω1 ×H ×H → [0,∞) × Ω0 × E × E is (B([0,∞)) × F0 ×
B(H) × B(H),B([0,∞)) × F0 × B(E) × B(E))-measurable. Hence zN = z ◦ (Id, Id, TN, TN) :
[0,∞) × Ω1 × H × H → H is (B([0,∞)) × F0 × B(H) × B(H),B(H))-measurable. It then
follows from (3.54) that z : [0,∞)×Ω1×H ×H → H is (B([0,∞))×F1×B(H)×B(H),B(H))-
measurable. Therefore, fix (h, g) ∈ H we have that z(t;ω, z0) = z(t;ω, z0, h, g) is measurable
in (t, ω, z0). The other statements then follow directly.

Remark 3.5. If (h, g) ∈ E, system (3.1) defines a continuous RDS {ϕ(t)}t≥0 over (Ω1,F1,P1,
(θt)t∈R

) in both state spaces E andH.

3.3. Existence of Tempered Random Bounded Absorbing Sets and Global
Random Attractors in Weighted Space

In this subsection, we study the existence of a tempered random bounded absorbing set and
a global random attractor for the random dynamical system {ϕ(t, ω)}t≥0,ω∈Ω1

generated by
(3.1) in weighted spaceH.

Theorem 3.6. Assume that (P0), (H1)–(H5) hold, then there exists a closed tempered random
bounded absorbing set B1ρ(ω) ∈ D(H) of {ϕ(t, ω)}t≥0,ω∈Ω1

such that for any D(ω) ∈ D(H) and
each ω ∈ Ω1, there exists TD(ω) > 0 yielding ϕ(t, θ−tω)D(θ−tω) ⊂ B1ρ(ω) for all t ≥ TD(ω). In
particular, there exists T1ρ(ω) > 0 such that ϕ(t, θ−tω)B1ρ(θ−tω) ⊂ B1ρ(ω) for all t ≥ T1ρ(ω).

Proof. (1) For initial condition z0 ∈ E and (h, g) ∈ E, let z(m)(t, ω) = z(m)(t;ω, z0(ω), h, g) be
a solution of (3.28) with z0(ω) = e−δ(ω)z0 ∈ E, where ω ∈ Ω1, then z(m)(t, ω) ∈ E for all t ≥ 0.
Let ε1 > 0 be such that

λ1 = 2 min{λ, σ} − ε1 > 2q̃E
∣
∣η(ω)

∣
∣. (3.55)
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By (H4) and (H5), we have

−‖b‖2ρ ≤
∑

i∈Z

ρi
(
eδ(θtω)x

(m)
i

)
· fi

(
eδ(θtω)x

(m)
i

)
<∞, for fixed t ≥ 0, (3.56)

d

dt

(

μ
∥
∥
∥x(m)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)

∥
∥
∥
2

ρ

)

≤ [−λ1 + 2δ(θtω) + 2q̃η(θtω)
] ·
(

μ
∥
∥
∥x(m)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)

∥
∥
∥
2

ρ

)

+ 2e−2δ(θtω)
(

μ‖b‖2ρ +
μ

ε1
‖h‖2ρ +

α

σ

∥
∥g

∥
∥2
ρ

)

.

(3.57)

Applying Gronwall’s inequality to (3.57), we obtain that for t > 0,

μ
∥
∥
∥x(m)(t, ω)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)(t, ω)

∥
∥
∥
2

ρ
≤ e−λ1t+

∫ t
0[2δ(θsω)+2q̃η(θsω)]ds

(
μ‖x(0)‖2ρ + α

∥
∥y(0)

∥
∥2
ρ

)

+ 2
(

μ‖b‖2ρ +
μ

ε1
‖h‖2ρ +

α

σ

∥
∥g

∥
∥2
ρ

)

e−λ1t+
∫ t
0[2δ(θsω)+2q̃η(θsω)]ds

·
∫ t

0
eλ1s−2δ(θsω)−

∫s
0 [2δ(θrω)+2q̃η(θrω)]drds.

