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A class of nonautonomous two-species competitive system with stage structure and impulse
is considered. By using the continuation theorem of coincidence degree theory, we derive a
set of easily verifiable sufficient conditions that guarantee the existence of at least a positive
periodic solution, and, by constructing a suitable Lyapunov functional, the uniqueness and global
attractivity of the positive periodic solution are presented. Finally, an illustrative example is given
to demonstrate the correctness of the obtained results.

1. Introduction

In recent years, with the increasing applications of theory of differential equations in
mathematical ecology, various mathematical models have been proposed in the study of
population [1–25]. But most of the previous results focused on the dynamical behaviors
(including the stability, attractiveness, persistence, and periodicity of solution) of the systems
which have fixed parameters and there is no impulse. Considering that harvest of many
populations are not continuous and the periodic environmental factor, it is reasonable to
investigate the systems with periodic coefficients and impulse. Impulsive differential systems
display a combination of characteristics of both the continuous-time and discrete-time
systems [26–30]. In 2006, Chen [1] studied the following non-autonomous almost periodic
competitive two-species model with stage structure in one species:



2 International Journal of Differential Equations

ẋ1(t) = −a1(t)x1(t) + b1(t)x2(t),

ẋ2(t) = a2(t)x1(t) − b2(t)x2(t) − c(t)x2
2(t) − β1(t)x2(t)x2(t)x3(t),

ẋ3(t) = x3(t)
[
d(t) − e(t)x3(t) − β2(t)x2(t)

]
,

(1.1)

where x1(t) and x2(t) are immature and mature population densities of one species,
respectively; x3(t) represents the population density of another species; ai(t), bi(t), βi(t) (i =
1, 2), c(t), d(t), e(t) are all continuous, almost periodic functions. The competition is
between x2(t) and x3(t). Chen [1] obtained sufficient conditions for the existence of a unique,
globally attractive, strictly positive almost periodic solution for system (1.1).

Considering that the harvest is an annual harvest pulse, to describe a system more
accurately, we should consider the impulsive differential equation. Motivated by this point
of view, we revised system (1.1) into the following form:

ẋ1(t) = −a1(t)x1(t) + b1(t)x2(t), t /= tk,

ẋ2(t) = a2(t)x2(t) − b2(t)x2(t) − c(t)x2
2(t) − β1(t)x2(t)x3(t), t /= tk,

ẋ3(t) = x3(t)
[
d(t) − e(t)x3(t) − β2(t)x2(t)

]
, t /= tk,

Δxi(tk) = xi

(
t+k
) − xi

(
t−k
)
= −γikxi(tk), i = 1, 2, 3, k = 1, 2, . . . , q,

(1.2)

where Δxi(tk) = xi(t+k) − xi(t−k) are the impulses at moments tk and t1 < t2 < · · · is a strictly
increasing sequence such that limk→∞ tk = +∞; x1(t) and x2(t) are immature and mature
population densities of one species, respectively, and x3(t) represents the population density
of another species. The competition is between x2(t) and x3(t).

Throughout the paper, we always assume the following.

(H1) ai(t), bi(t), βi(t) (i = 1, 2), c(t), d(t), e(t) are all continuousω periodic; that is, ai(t+
ω) = ai(t), bi(t + ω) = bi(t), βi(t + ω) = βi(t) (i = 1, 2), c(t + ω) = c(t), d(t + ω) =
d(t), e(t +ω) = e(t) for any t ∈ R.

(H2) ai(t), bi(t), βi(t) (i = 1, 2), c(t), d(t), e(t) are all positive.

(H3) 0 < γik < 1, i = 1, 2, 3 for all k ∈ N, and there exists a positive integer q such that
tk+q = tk +ω, γi(k+q) = γik, i = 1, 2, 3.

The principle object of this paper is by using Mawhin’s continuation theorem of
coincidence degree theory and by constructing the Lyapunov functions to investigate the
stability and existence of periodic solutions of (1.2). To the best of my knowledge, it is the
first time to deal with the existence and stability of periodic solutions of (1.2).

The organization of the paper is as follows. In Section 2, we introduce some notations
and definitions and state some preliminary results needed in later sections. We then establish,
in Section 3, some simple criteria for the existence of positive periodic solutions of system
(1.2) by using the continuation theorem of coincidence degree theory proposed by Gaines
and Mawhin [31]. The uniqueness and global attractivity of the positive periodic solution
are presented in Section 4. In Section 5, an illustrative example is given to demonstrate the
correctness of the obtained results.
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2. Preliminaries

We will introduce some notations and definitions and state some preliminary results.
Consider the impulsive system

ẋ(t) = f(t, x), t /= tk, k = 1, 2, . . . ,

Δx(t)|t=tk = Ik
(
x
(
t−k
))
,

(2.1)

where x ∈ Rn, f : R × Rn → Rn is continuous and f(t + ω, x) = f(t, x); Ik : Rn → Rn are
continuous, and there exists a positive integer q such that tk+q = tk + ω, Ik+q(x) = Ik(x) with
tk ∈ R, tk+1 > tk, limk→∞ = ∞,Δx(t)|t=tk = x(t+

k
) − x(t−

k
). For tk /= 0 (k = 1, 2, . . .), [0, ω] ∩ {tk} =

{t1, t2, . . . , tq}. As we know, {tk} are called points of jump.
Let us recall some definitions. For the Canchy problem,

ẋ(t) = f(t, x), t ∈ [0, ω], t /= tk,

Δx(t)|t=tk = Ik
(
x
(
t−k
))
, x(0) = x0.

(2.2)

Definition 2.1. A map x : [0, ω] → Rn is said to be a solution of (2.2), if it satisfied the
following conditions:

(i) x(t) is a piecewise continuousmapwith first-class discontinuity points in tk∩[0, ω],
and at each discontinuity point it is continuous on the left;

(ii) x(t) satisfies (2.2).

Definition 2.2. A map x : [0, ω] → Rn is said to be an ω periodic solution of (2.1), if

(i) x(t) satisfies (i) and (ii) of Definition 2.1 in the interval [0, ω] and

(ii) x(t) satisfies x(t +ω − 0) = x(t − 0), t ∈ R.

Obviously, if x(t) is a solution of (2.2) defined on [0, ω], such that x(0) = x(ω), then,
by the periodicity of (2.2) in t, the function x∗(t) defined by

x∗(t) =

⎧
⎨

⎩

x
(
t − jω

)
, t ∈ [jω,

(
j + 1

)
ω
] \ {tk},

x∗(t) is left continuous at t = tk
(2.3)

is a ω periodic solution of (2.1).
For system (1.2), seeking the periodic solutions is equivalent to seeking solutions of

the following boundary value problem:

ẋ1(t) = −a1(t)x1(t) + b1(t)x2(t), t /= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

ẋ2(t) = a2(t)x2(t) − b2(t)x2(t) − c(t)x2
2(t) − β1(t)x2(t)x3(t), t /= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

ẋ3(t) = x3(t)
[
d(t) − e(t)x3(t) − β2(t)x2(t)

]
, t /= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

Δxi(tk) = xi

(
t+k
) − xi

(
t−k
)
= −γikxi(tk), i = 1, 2, 3, xi(0) = xi(ω), k = 1, 2, . . . , q.

