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A new iterative method introduced by Daftardar-Gejji and Jafari (2006) (DJ Method) is an
efficient technique to solve nonlinear functional equations. In the present paper, sufficiency
conditions for convergence of DJM have been presented. Further equivalence of DJM and Adomian
decomposition method is established.

1. Introduction

A variety of problems in physics, chemistry, biology, and engineering can be formulated in
terms of the nonlinear functional equation

u=f+N(u), (L.1)

where f is a given function, and N is the nonlinear operator. Equation (1.1) represents
integral equations, ordinary differential equations (ODEs), partial differential equations
(PDEs), differential equations involving fractional order, systems of ODE/PDE, and so
on. Various methods such as Laplace and Fourier transform and Green’s function method
have been used to solve linear equations. For solving nonlinear equations, however, one
has to resort to numerical/iterative methods. Adomian decomposition method (ADM) has
proved to be a useful tool for solving functional equation (1.1) [1-3], since it offers certain
advantages over numerical methods. This method yields solutions in the form of rapidly
converging infinite series which can be effectively approximated by calculating only first
few terms. In the last two decades, extensive work has been done using ADM as it provides
analytical approximate solutions for nonlinear equations without linearization, perturbation,
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or discretization. Though Adomian’s technique is simple in principle, it involves tedious cal-
culations of Adomian polynomials [4, 5]. Researchers have explored symbolic computational
packages such as Mathematica for finding Adomian polynomials [6, 7].

As a pursuit of this, Daftardar-Gejji and Jafari [8] have introduced a new decomposi-
tion method (DJM) to solve (1.1) which is simple and easy to implement. It is economical
in terms of computer power/memory and does not involve tedious calculations such as
Adomian polynomials. DJM has been employed successfully to solve a variety of problems.

Present paper analyzes convergence of DJM in detail and establishes its equivalence
to ADM.

2. Preliminaries

Let X, Y be Banach spaces and F : X — Y a map. L(X,Y) denotes the set of all linear maps
from X to Y. L(X,Y) is also a Banach space.

Definition 2.1 (see [9]). F is said to be Fréchet differentiable at x € X if there exists a
continuous linear map A : X — Y such that

F(x +h) - F(x) = Ah + w(x, h), (2.1)

where

b

0. 22
k-0 ||kl @2)

A is called the Fréchet derivative of F at x and is also denoted by F'(x). Its value at h is
denoted by F'(x)(h).
Note that F’ is a linear map from X to L(X,Y).

Definition 2.2 (see [9]). F is said to be twice differentiable if the map F' : X — L(X,Y) is
Fréchet differentiable. The second derivative of F is denoted by F” and is a linear map from
X to L(X,L(X,Y)).

Note that L(X, L(X,Y)) is isomorphic to L(X x X, Y).

Theorem 2.3 (see [9]). The map F"(x) € L(X%Y) is symmetric, that is, F"(x)(x1,x2) =
F"(x)(x2,x1), x1,%2 € X.

In this manner, F® (x), F¥(x),... are inductively defined and F™ (x) € L(X",Y) is
multilinear and symmetric map.
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Theorem 2.4 ([9, Taylor’s theorem]). Suppose that F € C"(U), where U is an open subset of X
containing the line segment from xg to h, then

F(xo + h) = F(xo) + F'(x0) (h) + lF"(xo)(h, h)+---+ FO D (xo)(h,..., h)
2! ———

n-1 times

(n-1)!

1 e
+mj0 (1 -t F™(xg+th) (h,...,h) dt

n times

(2.3)

1
Zk—F(k)(xo (h,...,h) +q(x),
K0 T
where q(x) is such that ||q(x)|| = O(||x[|").
Since F%) (x) is symmetric, we denote (h, ..., h) by h¥.
——

k times

3. An Iterative Method

Daftardar-Gejji and Jafari [8] have considered the following functional equation:

u=f+N(u), (3.1)

where N is a nonlinear operator from a Banach space B — B, and f is a given element of the
Banach space B. u is assumed to be a solution of (3.1) having the series form

u = Zui. (32)
i=0
The nonlinear operator N is decomposed as
Nu) = N(up) + [N(uo + u1) — N(ug)] + [N (uo + uq + 1) = N(ug +ug)] +---. (3.3)

Let Go = N (1) and

G, =N<§n:ui> —N<nz_1ui>, n=12,.... (3.4)

Then N(u) = >.72, Gi.
Set

up = f (3.5)

un = anlr n= 1/ 2/ crry (36)
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then

u=Su (3.7)

is a solution of (3.1).