(3.58)

(2) For any z0 ∈ H and (h, g) ∈ H, let {z0n} ⊂ E and {(hn, gn)} ⊂ E be sequences such
that

‖z0n − z0‖E −→ 0, ‖hn − h‖ρ −→ 0,
∥
∥gn − g

∥
∥
ρ −→ 0 as n −→ ∞. (3.59)

Then z(m)(t;ω, z0n, hn, gn) → z(m)(t;ω, z0, h, g) as n → ∞ in H, and (3.58) holds for z0 ∈ H.
Therefore,

μ
∥
∥
∥x(m)(t, θ−tω, z0(θ−tω))

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)(t, θ−tω, z0(θ−tω))

∥
∥
∥
2

ρ

≤ e−λ1t+
∫ t
0[2δ(θs−tω)+2q̃η(θs−tω)]ds

(
μ‖x0(θ−tω)‖2ρ + α

∥
∥y0(θ−tω)

∥
∥2
ρ

)
+
1
2
r21ρ(ω)e

−2δ(ω),
(3.60)

where

r21ρ(ω) = 4e2δ(ω)
(

μ‖b‖2ρ +
μ

ε1
‖h‖2ρ +

α

σ

∥
∥g

∥
∥2
ρ

)∫0

−∞
eλ1s−2δ(θsω)+

∫0
s [2δ(θrω)+2q̃η(θrω)]drds <∞.

(3.61)
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For any β > 0, since

(
e−βtr0ρ(θ−tω)

)2
(

μ‖b‖2ρ +
μ

ε1
‖h‖2ρ +

α

σ

∥
∥g

∥
∥2
ρ

)−1

= 4e−2βt+δ(θ−tω)
∫−t

−∞
eλ1(s+t)−2δ(θsω)+

∫−t
s [2δ(θrω)+2q̃|η(θrω)|]drds t→+∞−→ 0,

(3.62)

then r1ρ(ω) is tempered.
Let z(t, ω) = ψ(t, ω)z0(ω) = z(t;ω, z0(ω), h, g) be a solution of equation (3.9) with

z0(ω) = e−δ(ω)(u0, v0) ∈ H, where ω ∈ Ω1 and (h, g) ∈ H, then z(t, ω) ∈ H, and there exists
a subsequence z(mk)(t, ω) converging to z(t, ω) asmk → ∞ for all t ≥ 0. Inequality (3.60) still
holds after replacing z(m)(t, ω) by z(t, ω) since the right hand of (3.60) is independent of m.
Thus for (u0, v0) ∈ D(θ−tω),

z0(θ−tω) =
(
x0(θ−tω), y0(θ−tω)

)
= e−δ(θ−tω)(u0, v0),

μ‖u(t, θ−tω, (u0, v0))‖2ρ + α‖v(t, θ−tω, (u0, v0))‖2ρ
≤ e2δ(ω)e−λ1t−2δ(θ−tω)+

∫ t
0[2δ(θs−tω)+2q̃η(θs−tω)]ds sup

(u,v)∈D(θ−tω)

(
μ‖u‖2ρ + α‖v‖2ρ

)

+
1
2
r21ρ(ω).

(3.63)

Let ε2 = λ1 − 2q̃E|η(ω)| > 0. By properties of η(θ±tω) and D ∈ D(H), we have

e−[ε2/2 +2q̃E|η(ω)|]t−δ(θ−tω)+
∫0
−t[2δ(θsω)+2q̃η(θsω)]ds −→ 0 as t −→ +∞, (3.64)

and hence

lim
t→+∞

e2δ(ω)e−λ1t−δ(θ−tω)+
∫0
−t[2δ(θsω)+2q̃η(θsω)]ds sup

(u,v)∈D(θ−tω)

(
μ‖u‖2ρ + α‖v‖2ρ

)
= 0. (3.65)

Denote by r̃1ρ = r1ρ/
√
min{μ, α}, it follows that

B1ρ(ω) =
{
(u, v) ∈ H : ‖(u, v)‖H ≤ r̃1ρ(ω)

}
= BH

(
0, r̃1ρ(ω)

) ⊂ H (3.66)

is a tempered closed random absorbing set for {ϕ(t, ω)}t≥0,ω∈Ω1
.