(2.4)
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3. Existence of Positive Periodic Solutions

In this section, based on the Mawhin’s continuation theorem, we shall study the existence of
at least one periodic solution of (1.1). To do so, we shall make some preparations.

Let X,Y be normed vector spaces; L : DomL ⊂ X → Y is a linear mapping; N : X →
Y is a continuous mapping. The mapping L will be called a Fredholm mapping of index
zero if dimKerL = codimImL < +∞ and ImL is closed in Y . If L is a Fredholm mapping
of index zero and there exist continuous projectors P : X → X and Q : Y → Y such that
ImP = KerL, ImL = KerQ = Im(I−Q), it follows that L | DomL ∩ KerP : (I−P)X → ImL is
invertible. We denote the inverse of that map byKP . IfΩ is an open bounded subset of X, the
mapping N will be called L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → X
is compact. Since ImQ is isomorphic to KerL, there exist isomorphisms J : ImQ → KerL.

Now we introduce Mawhin’s continuation theorem [31] as follows.

Lemma 3.1 (Continuation Theorem [31]). Let L be a Fredholm mapping of index zero, and let N
be L-compact on Ω. Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω.

(b) QNx/= 0 for each x ∈ KerL
⋂
∂Ω, and deg{JQN,Ω

⋂
∂KerL, 0}/= 0.

Then the equation Lx = Nx has at least one solution lying in DomL
⋂
Ω.

For convenience and simplicity in the following discussion, we always use the
notations below throughout the paper:

f =
1
ω

∫ω

0
f(t)dt, fL = min

t∈[0,ω]
f(t), fM = max

t∈[0,ω]
f(t),

∣∣f
∣∣ =

1
ω

∫ω

0

∣∣f(t)
∣∣dt, (3.1)

where f(t) is a ω continuous periodic function. For any nonnegative integer p, let
C(p)[0, ω; t1, t2, . . . , tq] = {x : [0, ω] → Rm | x(p)(t) exist for t /= t1, . . . , tq; x(p)(t + 0), and let
x(p)(t−0) exist at t1, t2, . . . , tq, and x(j)(tk) = x(j)(tk −0), k = 1, . . . , m, j = 0, 1, 2, . . . , p}with the
norm ‖x‖p = max {supt∈[0,ω]‖x(j)(t)‖}p

j=1
, where ‖ · ‖ is any norm of Rm. It is easy to see that

C(p)[0, ω; t1, t2, . . . , tq] is a Banach space.
Now we are now in a position to state and prove the existence of periodic solutions of

(2.4).

Theorem 3.2. In addition to (H1), (H2), (H3), assume further that the following hold:

(H4) min{P1, P2, P3} > 0,

(H5) a1ω >
q∑

k=1

ln
(
1 − γ1k

)
,

(H6) dω +
q∑

k=1

ln
(
1 − γ3k

)
> β2ωeB4 , β1β2 /= ce,

(3.2)



International Journal of Differential Equations 5

where

P1 = |a2 − b2|ω +
q∑

k=1

ln
(
1 − γ2k

) − cωeB6 ,

P2 = |a2 − b2|ω +
q∑

k=1

ln
(
1 − γ2k

) − β1ωeB29 ,

P3 = |a2 − b2|ω +
q∑

k=1

ln
(
1 − γ2k

) − cω,

(3.3)

and B4, B6, B29 are defined by (3.27), (3.32), and (3.61), respectively. Then the system (1.2) has at
least a ω periodic solution.

Proof. According to the discussion above in Section 2, we need only to prove that the
boundary value problem (2.4) has a solution. Since solutions of (2.4) remained positive for
all t ≥ 0, we let

u1(t) = ln[x1(t)], u2(t) = ln[x2(t)], u3(t) = ln[x3(t)], (3.4)

then system (2.4) can be translated to

u̇1(t) = −a1(t) + b1(t)e(u2(t)−u1(t)), t /= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

u̇2(t) = a2(t) − b2(t) − c(t)eu2(t) − β1(t)eu3(t), t /= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

u̇3(t) = d(t) − e(t)eu3(t) − β2(t)eu2(t), t /= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

Δui(tk) = ln
(
1 − γik

)
, i = 1, 2, 3, ui(0) = ui(ω).

(3.5)

It is easy to see that if system (3.5) has one ω periodic solution (u∗
1(t), u

∗
2(t), u

∗
3(t))

T , then

(x∗
1(t), x

∗
2(t), x

∗
3(t))

T = (eu
∗
1(t), eu

∗
2(t), eu

∗
3(t))

T
is a positive solution of system (1.2). Therefore, to

complete the proof, it suffices to show that system (3.5) has at least one ω periodic solution.
In order to use the continuation theorem of coincidence degree theory, we take

X =
{
u ∈ C

[
0, ω; t1, t2, . . . , tq

]}
, Y = X × R3×(q+1). (3.6)

Then X is a Banach space with norm ‖ · ‖0, and Y is also a Banch space with norm ‖z‖ =
‖x‖0 + ‖y‖, x ∈ X,Y ∈ R3q.
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Let the following hold:

domL =
{
x = (u1, u2, u3)T ∈ C[0, ω]; t1, t2, . . . , tq

}
,

L : DomL ⊂ X −→ Y, x −→
(
x′,Δx(tk)

q

k=1

)
,

N : X −→ Y,

Nu =

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

−a1(t) + b1(t) exp(u2(t) − u1(t))

a2(t) − b2(t) − c(t)eu2(t) − β1(t)eu3(t)

d(t) − e(t)eu3(t) − β2(t)eu2(t)

⎞

⎟⎟
⎠,

⎛

⎜⎜
⎝

ln
(
1 − γ11

)

ln
(
1 − γ21

)

ln
(
1 − γ31

)

⎞

⎟⎟
⎠,

⎛

⎜⎜
⎝

ln
(
1 − γ12

)

ln
(
1 − γ22

)

ln
(
1 − γ32

)

⎞

⎟⎟
⎠, . . . ,

⎛

⎜⎜
⎝

ln
(
1 − γ1q

)

ln
(
1 − γ2q

)

ln
(
1 − γ3q

)

⎞

⎟⎟
⎠, 0

⎞

⎟⎟
⎠

(3.7)

Obviously,

KerL =
{
u : u(t) = h ∈ R3, t ∈ [0, ω]

}
,

ImL =

{

z =
(
f, a1, a2, . . . , aq, d

) ∈ Y :
∫ω

0
f(s)ds +

q∑

k=1

ak + d = 0

}

= X × R3×q × {0},
dimKerL = 3 = codimImL.

(3.8)

So, ImL is closed in Y ; L is a Fredholm mapping of index zero. Define two projectors

Px =
1
ω

∫ω

0
x(t)dt,

Qz = Q
(
f, a1, a2, . . . , aq, d

)
=

(
1
ω

[∫ω

0
f(s)ds +

q∑

k=1

ak + d,

]

, 0, 0, . . . , 0

)

.

(3.9)

It is easy to show that P and Q are continuous and satisfy ImP = KerL, ImL = KerQ =
Im(I −Q).