3.1. Taylor Series and DJM

Using Theorem 2.4,

G1 = N(ug +u1) — N(uo)

2
i " ul
= N(uo) + N'(uo)u1 + N (uO)E +--- = N(uo) (3.8)
o) k
u
= S IN® (o) L,
2 K
u2
G2 = N(uo + Uy +u2) —N(uo +u1) = N,(uo +u1)u2 +N"(u0 +u1)2—? + e
L L (3.9)
= Z I:ZN(HD (uo)u__'l] u._|2,
SIS it | !
L X X Lo ll ll u
Gs =, > Y Nl () 2 2 “ (3.10)

INEAEAE
i5=11,=011=0 il i

In general,

G, = i i i [N@zqik)(uo)( - %)] , 3.11)
2, 2 L%

In view of (3.3)—(3.11),

Nwu)=Gy+G1+Gy+Gz+---

=0

© k o [ o j
- NG s SN g S S|
k=1 k! =1

13 12
Uy ”1

+ Z Z ZN(11+12+13)(M ) .

| AN
l3 112 011—0 l 12 ll



International Journal of Differential Equations 5

= N(uo) +N’(u0)[u1 +Ux +uUz+ ]

2 2 2
+N"(u)h+ wntr + 2 ) + (st + uzug + =2 ) 4 -
0 21 142 21 342 341 21

ul w o ul ul
+N(3)(u0)|:3—}+ u22—}+2—fu1+3—? +oeee |+

(3.12)
Using (3.22),
N (1) = N(uo) + N'(uo) [t + 1t +uz +-+-] + N"z(f‘O) [1 + 14z + 1z + -+ ]2
NG () (3.13)
T[u1+u2+u3+~~]3+m .

Equation (3.13) is Taylor series expansion of N(u) around ug. Thus, DJM is equivalent to
Taylor series expansion around uy. In Adomian decomposition method (ADM) [1], right
hand side of (3.13) is written as

2 3

u u
N (o) + N (uo)ur + ( N" (1) =~ + N'(up)uz )+ ( N (ug) == + N"(uo)uyuz + N’ (uo)uz ) +- -,
—_—— —— — 2! 3!

(3.14)
where Ap, Ay, ... are Adomian polynomials, and u,.1 = A,, n > 0.
3.2. Convergence of DJM
Now, we present the condition for convergence of DJM.
Theorem 3.1. If N is C*) in a neighborhood of ug and
[N o) || = Sup{ N (uo) (i, ..., ) : Iill €1, 1< i< m)} < I (3.15)

for any n and for some real L > 0 and |luj|| < M < 1/e, i = 1,2,..., then the series > 5., Gy is
absolutely convergent, and moreover,

IGull < LM"e" Y(e-1), n=1,2,.... (3.16)

Proof. In view of (3.11),

IGall < LM"i i i <]‘[:—|> = LM"e" (e - 1). (3.17)
=

ip=1in_1=0 i1=0
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Thus, the series Xo; ||G,|| is dominated by the convergent series LM (e — 1) >,7°4 (Me)™ ™,
where M < 1/e. Hence, >.;° G, is absolutely convergent, due to the comparison test.

As it is difficult to show boundedness of ||u;]|, for all i, a more useful result is proved
in the following theorem, where conditions on N® (1) are given which are sufficient to
guarantee convergence of the series. O

Theorem 3.2. If N is C and |[N™ (ug)|| < M < e, for all n, then the series 32, G, is
absolutely convergent.