Theorem 3.7. Assume that (P0), (H1)–(H5) hold, then the RDS {ϕ(t, ω)}t≥0,ω∈Ω1
generated by (3.1)

possesses a unique global random D attractor given by

A1(ω) =
⋂

τ≥TB1ρ (ω)

⋃

t≥τ
ϕ(t, θ−tω)B1ρ(θ−tω) ⊂ H. (3.67)

Proof. According to Theorem 2.2, it remains to prove the asymptotically nullness of
{ϕ(t, ω)}t≥0,ω∈Ω1

; that is, for any ε > 0, there exists T(ε,ω, B1ρ) > T1ρ(ω) and I(ε,ω) ∈ N
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such that when t ≥ T(ε,ω, B1ρ), the solution ϕ(t, ω)(u0, v0) = ((ui, vi)(t;ω, u0, v0))i∈Z
∈ H of

(3.1) with (u0, v0) ∈ B1ρ(θ−tω) satisfies

∑

|i|≥I(ε,ω)
ρi
∣
∣
(
ϕ(t, ω)(u0, v0)

)
i

∣
∣2 =

∑

|i|≥I(ε,ω)
ρi|(ui, vi)(t;ω, u0, v0)|2 ≤ ε. (3.68)

Choose a smooth increasing function ξ ∈ C1(R+, [0, 1]) such that

ξ(s) = 0, 0 ≤ s ≤ 1,

0 ≤ ξ(s) ≤ 1, 1 ≤ s ≤ 2,
∣
∣ξ′(s)

∣
∣ ≤ C0 (constant) for s ∈ R

+,

ξ(s) = 1, s ≥ 2.

(3.69)

Let (u, v)(t;ω, u0, v0, h, g) = ((ui, vi)(t;ω, u0, v0, h, g))i∈Z
be a solution of (3.1), then

z
(
t;ω, z0(ω), h, g

)
=
(
zi
(
t;ω, z0(ω), h, g

))
i∈Z

= e−δ(θtω)ϕ(t, ω)(u0, v0) (3.70)

is a solution of (3.9) with z0(ω) = e−δ(ω)(u0, v0) ∈ H.
Let z0n = Tnz0, (hn, gn) = Tn(h, g), where Tn is as in (3.52). Then z0n ∈

E, (hn, gn) ∈ E and z(t;ω, z0n, hn, gn) → z(t;ω, z0, h, g) in H. For any n ≥ 1, let z(m)(t) =
z(m)(t;ω, z0n(ω), hn, gn) be the solution of (3.28), where z(m)(0) = z0n(ω). By Theorem 3.4,
z(m)(·) ∈ C([0,∞), E) ∩ C1((0,∞), E). Let M be a suitable large integer (will be specified

later); multiply (3.31) by
(

μρiξ(|i|/M)x(m)
i 0

0 αρiξ(|i|/M)y(m)
i

)

and sum over i ∈ Z, we obtain

d

dt

∑

i∈Z

ξ

( |i|
M

)

ρi

(

μ
(
x
(m)
i

)2
+ α

(
y
(m)
i

)2
)

≤ [−λ1 + 2δ(θtω) + 2q̃η(θtω)
] ·
∑

i∈Z

ξ

( |i|
M

)

ρi

(

μ
(
x
(m)
i

)2
+ α

(
y
(m)
i

)2
)

+ η(θtω) · cC0

M

∥
∥
∥x(m)

∥
∥
∥
2

ρ
+ 2e−2δ(θtω)

∑

|i|≥M
ρi

(

μb2i +
μ

ε1
(hn)

2
i +

α

σ

(
gn
)2
i

)

.