Further, by direct computation, we can find that the inverse KP of L, KP : ImL →
KerP ∩DomL has the following form:

KP (z) =
∫ t

0
f(s)ds +

∑

tk<t

ak − 1
ω

∫ω

0

∫ t

0
f(s)dsdt −

q∑

k=1

ak +
1
ω

q∑

k=1

aktk. (3.10)
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Moreover, it is easy to check that

QNu =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
ω

∫ t

0
F1(s)ds +

1
ω

q∑

k=1

ln
(
1 − γ1k

)

1
ω

∫ t

0
F2(s)ds +

1
ω

q∑

k=1

ln
(
1 − γ2k

)

1
ω

∫ t

0
F3(s)ds +

1
ω

q∑

k=1

ln
(
1 − γ3k

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 0, 0, . . . , 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

KP (I −Q)Nu =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∫ t

0
F1(s)ds +

∑

t>tk

ln
(
1 − γ1k

)

∫ t

0
F2(s)ds +

∑

t>tk

ln
(
1 − γ2k

)

∫ t

0
F3(s)ds +

∑

t>tk

ln
(
1 − γ3k

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
ω

∫ω

0

∫ t

0
F1(s)dsdt −

q∑

k=1

ln
(
1 − γ1k

)
+

1
ω

q∑

k=1

ln
(
1 − γ1k

)

1
ω

∫ω

0

∫ t

0
F2(s)dsdt −

q∑

k=1

ln
(
1 − γ2k

)
+

1
ω

q∑

k=1

ln
(
1 − γ2k

)

1
ω

∫ω

0

∫ t

0
F3(s)dsdt −

q∑

k=1

ln
(
1 − γ3k

)
+

1
ω

q∑

k=1

ln
(
1 − γ3k

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−
(

t

ω
− 1
2

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∫ω

0
F1(s)ds +

q∑

k=1

ln
(
1 − γ1k

)

∫ω

0
F2(s)ds +

q∑

k=1

ln
(
1 − γ2k

)

∫ω

0
F3(s)ds +

q∑

k=1

ln
(
1 − γ3k

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(3.11)

where

F1(s) = −a1(s) + b1(s)e(u2(s)−u1(s)),

F2(s) = a2(s) − b2(s) − c(s)eu2(s) − β1(s)eu3(s),

F2(s) = d(s) − e(s)eu3(s) − β2(s)eu2(s).

(3.12)

Obviously, QN and KP (I − Q)N are continuous. Using the Ascoli-Arzela theorem, it is not

difficult to show thatKP (I −Q)N(Ω) is compact for any open bounded setΩ ⊂ X. Moreover,
QN(Ω) is bounded. Thus, N is L-compact on Ωwith any open bounded set Ω ⊂ X.
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Now we are at the point to search for an appropriate open, bounded subset Ω for
the application of the continuation theorem. Corresponding to the operator equation Lu =
λNu, λ ∈ (0, 1), we have

u̇1(t) = λ
[
−a1(t) + b1(t)e(u2(t)−u1(t))

]
, t /= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

u̇2(t) = λ
[
a2(t) − b2(t) − c(t)eu2(t) − β1(t)eu3(t)

]
, t /= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

u̇3(t) = λ
[
d1(t) − e(t)eu3(t) − β2(t)eu2(t)

)]
, t /= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

Δui(tk) = λ ln
(
1 − γik

)
, i = 1, 2, 3, ui(0) = ui(ω).

(3.13)

Suppose that u(t) = (u1(t), u2(t), u3(t))
T ∈ X is an arbitrary solution of system (3.13) for a

certain λ ∈ (0, 1), integrating both sides of (3.13) over the interval [0, ω] with respect to t, we
obtain

∫ω

0

[
b1(t)e(u2(t)−u1(t))

]
dt +

q∑

k=1

ln
(
1 − γ1k

)
=
∫ω

0
a1(t)dt,

∫ω

0

[
c(t)eu2(t) + β1(t)eu3(t)

]
dt =

∫ω

0
(a2(t) − b2(t))dt +

q∑

k=1

ln
(
1 − γ2k

)
,

∫ω

0

[
e(t)eu3(t) + β2(t)eu2(t)

]
dt =

∫ω

0
d(t)dt +

q∑

k=1

ln
(
1 − γ3k

)
.

(3.14)

From (3.13) and (3.14), we obtain

∫ω

0
|u̇1(t)|dt <

∫ω

0
a1(t)dt +

∫ω

0

[
b1(t)e(u2(t)−u1(t))

]
dt

= 2a1ω −
q∑

k=1

ln
(
1 − γ1k

)
,

(3.15)

∫ω

0
|u̇2(t)|dt <

∫ω

0
[a2(t) + b2(t)]dt +

∫ω

0

[
c(t)eu2(t) + β1(t)eu3(t))

]
dt

= 2a2ω +
q∑

k=1

ln
(
1 − γ2k

)
,

(3.16)

∫ω

0
|u̇3(t)|dt <

∫ω

0
d(t)dt +

∫ω

0

[
e(t)eu3(t) + β2(t)eu2(t)

)]
dt

= 2dω +
q∑

k=1

ln
(
1 − γ3k

)
.

(3.17)
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Let the following hold:

ui(ξi) = min
t∈[0,ω]

ui(t), ui

(
ηi
)
= max

t∈[0,ω]
ui(t), i = 1, 2, 3. (3.18)

From the second and the third equations of (3.14), we can obtain

|a2 − b2|ω +
q∑

k=1

ln
(
1 − γ2k

)
>

∫ω

0
c(t)eu2(t)dt ≥

∫ω

0
c(t)eu2(ξ2)dt,

dω +
q∑

k=1

ln
(
1 − γ3k

)
>

∫ω

0
e(t)eu3(t)dt ≥

∫ω

0
e(t)eu3(ξ3)dt = eωeu3(ξ3),

(3.19)

then

u2(ξ2) < ln

[ |a2 − b2|ω +
∑q

k=1 ln
(
1 − γ2k

)

cω

]

, (3.20)

u3(ξ3) < ln

[
dω +

∑q

k=1 ln
(
1 − γ3k

)

eω

]

. (3.21)

Thus

u2(t) = u2(ξ2) +
∫ t

ξ2

u̇2(t)dt ≤ u2(ξ2) +
∫ω

0
|u̇2(t)|dt

< ln

[ |a2 − b2|ω +
∑q

k=1 ln
(
1 − γ2k

)

cω

]

+ 2a2ω +
q∑

k=1

ln
(
1 − γ2k

)
=: B1.

(3.22)

In the following, we will consider four cases.

Case 1 (if u1(t) > 0, u2(t) > 0). From the first equation of (3.14), we have

a1ω <

∫ω

0
b1(t)eu2(t)dt +

q∑

k=1

ln
(
1 − γ1k

) ≤ b1ωeu2(η2) +
q∑

k=1

ln
(
1 − γ3k

)
,

a1ω >

∫ω

0
b1(t)e−u1(t)dt +

q∑

k=1

ln
(
1 − γ1k

) ≥
∫ω

0
b1(t)e−u1(η1)dt +

q∑

k=1

ln
(
1 − γ1k

)
,

(3.23)
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that is,

u2
(
η2
)
> ln

[
a1ω −∑q

k=1 ln
(
1 − γ1k

)

b1ω

]

,

u1
(
η1
)
> ln

[
b1ω

a1ω −∑q

k=1 ln
(
1 − γ1k

)

]

.

