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We consider a kind of Sturm-Liouville boundary value problems. Using variational techniques
combinedwith the methods of upper-lower solutions, the existence of at least one positive solution
is established. Moreover, the upper solution and the lower solution are presented.

1. Introduction

The Sturm-Liouville boundary value problems (for short, BVPs) have received a lot of
attention. Many works have been carried out to discuss the existence of at least one solution
or multiple solutions. The methods used therein mainly depend on the Leray-Schauder
continuation theorem and the Mawhin continuation theorem. Since it is very difficult to
give the corresponding Euler functional for Sturm-Liouville BVPs and verify the existence
of critical points for the Euler functional, few people consider the existence of solutions for
Sturm-Liouville BVPs by critical point theory and many works considered the existence of
solutions for Dirichlet BVPs. For example, by a three-critical-point theorem due to Ricceri
[1], Bonanno [2] considered Dirichlet problems. Moreover, Afrouzi and Heidarkhani [3]
also considered the existence of three solutions for a kind of Dirichlet BVP. By using an
appropriate variational framework, the authors [4] considered the existence of positive
solutions for the Dirichlet BVP.
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In this paper, using variational methods combined with the methods of upper-lower
solutions, we consider the positive solutions of the following BVP:

−(φp

(
x′(t)

))′ = −a(t)φp(x) + f(t, x), t ∈ [0, 1],

α1x(0) − α2x
′(0) = 0,

β1x(1) + β2x
′(1) = 0,

(1.1)

where p > 1, φp(x) = |x|p−2x, α1, α2, β1, β2 ≥ 0, α2
1 + α2

2 > 0, β21 + β22 > 0.
The paper is organized as follows. In the forthcoming section, we give the Euler

functional of BVP(1.1) and some basic lemmas. In Section 3, firstly, we give an upper solution
of BVP(1.1), then, by the mountain pass lemma, the lower solution of BVP(1.1) is obtained.
At last, we show the existence of at least one positive solution of BVP(1.1) based on the upper
solution and the lower solution we obtain.

2. Preliminary

The Sobolev space W1,p[0, 1] is defined by

W1,p[0, 1] =
{
x : [0, 1] −→ R | x is absolutely continuous and x′ ∈ Lp(0, 1;R)

}
(2.1)

and is endowed with the norm

‖x‖ =

(∫1

0
|x(t)|pdt +

∫1

0

∣∣x′(t)
∣∣pdt

)1/p

. (2.2)

Then, W1,p[0, 1] is a separable and reflexive Banach space [5].

Lemma 2.1 (see [6]). There exists a positive constant cp such that

(
|x|p−2x − ∣∣y∣∣p−2y, x − y

)
≥

⎧
⎪⎪⎨

⎪⎪⎩

cp
∣∣x − y

∣∣p, p ≥ 2,

cp

∣∣x − y
∣∣2

(|x| + ∣∣y∣∣)2−p
, 1 < p < 2

(2.3)

for any x, y ∈ RN . Here (x, y) = x · yT .
For x ∈ C[0, 1], suppose that ‖x‖∞ = maxt∈[0,1]|x(t)|, ‖x‖m = mint∈[0,1]|x(t)|.

Lemma 2.2 (see [7]). If x ∈ W1,p[0, 1], then, ‖x‖∞ ≤ 2‖x‖.

Lemma 2.3 (see [8]). For x ∈ X, let x± = max{±x, 0}; then, the following properties hold:

(i) x ∈ X ⇒ x+, x− ∈ X;

(ii) x = x+ − x−;

(iii) ‖x+‖X ≤ ‖x‖X ;
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(iv) if (xn)n∈N uniformly converges to x in C([0, 1]), then, (x+
n)n∈N uniformly converges to

x+;

(v) φp(x)x+ = |x+|p, φp(x)x− = −|x−|p.
In the following, we state the (C ) condition [9].

(C) Every sequence (xn)n∈N ⊂ H such that the following conditions hold:

(i) (ϕ(xn))n∈N is bounded;

(ii) (1 + ‖xn‖H)‖ϕ′(xn)‖H∗ → 0, n → ∞
has a subsequence which converges strongly inH.