(3.71)

Applying Gronwall’s inequality to (3.71) from T1ρ = TB1ρ(ω) to t gives

∑

i∈Z

ξ

( |i|
M

)

ρi

(

μ
(
x
(m)
i

(
t;ω, z0n, hn, gn

))2
+ α

(
y
(m)
i

(
t;ω, z0n, hn, gn

))2
)

≤ e−λ1(t−T1ρ)+
∫ t
T1ρ

[2δ(θsω)+2q̃η(θsω)]ds ·
(

μ
∥
∥
∥x(m)(T1ρ

)∥∥
∥
2

ρ
+ α

∥
∥
∥y(m)(T1ρ)

∥
∥
∥
2

ρ

)

+
∑

|i|≥M
ρi

(

μb2i +
μ

ε1
(hn)

2
i +

α

σ

(
gn
)2
i

)∫ t

T1ρ

e−λ1(t−τ)+
∫ t
τ [2δ(θsω)+2q̃η(θsω)]ds−2δ(θτω)dτ

+
cC0

M

∫ t

T1ρ

e−λ1(t−τ)+
∫ t
τ [2δ(θsω)+2q̃|η(θsω)|]ds−2δ(θτω)η(θτω)

(

μ
∥
∥
∥x(m)(τ)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)(τ)

∥
∥
∥
2

ρ

)

dτ.

(3.72)
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Therefore for (u0, v0) ∈ B1ρ(θ−tω) ∩H,

∑

i∈Z

ξ

( |i|
M

)

ρi

(

μ
(
x
(m)
i

(
t; θ−tω, z0n, hn, gn

))2
+ α

(
y
(m)
i

(
t; θ−tω, z0n, hn, gn

))2
)

≤ e−λ1(t−T1ρ)+
∫ t
T1ρ

[2δ(θs−tω)+2q̃|η(θs−tω)|]ds
(

μ
∥
∥
∥x(m)(T1ρ)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)(T1ρ)

∥
∥
∥
2

ρ

)

︸ ︷︷ ︸
(i)

+
∑

|i|≥M
ρi

(

μb2i +
μ

ε1
(hn)

2
i +

α

σ

(
gn
)2
i

)∫ t

T1ρ

e−λ1(t−τ)+
∫ t
τ [2δ(θs−tω)+2q̃|η(θs−tω)|]ds−2δ(θτ−tω)dτ

︸ ︷︷ ︸
(ii)

+
cC0

M

∫ t

T1ρ

e−λ1(t−τ)+
∫ t
τ [2δ(θs−tω)+2q̃|η(θs−tω)|]ds−2δ(θτ−tω)η(θτ−tω)

(

μ
∥
∥
∥x(m)(τ)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)(τ)

∥
∥
∥
2

ρ

)

dτ

︸ ︷︷ ︸
(iii)

.

(3.73)

We next estimate terms (i), (ii), (iii) on the right-hand side of (3.73). By (3.61),

e
−λ1(t−T1ρ)+

∫ t
T1ρ

[2δ(θs−tω)+2q̃η(θs−tω)]ds
(

μ
∥
∥
∥x(m)(T1ρ

)∥∥
∥
2

ρ
+ α

∥
∥
∥y(m)(T1ρ

)∥∥
∥
2

ρ

)

−→ 0 as t −→ +∞,

(3.74)

which implies that for all ε > 0, there exists T1(ε,ω, B1ρ) ≥ T1ρ such that for t ≥ T1(ε,ω, B1ρ),

(i) ≤ ε

3
min

{
μ, α

}
e−2δ(ω). (3.75)

By h, g, b ∈ l2ρ and

∫ t

T1ρ

e−λ1(t−τ)+
∫ t
τ [2δ(θs−tω)+2q̃η(θs−tω)]ds−2δ(θτ−tω)dτ ≤

∫0

−∞
eλ1τ−

∫0
τ [δ(θsω)+2q̃η(θsω)]ds−2δ(θτω)dτ <∞,

(3.76)

there exists I1(ε,ω) ∈ N such that forM > I1(ε,ω),

(ii) ≤ ε

3
min

{
μ, α

}
e−2δ(ω). (3.77)

Note that ε2 = λ1 − 2q̃E|η(ω)| > 0, then by (H2), η(ω) is tempered and it follows that
there exists a T ′