(3.24)

Then

u2(t) = u2
(
η2
) −

∫η2

t

u̇2(t)dt ≥ u2
(
η2
) −

∫ω

0
|u̇2(t)|dt

≥ ln

[
a1ω −∑q

k=1 ln
(
1 − γ1k

)

b1ω

]

− 2a2ω −
q∑

k=1

ln
(
1 − γ2k

)
=: B2,

(3.25)

u1(t) = u1
(
η1
) −

∫η1

t

u̇1(t)dt ≥ u1
(
η1
) −

∫ω

0
|u̇1(t)|dt

≥ ln

[
b1ω

a1ω −∑q

k=1 ln
(
1 − γ1k

)

]

− 2a1ω −
q∑

k=1

ln
(
1 − γ1k

)
=: B3.

(3.26)

Thus, from (3.22) and (3.25), we obtain

|u2(t)| ≤ max{|B1|, |B2|} =: B4. (3.27)

By the first and the third equations of (3.14), we get

∫ω

0

[
b1(t)eB4−u1(ξ1)

]
dt +

q∑

k=1

ln
(
1 − γ1k

)
> a1ω,

∫ω

0

[
e(t)eu3(η3) + β2(t)eB4

]
dt > dω +

q∑

k=1

ln
(
1 − γ3k

)
,

(3.28)

then

u1(ξ1) < ln

[
b1ωeB4

a1ω −∑q

k=1 ln
(
1 − γ1k

)

]

, (3.29)

u3
(
η3
)
> ln

[
dω +

∑q

k=1 ln
(
1 − γ3k

) − β2ωeB4

eω

]

. (3.30)
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From (3.15), (3.17), (3.21), and (3.30), we have

u1(t) = u1(ξ1) +
∫ t

ξ1

u̇1(t)dt ≤ u1(ξ1) +
∫ω

0
|u̇1(t)|dt

< ln

[
b1ωeB4

a1ω −∑q

k=1 ln
(
1 − γ1k

)

]

+ 2a1ω +
q∑

k=1

ln
(
1 − γ1k

)
=: B5,

(3.31)

u3(t) = u3(ξ3) +
∫ t

ξ3

u̇3(t)dt ≤ u3(ξ3) +
∫ω

0
|u̇3(t)|dt

< ln

[
dω +

∑q

k=1 ln
(
1 − γ3k

)

eω

]

+ 2dω +
q∑

k=1

ln
(
1 − γ3k

)
=: B6,

(3.32)

u3(t) = u3
(
η3
) −

∫η3

t

u̇3(t)dt ≥ u3
(
η3
) −

∫ω

0
|u̇3(t)|dt

> ln

[
dω +

∑q

k=1 ln
(
1 − γ3k

) − β2ωeB4

eω

]

− 2dω +
q∑

k=1

ln
(
1 − γ3k

)
=: B7.

(3.33)

Thus,

|u1(t)| ≤ B5, |u3(t)|max{|B6|, |B7|} =: B8. (3.34)

Case 2 (if u1(t) > 0, u2(t) < 0). By the first equation of (3.14), we have

a1ω <

∫ω

0
b1(t)eu2(t)dt +

q∑

k=1

ln
(
1 − γ1k

) ≤ b1ωeu2(η2) +
q∑

k=1

ln
(
1 − γ3k

)
, (3.35)

namely,

u2
(
η2
)
> ln

[
a1ω −∑q

k=1 ln
(
1 − γ1k

)

b1ω

]

. (3.36)

Then

u2(t) = u2
(
η2
) −

∫η2

t

u̇2(t)dt ≥ u2
(
η2
) −

∫ω

0
|u̇2(t)|dt

≥ ln

[
a1ω −∑q

k=1 ln
(
1 − γ1k

)

b1

]

− 2a2ω −
q∑

k=1

ln
(
1 − γ2k

)
=: B2.

(3.37)
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From (3.22) and (3.37), we obtain

|u2(t)| ≤ max{|B1|, |B2|} =: B3. (3.38)

By the first equation of (3.14), we also have

∫ω

0

b1(t)eB3

eu1(t)
dt +

q∑

k=1

ln
(
1 − γ1k

)
> a1ω,

∫ω

0

b1(t)e−B3

eu1(t)
dt +

q∑

k=1

ln
(
1 − γ1k

)
< a1ω,

(3.39)

Then

b1ωeB3

eu1(ξ1)
+

q∑

k=1

ln
(
1 − γ1k

)
> a1ω,

b1ωe−B3

eu1(η1)
+

q∑

k=1

ln
(
1 − γ1k

)
< a1ω.

(3.40)

that is,

u1(ξ1) < ln

[
b1ωeB3

a1ω −∑q

k=1 ln
(
1 − γ1k

)

]

=: B8,

u1
(
η1
)
< ln

[
b1ωeB3

a1ω −∑q

k=1 ln
(
1 − γ1k

)

]

=: B9.

(3.41)

Thus,

u1(t) = u1(ξ1) +
∫ t

ξ1

u̇1(t)dt ≤ u1(ξ1) +
∫ω

0
|u̇1(t)|dt

< B8 + 2a1ω −
q∑

k=1

ln
(
1 − γ1k

)
=: B10,

u1(t) = u1
(
η1
)
+
∫η1

t

u̇1(t)dt ≥ u1
(
η1
)
+
∫ω

0
|u̇1(t)|dt

> B9 − 2a1ω −
q∑

k=1

ln
(
1 − γ1k

)
=: B11.

(3.42)

From (3.42), we have

|u1(t) ≤ max{|B10|, |B11|} =: B12. (3.43)
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By the second equation of (3.14), we have

∫ω

0
c(t)eB3dt +

∫ω

0
β1(t)eu3(t)dt > |a2 − b2|ω +

q∑

k=1

ln
(
1 − γ2k

)
,

∫ω

0
c(t)e−B3dt +

∫ω

0
β1(t)eu3(t)dt < |a2 − b2|ω +

q∑

k=1

ln
(
1 − γ2k

)
.

(3.44)

Then

cωeB3 + β1ωeu3(η3) > |a2 − b2|ω +
q∑

k=1

ln
(
1 − γ2k

)
,

cωe−B3 + β1ωeu3(ξ3) < |a2 − b2|ω +
q∑

k=1

ln
(
1 − γ2k

)
=: B13,

(3.45)

that is,

u3
(
η3
)
> ln

[ |a2 − b2|ω +
∑q

k=1 ln
(
1 − γ2k

) − cωeB6

β1ω

]

,

u3(ξ3) < ln

[ |a2 − b2|ω +
∑q

k=1 ln
(
1 − γ2k

) − cωe−B3

β1ω

]

=: B14.

(3.46)

Therefore, we get

u3(t) = u3(ξ3) +
∫ t

ξ3

u̇3(t)dt ≤ u3(ξ3) +
∫ω

0
|u̇3(t)|dt

< B14 + 2d1ω −
q∑

k=1

ln
(
1 − γ3k

)
=: B15,

u3(t) = u3
(
η3
) −

∫η3

t

u̇3(t)dt ≥ u3
(
η3
) −

∫ω

0
|u̇3(t)|dt

> B14 − 2d1ω −
q∑

k=1

ln
(
1 − γ3k

)
=: B16.