With a similar proof of Lemma 2.5 [8], one has the following lemma.

Lemma 2.4. If x(t) ∈ W1,p[0, 1] is a critical point of the Euler functional

ϕ(x) =
1
p

∫1

0
a(t)|x|pdt + 1

p

∫1

0

∣∣x′∣∣pdt −
∫1

0
F(t, x)dt +

α2

pα1

∣∣∣∣
α1x(0)
α2

∣∣∣∣

p

+
β2
pβ1

∣∣∣∣
β1x(1)
β2

∣∣∣∣

p

, (2.4)

then, x(t) is a solution of BVP (1.1). Here, F(t, x) =
∫x
0 f(t, s)ds.

Remark 2.5. While α2 = 0, the Euler functional ϕ(x) does not include (1/p)(α1/α2)
p−1|x(0)|p,

while β2 = 0, ϕ(x) does not include (1/p)(β1/β2)
p−1|x(1)|p. Hence, in order to be convenient,

we assume that α1, α2, β1, β2 > 0.

With little modification to the proof of Theorem 1.4 in [7], we obtain the following.

Remark 2.6. ϕ is continuously differentiable on W1,p[0, 1], and, by computation, one has

〈
ϕ′(x), y

〉
=
∫1

0
a(t)φp(x)y dt +

∫1

0
φp

(
x′)y′ dt −

∫1

0
f(t, x)ydt + φp

(
α1x(0)
α2

)
y(0)

+ φp

(
β1x(1)
β2

)
y(1), x, y ∈ W1,p[0, 1].

(2.5)

Definition 2.7. u ∈ W1,p[0, 1] is an upper solution of BVP (1.1) if it satisfies

−(φp

(
u′(t)

))′ + a(t)φp(u) − f(t, u) ≥ 0, t ∈ [0, 1],

α1u(0) − α2u
′(0) ≥ 0, β1u(1) + β2u

′(1) ≥ 0.
(2.6)

If u is not a solution of BVP(1.1), then, u is a strict upper solution.

Definition 2.8. v ∈ W1,p[0, 1] is a lower solution of BVP(1.1) if it satisfies

−(φp

(
v′(t)

))′ + a(t)φp(v) − f(t, v) ≤ 0, t ∈ [0, 1],

α1v(0) − α2v
′(0) ≤ 0, β1v(1) + β2v

′(1) ≤ 0.

(2.7)

If v is not a solution of BVP(1.1), then, v is a strict lower solution.

Definition 2.9. x ∈ W1,p[0, 1] is said to be a positive solution of BVP(1.1) if x(t) ≥ 0, x(t)/≡ 0,
t ∈ [0, 1].
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3. Existence of Positive Solutions

Choose x0 ∈ W1,p[0, 1] and x0(t) > 0, t ∈ [0, 1] satisfying −(φp(x′
0))

′ = 1, then, x0(t) =
c2 +

∫ t
0 φq(−s + c1)ds where (1/p) + (1/q) = 1, c1, c2 are constants. If we choose c1 ≥ 1,

c2 ≥ (α2φq(c1))/α1, x0(t) satisfies α1x0(0) − α2x
′
0(0) ≥ 0, β1x0(1) + β2x

′
0(1) ≥ 0. Moreover,

x′
0(t) = φq(−t + c1) is continuous.

Lemma 3.1. Assume

(A1) f(t, x) ∈ C([0, 1] × [0,+∞)), limx→+∞(f(t, x)/φp(x)) < a(t), t ∈ [0, 1],

is satisfied; then, x = a
1/(p−1)
0 x0 is a strict upper solution of BVP (1.1). Here a0 > 1 is some positive

constant.

Proof. From (A1), there exists a constant N > 0 such that

f(t, x)
φp(x)

< a(t), x > N. (3.1)

Hence,

f(t, x) < a(t)φp(x) + a0, t ∈ [0, 1], (3.2)

holds for x ≥ 0 and some large positive constant a0 > 1. Then,

f
(
t, a

1/(p−1)
0 x0

)
< a(t)φp

(
a
1/(p−1)
0 x0

)
+ a0

= a(t)φp

(
a
1/(p−1)
0 x0

)
−
(
φp

(
a
1/(p−1)
0 x′

0

))′
, t ∈ [0, 1],

(3.3)

that is, −(φp(x
′))′ + a(t)φp(x) − f(t, x) > 0, t ∈ [0, 1]. Obviously, α1x(0) − α2x

′(0) ≥ 0, β1x(1) +

β2x
′(1) ≥ 0. Therefore, fromDefinition 2.7, one has that x = a

1/(p−1)
0 x0 is a strict upper solution

of BVP (1.1).