1 > 0 such that

η(θτ−tω) ≤ e(ε2/3)(t−τ), ∀t − τ ≥ T ′
1. (3.78)
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Therefore

∫ t

T1ρ

e−λ1(t−τ)+
∫ t
τ [2δ(θs−tω)+2q̃η(θs−tω)]ds−2δ(θτ−tω)η(θτ−tω)

(

μ
∥
∥
∥x(m)(τ)

∥
∥
∥
2

ρ
+ α

∥
∥
∥y(m)(τ)

∥
∥
∥
2

ρ

)

dτ

≤
(
μ‖x0‖2ρ + α

∥
∥y0

∥
∥2
ρ

)
e−(λ1−(ε2/3))t−4δ(θ−tω)+

∫0
−t[2δ(θsω)+2q̃η(θsω)]ds

∫ t

T1ρ

e(−ε2/3)τdτ

+
1
2
r21ρ(ω)e

−2δ(ω)
∫ t−T1ρ

0
e−(λ1−(ε2/3))τ+

∫τ
0 [2δ(θsω)+2q̃η(θsω)]dsdτ.

(3.79)

For t� T1ρ, by (H2) and (3.6), there exists 0 < T ′
2 = T

′
2(ω) < t − T1ρ such that

1
τ

∫ τ

0

[
2δ(θsω) + 2q̃η(θsω)

]
ds < λ1 − 2ε2

3
, for τ ≥ T ′

2. (3.80)

Let T2 = max{T ′
1, T

′
2} <∞, and t > T2 + T1ρ, write

∫ t−T1ρ

0
e−(λ1−ε2/3)τ+

∫τ
0 [2δ(θsω)+2q̃η(θsω)]dsdτ =

(∫T2

0
+
∫ t−T1ρ

T2

)

e−(λ1−ε2/3)τ+
∫τ
0 [2δ(θsω)+2q̃η(θsω)]dsdτ,

(3.81)

of which

∫T2

0
e−(λ1−ε2/3)τ+

∫τ
0 [2δ(θsω)+2q̃η(θsω)]dsdτ <∞,

∫ t−T1ρ

T2

e−(λ−ε2/3)τ+
∫τ
0 [2δ(θsω)+2q̃η(θsω)]dsdτ ≤ 3

ε2
e(−ε2/3)T2 .

(3.82)

Equation (3.79) together with (3.82) implies that there exist T3(ε,ω, B1ρ) ≥ T2 and I2(ε,ω) ∈ N

such that forM > I2(ε,ω), t ≥ T3(ε,ω, B1ρ),

(iii) ≤ ε

3
min

{
μ, α

}
e−2δ(ω). (3.83)

In summary, let

T
(
ε,ω, B1ρ

)
= max

{
T1
(
ε,ω, B1ρ

)
, T2

(
ε,ω, B1ρ

)
, T3

(
ε,ω, B1ρ

)}
,

I(ε,ω) = max{I1(ε,ω), I2(ε,ω)}
(3.84)

Then for t > T(ε,ω, B1ρ) andM ≥ I(ε,ω), we have

∑

|i|≥2M
ρi

(

μ
(
x
(m)
i

(
t; θ−tω, z0n, hn, gn

))2
+ α

(
y
(m)
i

(
t; θ−tω, z0n, hn, gn

))2
)

≤ εmin
{
μ, α

}
e−2δ(ω).

(3.85)
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Since z(mk)
i (t; θ−tω, z0n(θ−tω), hn, gn) → zi(t; θ−tω, z0n(θ−tω), hn, gn) asmk → ∞, by (3.85),

∑

|i|≥2M
ρi
∣
∣
(
ϕ(t, ω)(u0, v0)

)
i

∣
∣2 =

∑

|i|≥2M
ρie

2δ(ω)∣∣zi
(
t; θ−tω, z0n, gn, hn

)∣
∣2

≤ e2δ(ω)

min
{
μ, α

}
∑

|i|≥2M
ρi

(

μ
(
x
(m)
i

(
t; θ−tω, z0n, hn, gn

))2
+ α

(
y
(m)
i

(
t; θ−tω, z0n, hn, gn

))2
)

≤ ε.
(3.86)

Letting n → ∞ in (3.86), we obtain

∑

|i|≥2M
ρi
∣
∣
(
ϕ(t, ω)(u0, v0)

)
i

∣
∣2 ≤ ε (3.87)

That is, {ϕ(t, ω)}t≥0,ω∈Ω1
is asymptotically null on B1ρ(ω), which completes the proof.