Proof. Consider the recurrence relation
& =¢oexp(éu1), n=123,..., (3.18)

where ¢y = M. Define 11, = &, — é4-1, n=1,2,3,.... Using (3.6), (3.11), and the hypothesis of
Theorem 3.2, we observe that

IGull €70, n=1,2,3,---. (3.19)
Let
On = Zﬂi =&n = o- (3.20)
i=1

Note that § = e™' > 0, & = & exp(&) > &, and & = &exp(&1) > &exp(éo) = é1. In general,
&n > &n1 > 0. Hence, > 1, is a series of positive real numbers. Note that

O<ép=M=el<1,
0 < ¢ =&exp(én) < fet=elel =1, (3.21)

0<é =¢&exp(ér) < &el = 1.

In general, 0 < ¢, < 1. Hence, 0, = ¢, — & < 1. This implies that {0, },.; is bounded above by
1, and hence convergent. Therefore, >, G, is absolutely convergent by comparison test. [

3.3. Illustrative Example

Consider the nonlinear IVP,
’(t)—1+1 2(t) (0)—1 te[0,1] (3.22)
y - 2 8y 4 y - 2’ [ .
Integrating (3.22), we get

y(t) =+ + 1 y(s)ds. (3.23)
0
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Note that yo = (1 +t)/2 and N(y)(t) = (1/8) fé y?(s)ds then [10]

, 10
(N'(y)z)(t) = 3 jo 3y <yzz>ds (3.24)
t
_ % jo 2y/(s)z(s)ds. (3.25)

Similarly, (N"(y)(z1, z2)(t) = (t/4)z1(t)z2(t) and N® (y) = 0 for k > 3. Since t € [0,1],

| a+s)? 7 1
IN(yo) )| = gfo ds| < <2,
) 1("(Q+s 3 1
”N(yo)(t)”:Hé_Lj ( > )ds §R<E,
° (3.26)
" e
IN (yo)(t>||-H4 <<l

||N<’<> (yo)(t)” =0, k>3.

As the conditions of Theorem 3.2 are satisfied, the solution series y = 3} y; obtained by DJM
is convergent for f € [0, 1]. The terms of the series are given by

1 ,
ylzN(yO):ﬁ t+t+§ ,

v2=N(yo+y1) - N(o)
2 B # " 1o t7
7 7
0551576 * %" 10152 * ¥ 120880 * 73728 T 5160967

(3.27)

“512

and so on. In Figure 1, a seven-term approximate solution obtained by DJM (dashed line) is
compared with exact solution (solid line) [8sin(t/4) + 2 cos(t/4) ]/[4cos(t/4) —sin(t/4)].

3.4. Applications of DJM

DJM has been further explored by many researchers. Several numerical methods with higher-
order convergence can be generated using DJM. M. A. Noor and K. I. Noor [11, 12] have
developed a three-step predictor-corrector method for solving nonlinear equation f(x) = 0.
Further, they have shown that this method has fourth-order convergence [13]. Some new
methods [14, 15] are proposed by these authors using DJM.
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Figure 1: Solution of (3.22): dashed = DJM, solid = exact.

Mohyud-Din et al. [16] solved Hirota-Satsuma coupled KdV system

1
up — Euxxx + 3uu, — 3(vw)x =0,

Ut — Uyxx — 3UV, =0, (328)

Wi + Wy — 3UW, =0,

using DJM. These authors [17] also have applied DJM in solutions of some fifth-order
boundary value problems

¥y (x) = g(x)y +4q(x), (3.29)

with boundary conditions y(a) = A1, y'(a) = Az, y'(a) = As, y(b) = By, y'(b) = B,. Noor
and Din [18] have used DJM to solve Helmholtz equations.

A variety of fractional-order differential equations such as diffusion-wave equations
[19], boundary value problems [20], partial differential equations [21, 22], and evolution
equations [23] are solved successfully by Daftardar-Gejji and Bhalekar using DJM. Further
Jafari et al. [24] have solved nonlinear diffusion-wave equations using DJM. Fard and
Sanchooli [25] have used DJM for solving linear fuzzy Fredholm integral equations.

Recently, Srivastava and Rai [26] have proposed a new mathematical model for
oxygen delivery through a capillary to tissues in terms of multiterm fractional diffusion
equation. They have solved the multiterm fractional diffusion equation using DJM and ADM
and have shown that the results are in perfect agreement.
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