In the following, we assume the following conditions.

(A2) There exist δ > 0 and g(x) : [0,+∞) → [0,+∞) satisfying g(mx) ≥ mp−1g(x) for
m < 1, g(0)/= 0, f(t, x) > g(x) for x ∈ (0, δ], t ∈ [0, 1].

(A3) There exists μ > p such that μG(x) ≤ g(x)x, x ≥ 0, G(x) =
∫x
0 g(s)ds.

Consider the auxiliary BVP

−(φp

(
x′(t)

))′ = −a(t)φp(x) + g(x+), t ∈ [0, 1],

α1x(0) − α2x
′(0) = 0,

β1x(1) + β2x
′(1) = 0.

(3.4)
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Obviously, the corresponding Euler functional of BVP(3.4) is

ϕ+(x) =
1
p

∫1

0
a(t)|x|pdt + 1

p

∫1

0

∣
∣x′∣∣pdt −

∫1

0

(
G(x+(t)) − g(0)x−)dt +

α2

pα1

∣
∣
∣
∣
α1x(0)
α2

∣
∣
∣
∣

p

+
β2
pβ1

∣
∣
∣
∣
β1x(1)
β2

∣
∣
∣
∣

p

.

(3.5)

Obviously, ϕ+ is continuously differentiable on W1,p[0, 1], and, by computation, one has

〈
ϕ′(x), y

〉
=
∫1

0
a(t)φp(x)y dt +

∫1

0
φp

(
x′)y′dt −

∫1

0
g(x+)y dt + φp

(
α1x(0)
α2

)
y(0)

+ φp

(
β1x(1)
β2

)
y(1), x, y ∈ W1,p[0, 1].

(3.6)

Lemma 3.2. If x(t) ∈ W1,p[0, 1] is a solution of BVP (3.4), then, x(t) ≥ 0.

Proof. Let x(t) ∈ W1,p[0, 1] be a solution of the BVP (3.4). If there exists a subset E0 ⊂ [0, 1],
measE0 /= 0, x(t) ≡ 0 for t ∈ E0, then from the BVP (3.4), one has g(0) ≡ 0 for t ∈ E0 which
contradicts with the assumptions. Moreover, x− is an absolutely continuous function on [0, 1],
and so the fundamental theorem of calculus ensures the existence of a set E1 ⊂ [0, 1] such that
meas([0, 1] \ E1) = 0 and x− is differentiable on E1, (x−)′ ∈ L1[0, 1],

0 =
∫1

0

((
φp

(
x′(t)

))′ − a(t)φp(x(t)) + g(x+)
)
x−dt

≥ x−(1)φp

(
x′(1)

) − x−(0)φp

(
x′(0)

) −
∫

E1

φp

(
x′(t)

)(
x−)′dt −

∫1

0
a(t)φp(x(t))x−dt

≥ x−(1)φp

(
x′(1)

) − x−(0)φp

(
x′(0)

)
+
∫

E1

∣∣∣
(
x−)′
∣∣∣
p
dt +

∫1

0
a(t)
∣∣x−∣∣pdt

≥ x−(1)φp

(
−β1x(1)

β2

)
− x−(0)φp

(
α1x(0)
α2

)
+min{‖a‖m, 1}

∥∥x−∥∥p

≥ min{‖a‖m, 1}
∥∥x−∥∥p.

(3.7)

Therefore, for a.e. t ∈ [0, 1], x− = 0. Since x(t) is absolutely continuous on [0, 1], then, x(t) ≥ 0
for t ∈ [0, 1].

Lemma 3.3. Assume that (A2), (A3) hold; then, BVP(3.4) has a solution x1, that is, BVP(3.4) has a
positive solution x1.