(3.47)

Hence, we have

|u3(t)| ≤ max{|B15|, |B16|} =: B17. (3.48)
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Case 3 (if u1(t) < 0, u2(t) > 0). By the first equation of (3.14), we have

∫ω

0
b1(t)e−u1(t)dt +

q∑

k=1

ln
(
1 − γ1k

)
<

∫ω

0
a1(t)dt,

∫ω

0

[
b1(t)e(u2(η2)−u1(t))

]
dt +

q∑

k=1

ln
(
1 − γ1k

)
>

∫ω

0
a1(t)dt.

(3.49)

Then

b1ωe−u1(η1) +
q∑

k=1

ln
(
1 − γ1k

)
< a1ω,

b1ωe−B19eu2(η2) +
q∑

k=1

ln
(
1 − γ1k

)
> a1ω.

(3.50)

namely,

u1
(
η1
)
> ln

[
b1ω

a1 −
∑q

k=1 ln
(
1 − γ1k

)

]

=: B18,

u2
(
η2
)
> ln

[
a1ω −∑q

k=1 ln
(
1 − γ1k

)

b1ωe−B19

]

=: B20.

(3.51)

Therefore,

u1(t) = u1
(
η1
) −

∫η1

t

u̇1(t)dt ≥ u1
(
η1
) −

∫ω

0
|u̇1(t)|dt

> B18 − 2a1ω −
q∑

k=1

ln
(
1 − γ1k

)
=: B19,

u2(t) = u2(ξ2) +
∫ t

ξ2

u̇2(t)dt ≤ u2(ξ2) +
∫ω

0
|u̇2(t)|dt

< ln

[ |a2 − b2|ω +
∑q

k=1 ln
(
1 − γ2k

)

cω

]

+ 2a2ω +
q∑

k=1

ln
(
1 − γ2k

)
=: B21,

u2(t) = u2
(
η2
) −

∫η2

t

u̇2(t)dt ≥ u2
(
η1
) −

∫ω

0
|u̇2(t)|dt

> B20 − 2a2ω −
q∑

k=1

ln
(
1 − γ2k

)
=: B22.

(3.52)
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So

B19 < u1(t) < 0, |u2(t)| ≤ max{|B21|, |B22|} =: B23. (3.53)

By the third equation of (3.14), we obtain

∫ω

0
e(t)eu3(η3)dt +

∫ω

0
β2(t)eB23dt > |a2 − b2|ω +

q∑

k=1

ln
(
1 − γ2k

)
, (3.54)

that is,

u3
(
η3
)
> ln

[ |a2 − b2|ω +
∑q

k=1 ln
(
1 − γ2k

) − β2ωeB23

eω

]

=: B24. (3.55)

Thus,

|u3(t)| ≤ max{|B23|, |B24|} =: B25. (3.56)

Case 4 (if u1(t) < 0, u2(t) < 0). By the second equation of (3.14), we have

∫ω

0
c(t)dt +

∫ω

0
β1(t)eu3(t)dt > |a2 − b2|ω +

q∑

k=1

ln
(
1 − γ2k

)
. (3.57)

Then

cω + β1ωeu3(η3) > |a2 − b2|ω +
q∑

k=1

ln
(
1 − γ2k

)
, (3.58)

that is,

u3
(
η3
) ≥ ln

[ |a2 − b2|ω +
∑q

k=1 ln
(
1 − γ2k

) − cω

β1ω

]

=: B26. (3.59)

Therefore,

u3(t) = u3(ξ3) +
∫ t

ξ3

u̇3(t)dt ≤ u3(ξ3) +
∫ω

0
|u̇3(t)|dt

< ln

[
dω +

∑q

k=1 ln
(
1 − γ3k

)

eω

]

+ 2dω +
q∑

k=1

ln
(
1 − γ3k

)
=: B27,
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u3(t) = u3
(
η3
) −

∫η3

t

u̇3(t)dt ≥ u3
(
η3
) −

∫ω

0
|u̇3(t)|dt

> B26 − 2dω −
q∑

k=1

ln
(
1 − γ3k

)
=: B28.

(3.60)

Thus,

|u3(t)| ≤ max{|B27|, |B28|} =: B29. (3.61)

By the second equation of (3.14), we obtain

∫ω

0
c(t)eu2(η2)dt +

∫ω

0
β1(t)eB29dt > |a2 − b2|ω +

q∑

k=1

ln
(
1 − γ2k

)
, (3.62)

that is,

ceu2(η2) + β1ωeB29 > |a2 − b2|ω +
q∑

k=1

ln
(
1 − γ2k

)
. (3.63)

Thus,

u2
(
η2
)
> ln

[ |a2 − b2|ω +
∑q

k=1 ln
(
1 − γ2k

) − β1ωeB29

cω

]

. (3.64)

Then, from (3.16) and (3.20), we get

u2(t) = u2(ξ2) +
∫ t

ξ2

u̇2(t)dt ≤ u2(ξ2) +
∫ω

0
|u̇2(t)|dt

< ln

[ |a2 − b2|ω +
∑q

k=1 ln
(
1 − γ2k

)

cω

]

+ 2a2ω +
q∑

k=1

ln
(
1 − γ2k

)
=: B31,

u2(t) = u2
(
η2
) −

∫η2

t

u̇2(t)dt ≥ u2
(
η2
) −

∫ω

0
|u̇2(t)|dt

> B30 − 2a2ωω −
q∑

k=1

ln
(
1 − γ2k

)
=: B32.

(3.65)

Thus,

|u2(t)| ≤ max{|B31|, |B32|} =: B33. (3.66)
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By the first equation of (3.14), we have

∫ω

0
b1(t)eu2(t)−u1(η1)dt +

q∑

k=1

ln
(
1 − γ1k

)
<

∫ω

0
a1(t)dt. (3.67)

Then

b1ωe−B33e−u1(η1) +
q∑

k=1

ln
(
1 − γ1k

)
< a1ω. (3.68)

Thus,

u1
(
η1
)
> ln

[
b1ωe−B32

a1ω −∑q

k=1 ln
(
1 − γ1k

)

]

=: B34. (3.69)

Hence, we have

B34 < u1(t) < 0. (3.70)

Based on the discussion above, we can easily obtain

u1(t) ≤ max{B5, B12, |B19|, |B34|},
u2(t) ≤ max{B3, B4, B23, B33},
u3(t) ≤ max{B8, B17, B25, B29}.

(3.71)

Obviously, Bi (i = 1, 2, . . . , 34) are independent of λ ∈ (0, 1). Similar to the proof of Theorem
2.1 of [17], we can easily find a sufficiently large M > 0 so that we denote the set

Ω =
{
u(t) = (u1(t), u2(t), u3(t))T ∈ x : ‖u‖ < M, u

(
t+k
) ∈ Ω, k = 1, 2, . . . , q

}
. (3.72)

It is clear that Ω satisfies the requirement (a) in Lemma 3.1.
When(u1(t), u2(t), u3(t))

T ∈ ∂Ω ∩ KerL = ∂Ω ∩ R3 and u = {(u1, u2, u3)
T} is a constant

vector in R3 with ‖u‖ = ‖(u1(t), u2(t), u3(t))
T‖ = M, then we have

QNu =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 + b1e
u2−u1 +

1
ω

q∑

k=1

ln
(
1 − γ1k

)

a2 − b2 − ceu2β1e
u3 +

1
ω

q∑

k=1

ln
(
1 − γ2k

)

d − eeu3 − β2e
u2 +

1
ω

q∑

k=1

ln
(
1 − γ3k

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 0, . . . , 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/= 0. (3.73)
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Letting J : ImQ → KerL, (r, 0, . . . , 0, 0) → r and, by direct calculation, we get

deg
{
JQN(u1, u2, u3)T ; ∂Ω

⋂
kerL; 0

}

= signdet

⎛

⎜⎜⎜
⎝

−b1eu2−u1 b1e
u2−u1 0

0 −ceu2 −β1eu3

0 −β2eu2 −eeu3

⎞

⎟⎟⎟
⎠

= sign
{(

b1β1β2 − b1ce
)
e2u2−u1+u3

}
/= 0.