4. Stochastic Partly Dissipative Lattice Systems with Additive
White Noise in Weighted Spaces

This section is devoted to the study of asymptotic behavior for system (1.2) in weighted space
H = l2ρ × l2ρ. The structure and the idea of proofs are similar to that of Section 3, and we will
present our major results without elaborting the details of proofs in this section.

4.1. Mathematical Setting

Define Ω2 = {ω ∈ C(R, l2) : ω(0) = 0}, and denote by F2 the Borel σ-algebra on Ω2 generated
by the compact open topology [1] and P2 is the corresponding Wiener measure on F2, then
(Ω2,F2,P2, (θt)t∈R

) is a metric dynamical system. Let the infinite sequence ei (i ∈ Z) denote
the element having 1 at position i and 0 for all other components. Write

W1(t, ω) =
∑

i∈Z

aiwi(t)ei, W2(t, ω) =
∑

i∈Z

biwi(t)ei, (4.1)

where {wi(t) : i ∈ Z} are independent two-sided Brownian motions on probability space
(Ω2,F2,P2); thenW1(t, ω) andW2(t, ω) are Wiener processes with values in l2 defined on the
probability space (Ω2,F2,P2).

Consider stochastic lattice system (1.2)with random coupled coefficients and additive
independent white noises:

u̇ = −λu +A(θtω)u − f(u) + αv + h +
dW1(t)
dt

,

v̇ = −σv + μu + g +
dW2(t)
dt

, i ∈ Z, t > 0,
(4.2)
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where ui, vi, hi, gi, ai, bi ∈ R; u = (ui)i∈Z
, v = (vi)i∈Z

, f(u) = (fi(ui))i∈Z
, g = (gi)i∈Z

, h = (hi)i∈Z
,

a = (ai)i∈Z
∈ l2, b = (bi)i∈Z

∈ l2, fi ∈ C1(R,R) (i ∈ Z); λ, α, σ, μ are positive constants;
ηi,−q(ω),. . ., ηi,0(ω),. . .,ηi,+q(ω), i ∈ Z, q ∈ N are random variables; A is defined as in (3.2).

To transform (4.2) into a random equation without white noise, let

δ1(θtω) = −λ
∫0

−∞
eλsθtω(s)ds, δ2(θtω) = −σ

∫0

−∞
eσsθtω(s)ds, t ∈ R, ω ∈ Ω2. (4.3)

Then δ1(θtω), δ2(θtω) are both Ornstein-Uhlenbeck processes on (Ω2,F2,P2) and solve the
following Ornstein-Uhlenbeck equations (see [1]), respectively,

dδ1 + λδ1dt = dW1(t), dδ2 + σδ2dt = dSW2(t), t ≥ 0. (4.4)

Lemma 4.1 (see [1]). There exists a θt-invariant set Ω̃2 ∈ F2 of Ω2 of full P measure such that for
ω ∈ Ω̃2,

(i) limt→±∞‖ω(t)‖/t = 0;

(ii) the random variables ‖δj(ω)‖ are tempered and the mappings

(t, ω) −→ δj(θtω) ∈ l2, j = 1, 2, (4.5)

are stationary solutions of Ornstein-Uhlenbeck equations (4.4) in l2 with continuous
trajectories;

(iii)

lim
t→±∞

∥
∥δj(θtω)

∥
∥

t
= lim

t→±∞
1
t

∫ t

0
δj(θsω)ds = 0, j = 1, 2. (4.6)

In the following, we consider the completion of the probability space ω ∈ Ω̃2, still
denoted by (Ω2,F2,P2),

Let

x̃(t, ω) = u(t, ω) − δ1(θtω), ỹ(t, ω) = v(t, ω) − δ2(θtω), ω ∈ Ω2, t ∈ R. (4.7)

then system (4.2) becomes the following random system with random coefficients but
without white noise:

dx̃

dt
= −λx̃ +A(θtω)x̃ − f(x̃ + δ1(θtω)

) − αx̃ +A(θtω)δ1(θtω) − αδ2(θtω) + h,

dỹ

dt
= −σỹ + μx̃ + μδ1(θtω) + g, i ∈ Z, t > 0.