Proof. Assume that (xn)n∈N ⊂ W1,p[0, 1] satisfies (i) and (ii) of the (C) condition; then,

∣∣ϕ+(xn)
∣∣ ≤ c1,

∥∥ϕ′
+(xn)

∥∥(1 + ‖xn‖) ≤ εn. (3.8)

Here, c1 is some positive constant and εn → 0, n → ∞.
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First, we show that (x−
n)n≥1 ⊂ W1,p[0, 1] is bounded. Indeed, from (3.8), we have

∣
∣〈ϕ′

+(xn), u
〉∣∣ ≤ εn, u ∈ W1,p[0, 1]. (3.9)

Choose u = −x−
n ; then,

∣
∣〈ϕ′

+(xn),−x−
n

〉∣∣ =
∫1

0
a(t)
∣
∣x−

n

∣
∣pdt +

1
p

∫1

0

∣
∣
∣
(
x−
n

)′∣∣
∣
p
dt + φp

(
α1

α2

)∣
∣x−

n(0)
∣
∣p

+ φp

(
β1
β2

)∣
∣x−

n(1)
∣
∣p +

∫1

0
g(x+

n)x
−
ndt.

(3.10)

Hence, (x−
n)n∈N is bounded.

Moreover,

〈
ϕ′
+(xn), x+

n

〉
=
∫1

0
a(t)φp(xn)x+

ndt +
∫1

0
φp

(
x′
n

)
(x+

n)
′dt −

∫1

0
g(x+

n)x
+
ndt + φp

(
α1xn(0)

α2

)
x+
n(0)

+ φp

(
β1xn(1)

β2

)
x+
n(1)

=
∫1

0
a(t)|x+

n |pdt +
∫1

0

∣∣∣(x+
n)

′
∣∣∣
p
dt −

∫1

0
g(x+

n)x
+
ndt + φp

(
α1

α2

)
|x+

n(0)|p

+ φp

(
β1
β2

)
|x+

n(0)|p.
(3.11)

For large n,

(
μ + 1

)
c1 = c1 + μc1 ≥ μϕ+(xn) −

〈
ϕ′
+(xn), x+

n

〉

=
μ

p

∫1

0
a(t)|xn|pdt +

μ

p

∫1

0

∣∣x′
n

∣∣pdt − μ

∫1

0
G(x+

n(t))dt + μ

∫1

0
g(0)x−

n(t)dt

+
μα2

pα1

∣∣∣∣
α1xn(0)

α2

∣∣∣∣

p

+
μβ2
pβ1

∣∣∣∣
β1xn(1)

β2

∣∣∣∣

p

−
∫1

0
a(t)|x+

n |pdt −
∫1

0

∣∣∣(x+
n)

′
∣∣∣
p
dt

+
∫1

0
g(x+

n)x
+
n(t)dt − φp

(
α1

α2

)
|x+

n(0)|p − φp

(
β1
β2

)
|x+

n(1)|p

≥ μ

p

∫1

0
a(t)|xn|pdt +

μ

p

∫1

0

∣∣x′
n

∣∣pdt −
∫1

0
a(t)|x+

n |pdt −
∫1

0

∣∣∣(x+
n)

′
∣∣∣
p
dt

≥
(
μ

p
− 1
)∫1

0
a(t)|x+

n |pdt +
(
μ

p
− 1
)∫1

0

∣∣∣(x+
n)

′
∣∣∣
p
dt

≥
(
μ

p
− 1
)
min{‖a‖m, 1}‖x+

n‖p.

(3.12)
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Hence, (x+
n)n∈N is bounded; then, (xn)n∈N is uniformly bounded in W1,p[0, 1]. By the

compactness of the embedding W1,p[0, 1]C[0, 1], the sequence (xn)n∈N has a subsequence,
again denoted by (xn)n∈N for convenience, such that

xn ⇀ x weakly in W1,p[0, 1],

xn −→ x strongly in C[0, 1].
(3.13)

Moreover,

〈
ϕ′
+(xn) − ϕ′

+(xm), xn − xm

〉

=
∫1

0

(
φp

(
x′
n

) − φp

(
x′
m

))(
x′
n − x′

m

)
dt

+
∫1

0
a(t)
(
φp(xn) − φp(xm)

)
(xn − xm)dt

−
∫1

0

(
g(x+

n) − g(x+
m)
)
(xn − xm)dt

+
(
φp

(
α1xn(0)

α2

)
− φp

(
α1xm(0)

α2

))
(xn(0) − xm(0))

+
(
φp

(
β1xn(1)

β2

)
− φp

(
β1xm(1)

β2

))
(xn(1) − xm(1)).