(3.74)

This proves that condition (b) in Lemma 3.1 is satisfied. By now, we have proved that Ω
verifies all requirements of Lemma 3.1, then it follows that Lu = Nu has at least one solution
(u1(t), u2(t), u3(t))

T in DomL ∩Ω; that is, to say, (3.5) has at least one ω periodic solution in
DomL ∩ Ω. Then we know that ((x1(t), x2(t), x3(t))

T = (eu1(t), exu2(t), eu3(t))
T
is an ω periodic

solution of system (2.4) with strictly positive components. This completes the proof.

4. Uniqueness and Global Attractivity of Periodic Solutions

Under the hypotheses (H1), (H2), (H3), we consider the following ordinary differential
equation without impulsive:

ż1(t) = z1(t)

[

−a1(t) + b1(t)

∏
0<tk<t

(
1 − γ2k

)
z2(t)

∏
0<tk<t

(
1 − γ1k

)
z1(t)

]

,

ż2(t) = z2(t)

[

a2(t) − b2(t) − c(t)
∏

0<tk<t

(
1 − γ2k

)
z2(t) − β1(t)

∏

0<tk<t

(
1 − γ3k

)
z3(t)

]

,

ż3(t) = z3(t)

[

d(t) − e(t)
∏

0<tk<t

(
1 − γ3k

)
z3(t) − β2(t)

∏

0<tk<t

(
1 − γ2k

)
z2(t)

]

,

(4.1)

with the initial conditions zi(0) > 0, i = 1, 2, 3.
The following lemmas will be helpful in the proofs of our results. The proof of the

following Lemma 4.1 is similar to that of Theorem 1 in [18], and it will be omitted.

Lemma 4.1. Assume that (H1), (H2), (H3) hold, then one has the following.

(i) If z(t) = (z1(t), z2(t), z3(t))
T is a solution of (4.1) on [0,+∞), then xi(t) =

∏
0<tk<t (1 −

γik)zi(t) (i = 1, 2, 3) is a solution of (2.4) on [0,+∞).

(ii) If x(t) = (x1(t), x2(t), x3(t))
T is a solution of (2.4) on [0,+∞), then zi(t) =∏

0<tk<t (1 − γik)
−1xi(t) (i = 1, 2, 3) is a solution of (4.1) on [0,+∞).

Lemma 4.2. Let z(t) = (z1(t), z2(t), z3(t))
Tdenote any positive solution of system (4.1) with initial

conditions zi(0) > 0, i = 1, 2, 3. Assume that the following condition holds,

(H7) aM
2 > bL2 , dM > eL. (4.2)
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Then there exists a T3 > 0 such that

0 < zi(t) ≤ Mi, (i = 1, 2, 3), for t ≥ T3, (4.3)

where

M1 > M∗
1 =

∏
0<tk<t

(
1 − γ2k

)
M2

aL
1
∏

0<tk<t
(
1 − γ1k

) ,

M2 > M∗
2 =

aM
2 − bL2

cL
∏

0<tk<t
(
1 − γ2k

) ,

M3 > M∗
3 =

dM − eL

eL
∏

0<tk<t
(
1 − γ3k

) .

(4.4)

Proof. From the second equation of (4.1), we can obtain

ż2(t) ≤ z2(t)

[

a2(t) − b2(t) − c(t)
∏

0<tk<t

(
1 − γ2k

)
z2(t)

]

≤ z2(t)

[

aM
2 − bL2 − cL

∏

0<tk<t

(
1 − γ2k

)
z2(t)

]

.

(4.5)

By (4.5), we can derive the following.

(A1) If z2(0) ≤ M2, then z2(t) ≤ M2, t ≥ 0.

(A2) If z2(0) > M2, let −α1 = M2[aM
2 − bL2 − cL

∏
0<tk<t (1 − γ2k)M2], (α1 > 0). Then there

exists ε1 > 0 such that t ∈ [0, ε1), then z2(t) > M2, and also we have

ż2(t) < −α1 < 0. (4.6)

From what has been discussed above, we can easily conclude that, if z2(0) > M2, then z2(t) is
strictly monotone decreasing with speed at least α1. Therefore, there exists a T1 > 0 such that
t > T1, then z2(t) ≤ M2.

From the third equation of (4.1), we can obtain

ż3(t) ≤ z3(t)

[

d(t) − e(t)
∏

0<tk<t

(
1 − γ3k

)
z3(t)

]

≤ z3(t)

[

dM − eL
∏

0<tk<t

(
1 − γ3k

)
z3(t)

]

.

(4.7)

By (4.7), we can derive the following

(B1) If z3(0) ≤ M3, then z3(t) ≤ M3, t ≥ 0.



20 International Journal of Differential Equations

(B2) If z3(0) > M3, let −α2 = M3[dM − eL
∏

0<tk<t (1− γ3k)M3], (α2 > 0). Then there exists
ε2 > 0 such that t ∈ [0, ε2), then z3(t) > M3, and also we have

ż3(t) < −α2 < 0. (4.8)

From what has been discussed above, we can easily conclude that, if z3(0) > M3, then z3(t) is
strictly monotone decreasing with speed at least α2. Therefore, there exists a T2 > 0 such that
t > T2, then z3(t) ≤ M3.

From the first equation of (4.1), we can obtain

ż1(t) ≤ z1(t)

[

−a1(t) + b1(t)

∏
0<tk<t

(
1 − γ2k

)
M2

∏
0<tk<t

(
1 − γ1k

)
z1(t)

]

= −a1(t)z1(t) +

∏
0<tk<t

(
1 − γ2k

)
M2

∏
0<tk<t

(
1 − γ1k

)

≤ −aL
1z1(t) +

∏
0<tk<t

(
1 − γ2k

)
M2

∏
0<tk<t

(
1 − γ1k

) .

(4.9)

Then we have

z1(t) ≤ M1, for t ≥ T1. (4.10)

Set T3 = max{T1, T2}, then we have

0 < zi(t) ≤ Mi, (i = 1, 2, 3), for t ≥ T3. (4.11)

The proof is complete.

Lemma 4.3. Let (H1), (H2), (H3) hold. Assume that the following condition holds.