(4.8)

In addition, we make the following assumptions on functions fi, i ∈ Z:
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(H6) fi ∈ C1(R,R) satisfy

sfi(s) ≥ μs2(p+1) − d2
i ,

∣
∣fi(s)

∣
∣ ≤ df |s|

(
|s|2p + 1

)
, ∀s ∈ R, i ∈ Z, (4.9)

where μ, di, df are positive constants, p ∈ N, and d = (di)i∈Z
∈ l2.

4.2. Random Dynamical System Generated by Random Lattice System

Denote by z̃ = (x̃, ỹ), we have the following.

Theorem 4.2. Let T > 0 and assume that (P0), (H1), (H2), (H4), and (H6) hold. Then for every
ω ∈ Ω2 and any initial data z̃0 = (x̃0, ỹ0) ∈ H, problem (4.8) admits a unique solution z̃(·;ω, z̃0) ∈
C([0, T),H) with z̃(0;ω, z̃0) = z̃0.

Proof. Similar to the proof of Theorem 3.3.

Theorem 4.3. Assume that (P0), (H1), (H2), (H4), and (H6) hold. Then system (4.8) generates a
continuous RDS {ψ̃(t, ω)}t≥0,ω∈Ω2

over (Ω2,F2,P2, (θt)t∈R
) with state spaceH:

ψ̃(t, ω)z̃0 := z̃(t;ω, z̃0), for z̃0 ∈ H, t ≥ 0, ω ∈ Ω2. (4.10)

Moreover,

ϕ̃(t, ω)(u0, v0) := ψ̃(t, ω)
(
u0 − δ1(ω)
v0 − δ2(ω)

)

+
(
δ1(θtω)
δ2(θtω)

)

, (4.11)

where (u0, v0) ∈ H,t ≥ 0, ω ∈ Ω2, defines a continuous RDS {ϕ̃(t, ω)}t≥0,ω∈Ω2
over

(Ω2,F2,P2, (θt)t∈R
) associated with (4.2).

Proof. It follows immediately from similar arguments to the proof of Theorem 3.4.

4.3. Existence of Tempered Bounded Random Absorbing Set and Random
Attractor in Weighted Space

In this subsection, we study the existence of a tempered random bounded absorbing set and
a global random attractor for the random dynamical system {ϕ̃(t, ω)}t≥0,ω∈Ω2

generated by
(4.2) in weighted spaceH.

Theorem 4.4. Assume that (P0), (H1)–(H4), and (H6) hold. Then

(a) there exists a closed tempered bounded random absorbing set B2ρ(ω) ∈ D(H) of RDS
{ϕ̃(t, ω)}t≥0,ω∈Ω2

such that for any D ∈ D(H) and each ω ∈ Ω2, there exists T̃D(ω) >
0 yielding ϕ̃(t, θ−tω)D(θ−tω) ⊂ B2ρ(ω), for all t ≥ T̃D(ω). In particular, there exists
T2ρ(ω) > 0 such that ϕ̃(t, θ−tω)B2ρ(θ−tω) ⊂ B2ρ(ω), for all t ≥ T2ρ(ω);
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(b) the RDS {ϕ̃(t, ω2)}t≥0,ω∈Ω2
generated by equations (4.2) possesses a unique global random

D attractor given by

A2ρ(ω) =
⋂

τ≥T2ρ(ω)

⋃

t≥τ
ϕ̃(t, θ−tω)B2ρ(θ−tω) ∈ H. (4.12)

Proof. Similar to the proofs of Theorems 3.6 and 3.7.
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