(3.14)

Since xn(t) → x(t) in C[0, 1], then, (φp(α1xn(0)/α2) − φp(α1xm(0)/α2))(xn(0) − xm(0)) → 0,
(φp(β1xn(1)/β2) − φp(β1xm(1)/β2))(xn(1) − xm(1)) → 0, (g(x+

n) − g(x+
m))(xn − xm) → 0,

∫1
0 (xn(t) − xm(t))dt → 0, n,m → ∞. Moreover,

∣∣∣∣∣

∫1

0
a(t)
(
φp(xn) − φp(xm)

)
(xn − xm)dt

∣∣∣∣∣
≤ ‖a‖∞‖xn − xm‖∞

∫1

0

(
φp(xn) − φp(xm)

)
dt

−→ 0, as n,m −→ ∞.

(3.15)

From |〈ϕ′(xn)−ϕ′(xm), xn−xm〉| ≤ (‖ϕ′(xn)‖+‖ϕ′(xm)‖) ·(‖xn‖+‖xm‖) and ‖xn‖+‖xm‖
is bounded in W1,p[0, 1], ‖ϕ′(xn)‖ → 0, ‖ϕ′(xm)‖ → 0, m,n → ∞, and one has 〈ϕ′(xn) −
ϕ′(xm), xn − xm〉 → 0. Hence,

∫1

0

(
φp

(
x′
n

) − φp

(
x′
m

))(
x′
n − x′

m

)
dt −→ 0, n,m −→ ∞. (3.16)

If p ≥ 2, from Lemma 2.1, there exists a positive constant cp such that

∫1

0

(
φp

(
x′
n

) − φp

(
x′
m

))(
x′
n − x′

m

)
dt ≥ cp

∫1

0

∣∣x′
n − x′

m

∣∣pdt. (3.17)
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If p < 2, by Lemma 2.1, the Hölder inequality, and the boundedness of (xn)n∈N in
W1,p[0, 1], one has

∫1

0

∣
∣x′

n − x′
m

∣
∣pdt =

∫1

0

|x′
n − x′

m|p

(|x′
n| + |x′

m|)p(2−p)/2
(∣∣x′

n

∣
∣ +
∣
∣x′

m

∣
∣)p(2−p)/2dt

≤
(∫1

0

|x′
n − x′

m|2

(|x′
n| + |x′

m|)2−p
dt

)p/2(∫1

0

(∣∣x′
n

∣
∣ +
∣
∣x′

m

∣
∣)pdt

)(2−p)/2

≤ c
−p/2
p

(∫1

0

(
φp

(
x′
n

) − φp

(
x′
m

))(
x′
n − x′

m

)
dt

)p/2

× 2(p−1)(2−p)/2
(∫1

0

(∣∣x′
n

∣
∣p +

∣
∣x′

m

∣
∣p)dt

)(2−p)/2

≤ c
−p/2
p

(∫1

0

(
φp

(
x′
n

) − φp

(
x′
m

))(
x′
n − x′

m

)
dt

)p/2

2((p−1)(2−p))/2

×(‖xn‖p + ‖xm‖p
)(2−p)/2

.

(3.18)

From (3.17) and (3.18), we have
∫1
0 |x′

n − x′
m|pdt → 0 as n,m → ∞. Then, ‖xn − xm‖ → 0,

that is, (xn)n∈N is a Cauchy sequence inW1,p[0, 1]. By the completeness ofW1,p[0, 1], we have
xn → x inW1,p[0, 1]. From the discussion above, ϕ(x) satisfies the (C) condition.