(H8) aL
2 > bM2 + βM1

∏

0<tk<t

(
1 − γ3k

)
, dL > eM − βM2

∏

0<tk<t

(
1 − γ2k

)
. (4.12)

Then there exists positive constants T > 0 and mi (i = 1, 2, 3) such that, for all t > T ,

mi < zi(t), (i = 1, 2, 3), for t ≥ T, (4.13)

in which

m1 < m∗
1 =

bL1
∏

0<tk<t
(
1 − γ2k

)
m2

aM
1

∏
0<tk<t

(
1 − γ1k

) ,
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m2 < m∗
2 =

aL
2 − bM2 − βM1

∏
0<tk<t

(
1 − γ3k

)

cM
∏

0<tk<t
(
1 − γ2k

) ,

m3 < m∗
3 =

dL − eM − βM2
∏

0<tk<t
(
1 − γ2k

)
M2

eM
∏

0<tk<t
(
1 − γ3k

) .

(4.14)

Proof. By the second equation of (4.1), It is easy to obtain that, for t ≥ T3,

ż2(t) ≥ z2(t)

[

aL
2 − bM2 − cM

∏

0<tk<t

(
1 − γ2k

)
z2(t) − βM1

∏

0<tk<t

(
1 − γ3k

)
M3

]

, (4.15)

where T3 is defined in Lemma 4.1.

(C1) If z2(T3) ≥ m2, then z2(t) ≥ m2, t ≥ T3.

(C2) If z2(T3) < m2 and let

μ1 = z2(T3)

[

aL
2 − bM2 − cM

∏

0<tk<t

(
1 − γ2k

)
m2

]

, (4.16)

then there exists ε3 > 0 such that t ∈ [T3, T3 + ε3), then z2(t) > m2, and also we have

ż2(t) > μ1 > 0. (4.17)

Then we know that if z2(T3) < m2, z2(t) will strictly monotonically increase with speed μ2.
Thus, there exists T4 > T3 such that if t ≥ T4, then z2(t) ≥ m2.

By the third equation of (4.1), It is easy to obtain that for t ≥ T3,

ż3(t) ≥ z3(t)

[

dL − eM
∏

0<tk<t

(
1 − γ3k

)
z3(t) − βM2

∏

0<tk<t

(
1 − γ2k

)
M2

]

, (4.18)

where T3 is defined in Lemma 4.2.

(D1) If z2(T3) ≥ m3, then z3(t) ≥ m3, t ≥ T3.

(D2) If z2(T3) < m3, and let

μ2 = z3(T3)

[

dL − eM
∏

0<tk<t

(
1 − γ3k

)
m3 − βM2

∏

0<tk<t

(
1 − γ2k

)
M2

]

, (4.19)

then there exists ε4 > 0 such that t ∈ [T3, T3 + ε4), then z3(t) > m3, and also we have

ż3(t) > μ2 > 0. (4.20)
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Then we know that if z3(T3) < m3, z3(t) will strictly monotonically increase with speed μ2.
Thus, there exists T5 > T3 such that, if t ≥ T5, then z3(t) ≥ m3.

Finally, by the third equation of (4.1), we obtain

ż1(t) ≥ z1(t)

[

−aM
1 + bL1

∏
0<tk<t

(
1 − γ2k

)
m2

∏
0<tk<t

(
1 − γ1k

)
z1(t)

]

= −aM
1 z1(t) + bL1

∏
0<tk<t

(
1 − γ2k

)
m2

∏
0<tk<t

(
1 − γ1k

)
z1(t)

.

(4.21)

Thus, we have

z1(t) ≥ m1, (4.22)

for t ≥ T4. Set T = max{T4, T5}, then we have

zi(t) > mi, (i = 1, 2, 3), for t ≥ T. (4.23)

In the sequel, we formulate the uniqueness and global attractivity of the ω periodic solution
x∗(t) in Theorem 4.4. It is immediate that if x∗(t) is global attractivity, then x∗(t) is in fact
unique.

Theorem 4.4. In addition to (H1) − (H8), assume further (H9) limt→∞ inf Bi(t) > 0, where

B1(t) =

[

c(t) − β2(t) − bM

m1
∏

0<tk<t
(
1 − γ1k

)

]
∏

0<tk<t

(
1 − γ2k

)
,

B2(t) =
[
e(t) − β1(t)

]∏

0<tk<t

(
1 − γ3k

)
.

(4.24)

Then system (2.4) has a unique positive ω periodic solution x∗(t) = (x∗
1(t), x

∗
2(t), x

∗
3(t))

T which is
global attractivity.

Proof. According to the conclusion of Theorem 3.2, we only need to show that the positive
periodic solution of (2.4) is global asymptotical stable. Let x∗(t) = (x∗

1(t), x
∗
2(t), x

∗
3(t))

T

be a positive ω periodic solution of system (2.4) let x(t) = (x1(t), x2(t), x3(t))
T be any

positive solution of system (2.4). Then z∗(t) = (z∗1(t), z
∗
2(t), z

∗
3(t))

T , (z∗1(t) =
∏

0<tk<t (1 −
γ1k)x∗

1(t), z
∗
2(t) =

∏
0<tk<t (1− γ2k)x∗

2(t), z
∗
3(t) =

∏
0<tk<t (1− γ3k)x∗

3(t)) is the positive ω periodic
solution of (4.1), and z(t) is the positive solution of (4.1). It follows from Lemma 4.2 and 4.3
that there exists positive constants T > 0, Mi and mi (defined by Lemmas 4.2 and 4.3, resp.)
such that, for all t > T ,

mi < z∗i (t) ≤ Mi, mi < zi(t) ≤ Mi, i = 1, 2, 3. (4.25)
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Define

V (t) =
∣∣ln z∗1(t) − ln z1(t)

∣∣ +
∣∣ln z∗2(t) − ln z2(t)

∣∣ +
∣∣ln z∗3(t) − ln z3(t)

∣∣. (4.26)

Calculating the upper-right derivative of V (t) along the solution of (4.1), it follows for t ≥
T that

D+V (t) =
3∑

i=1

(
z∗i

′(t)
z∗i (t)

− zi
′(t)

zi(t)

)

sgn
(
z∗i (t) − zi(t)

)

= sgn
(
z∗1(t) − z1(t)

)
[

b1(t)

∏
0<tk<t

(
1 − γ2k

)

∏
0<tk<t

(
1 − γ1k

)

(
z∗2(t)
z∗1(t)

− z2(t)
z1(t)

)]

+ sgn
(
z∗2(t) − z2(t)

)
[

−c(t)
∏

0<tk<t

(
1 − γ2k

)(
z∗2(t) − z2(t)

)

−β1(t)
∏

0<tk<t

(
1 − γ3k

)(
z∗3(t) − z3(t)

)
]

+ sgn
(
z∗3(t) − z3(t)

)
[

−e(t)
∏

0<tk<t

(
1 − γ3k

)(
z∗3(t) − z3(t)

)

−β2(t)
∏

0<tk<t

(
1 − γ2k

)(
z∗2(t) − z2(t)

)
]

≤ −c(t)
∏

0<tk<t

(
1 − γ2k

)∣∣z∗2(t) − z2(t)
∣∣ + β1(t)

∏

0<tk<t

(
1 − γ3k

)∣∣z∗3(t) − z3(t)
∣∣

− e(t)
∏

0<tk<t

(
1 − γ3k

)∣∣z∗3(t) − z3(t)
∣∣ + β2(t)

∏

0<tk<t

(
1 − γ2k

)∣∣z∗2(t) − z2(t)
∣∣ +D1(t),

(4.27)

where

D1(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b1(t)

∏
0<tk<t

(
1 − γ2k

)

∏
0<tk<t

(
1 − γ1k

)

(
z∗2(t)
z∗1(t)

− z2(t)
z1(t)

)

, z∗1(t) > z1(t),

b1(t)

∏
0<tk<t

(
1 − γ2k

)

∏
0<tk<t

(
1 − γ1k

)

(
z∗2(t)
z∗1(t)

− z2(t)
z1(t)

)

, z∗1(t) < z1(t).

(4.28)

In the sequel, we will estimate D1(t) under the following two cases.

(i) If z∗1(t) ≥ z1(t), then

D1(t) ≤
b1(t)

∏
0<tk<t

(
1 − γ2k

)

z∗1(t)
∏

0<tk<t
(
1 − γ1k

)
(
z∗2(t) − z2(t)

)

≤ bM
∏

0<tk<t
(
1 − γ2k

)

m1
∏

0<tk<t
(
1 − γ1k

)
∣∣z∗2(t) − z2(t)

∣∣.

(4.29)
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(ii) If z∗1(t) < z1(t), then

D1(t) ≤
b1(t)

∏
0<tk<t

(
1 − γ2k

)

z1(t)
∏

0<tk<t
(
1 − γ1k

)
(
z2(t) − z∗2(t)

)

≤ bM
∏

0<tk<t
(
1 − γ2k

)

m1
∏

0<tk<t
(
1 − γ1k

)
∣∣z∗2(t) − z2(t)

∣∣.

(4.30)

Combining the conclusions of (4.29) and (4.30), we obtain

D1(t) ≤
bM
∏

0<tk<t
(
1 − γ2k

)

m1
∏

0<tk<t
(
1 − γ1k

)
∣∣z∗2(t) − z2(t)

∣∣. (4.31)

It follows from (4.31) that

D+V (t) ≤ −c(t)
∏

0<tk<t

(
1 − γ2k

)∣∣z∗2(t) − z2(t)
∣∣ + β1(t)

∏

0<tk<t

(
1 − γ3k

)∣∣z∗3(t) − z3(t)
∣∣

− e(t)
∏

0<tk<t

(
1 − γ3k

)∣∣z∗3(t) − z3(t)
∣∣ + β2(t)

∏

0<tk<t

(
1 − γ2k

)∣∣z∗2(t) − z2(t)
∣∣

+
bM
∏

0<tk<t
(
1 − γ2k

)

m1
∏

0<tk<t
(
1 − γ1k

)
∣∣z∗2(t) − z2(t)

∣∣

=

[
bM

m1
∏

0<tk<t
(
1 − γ1k

) − c(t) + β2(t)

]
∏

0<tk<t

(
1 − γ2k

)∣∣z∗2(t) − z2(t)
∣∣

+
[
β1(t) − e(t)

]∏

0<tk<t

(
1 − γ3k

)∣∣z∗3(t) − z3(t)
∣∣

≤ −(B1(t)
∣∣z∗2(t) − z2(t)

∣∣ + B2(t)
∣∣z∗3(t) − z3(t)

∣∣),

(4.32)

where B1(t) and B2(t) are defined in Theorem 4.4.
By hypothesis (H8), there exist constants αi, (i = 2, 3) and T ∗ > T such that

Bi(t) ≥ αi > 0, (i = 2, 3), for t ≥ T ∗. (4.33)

Integrating both sides of (4.32) on interval [T ∗, t] yields

V (t) +
3∑

i=2

∫ t

T∗
Bi(t)

∣∣z∗i (t) − zi(t)
∣∣ds ≤ V (T ∗). (4.34)
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It follows from (4.33) and (4.34) that

3∑

i=2

∫ t

T∗
Bi(t)

∣∣z∗i (t) − zi(t)
∣∣ds ≤ V (T ∗) < ∞, for t ≥ T ∗. (4.35)

Since z∗i (t) and zi(t) (i = 2, 3) are bounded for t ≥ T ∗, so |z∗i (t) − zi(t)| (i = 2, 3) are uniformly
continuous on [T ∗,∞). By Barbalat’s Lemma [32], we have

lim
t→∞

∣∣z∗i (t) − zi(t)
∣∣ = lim

t→∞

[
∏

0<tk<t

(
1 − γik

)−1∣∣x∗
i (t) − xi(t)

∣∣
]

= 0, (i = 2, 3). (4.36)

Thus,

lim
t→∞

∣∣x∗
i (t) − xi(t)

∣∣ = 0, (i = 2, 3). (4.37)

By (4.37) and the first equation of (2.4), one can easily obtain that

lim
t→∞

∣∣x∗
1(t) − x1(t)

∣∣ = 0. (4.38)

By Theorems 7.4 and 8.2 in [33], we know that the positive periodic solution x∗(t) =
(x∗

1(t), x
∗
2(t), x

∗
3(t))

T of (2.4) is uniformly asymptotically stable. The proof of Theorem 4.4 is
complete.

5. An Example

As an application of our main results, we consider the following system:

ẋ1(t) = −2x1(t) + x2(t), t /= tk,

ẋ2(t) = (4 + cos t)x2(t) − (2 + cos t)x2(t) − (1 − sin t)x2
2(t)

− 1
2e200π+1

+ sin tx2(t)x3(t), t /= tk,

ẋ3(t) = x3(t)
[
50 + sin t −

(
50e200π + 1 + sin t

)
x3(t) −

(
49

e503π
− cos t

)
x2(t)

]
, t /= tk,

Δx1(tk) = x1
(
t+k
) − x1

(
t−k
)
= −1

2
x1(tk), k = 1, 2, . . . ,

Δx2(tk) = x2
(
t+k
) − x2

(
t−k
)
= −1

3
x2(tk), k = 1, 2, . . . ,

Δx3(tk) = x3
(
t+k
) − x3

(
t−k
)
= −1

4
x3(tk), k = 1, 2, . . . ,

(5.1)
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in which tk+2 = tk + 2π, [0, 2π] ∩ {tk} = {t1, t2}, a1(t) = 2, b1(t) = 1, a2(t) = 4 + cos t, b2(t) =
2+ cos t, β1(t) = (1/2e200π+1)+ sin t, β2(t) = (49/e503π)− cos t, c(t) = 1− sin t, d(t) = 50+ sin t,
and e(t) = 50e200π + 1 + sin t. By direct computation, we can obtain

a1 = 2, a2 = 4, c = 1, |a2 − b2| = 2, d = 50, β1 =
1

2e200π+1
,

β2 =
49

e503π
, e = 50e200π + 1, b1 = 1,

B1 = ln
4π + 2 ln(2/3)

2π
+ 16π + 2 ln

2
3

.= 50.07,

B2 = ln
4π − 2 ln(1/2)

2π
− 16π − 2 ln

2
3

.= −47.07,

B6 = B27 = ln
100π − 2 ln(3/4)

2π(50e200π)
+ 200π + 2 ln

3
4

.= −0.5754,

B26 = ln
2π + 2 ln(2/3)
π/e200π+1

.= 629.55,

B28 = B26 − 200π − 2 ln
3
4

.= 2.9362.

(5.2)

Then B4
.= 50.07, B29

.= 2.9362. It is easy to check that (5.1) satisfies all the conditions
of Theorems 3.2 and 4.4; hence, (5.1) has a positive 2π periodic solution which is global
attractivity.
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