For t > 0, x > 0, one has

d
(
G
(
t−1x
)
tμ
)

dt
= tμ−1

(
μG
(
t−1x
)
− t−1xg

(
t−1x
))

≤ 0, (3.19)

that is, G(t−1x)tμ is nonincreasing in t. Assume that M = maxx∈[0,1]G(x),

G(x+) ≤ G

(
x+

|x|
)
|x|μ ≤ M|x|μ, 0 < |x| ≤ 1. (3.20)

Hence,

ϕ+(x) ≥ 1
p

∫1

0
a(t)|x|pdt + 1

p

∫1

0

∣∣x′∣∣pdt −
∫1

0
G(x+)dt

≥ 1
p
min{‖a‖m, 1}‖x‖p −M‖x‖μ.

(3.21)

Obviously, there exists ρ > 0 such that, for ‖x‖ = ρ, (1/p)min{|a|m, 1}ρp −Mρμ = α > 0.
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On the other hand, G(x) ≥ G(1)xμ for x > 1; then, by Lemma 2.2

ϕ+(x) ≤ 1
p
max{‖a‖∞, 1}‖x‖p −G(1)

∫1

0
|x|μdt +

∫1

0
g(0)x−dt

+
2p+1

p

(
φp

(
α1

α2

)
+ φp

(
β1
β2

))
‖x‖p.

(3.22)

Let e be some large positive constant. Since μ > p, ϕ+(e) < 0. Moreover, ϕ+(0) = 0. From the
mountain pass lemma [10], ϕ+ possesses a critical value c ≥ α, that is, there exists x1 such that
ϕ′
+(x1) = 0, ϕ+(x1) = c ≥ α > 0. Then, from Lemma 2.4, one has that BVP(3.4) has a positive

solution x1 and x1 /≡ 0, t ∈ [0, 1].

Lemma 3.4. Assume that (A2), (A3) hold; then, BVP(1.1) has a strict lower solution x = βx1 where
β is some positive constant and x1 is the positive solution of BVP(3.4) one obtains that in Lemma 3.3.

Proof. Assume β ∈ (0, 1] is small enough such that βx1 ∈ (0, δ] and x(t) − βx1(t) ≥ 0, x(t) −
βx1(t)/≡ 0, t ∈ [0, 1]. Then,

−(φp

(
x′))′ = −βp−1(φp

(
x′
1

))′ = −βp−1a(t)φp(x1) + βp−1g(x1) ≤ −a(t)φp

(
x
)
+ g
(
x
)

< −a(t)φp

(
x
)
+ f
(
t, x
)
.

(3.23)

Moreover, α1x(0) − α2x
′(0) = 0, β1x(1) + β2x

′(1) = 0. Hence, x is a strictly lower solution of
BVP(1.1) and x ≤ x, x /≡x, t ∈ [0, 1].

Theorem 3.5. Assume that (A1)–(A3) hold; then, BVP(1.1) has a positive solution x∗ and x ≤ x∗ ≤
x.

Proof. Let I = [x, x] = {x ∈ W1,p[0, 1] | x ≤ x ≤ x}. Make a truncation function of f(t, x) as

f(t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t, x), x > x,

f(t, x), x ≤ x ≤ x,

f
(
t, x
)
, x < x,

(3.24)

and assume that F(t, x) =
∫x
0 f(t, s)ds. Consider the following BVP:

−(φp

(
x′(t)

))′ = −a(t)φp(x) + f(t, x), t ∈ [0, 1],

α1x(0) − α2x
′(0) = 0, β1x(1) + β2x

′(1) = 0.
(3.25)

The corresponding Euler functional of BVP(3.25) is

ϕ(x) =
1
p

∫1

0
a(t)|x|pdt + 1

p

∫1

0

∣∣x′∣∣pdt −
∫1

0
F(t, x)dt +

α2

pα1

∣∣∣∣
α1x(0)
α2

∣∣∣∣

p

+
β2
pβ1

∣∣∣∣
β1x(1)
β2

∣∣∣∣

p

.

(3.26)
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It is obvious that ϕ(x) is weakly lower semicontinuous. Since x and x are continuous on
[0, 1], F(t, x) is continuous, ϕ(x) is coercive. Hence, ϕ(x) can attain its infimum in W1,p[0, 1].
Without loss of generality, we may assume that ϕ(x) attains its infimum in x∗. In the
following, we show that x∗ is a solution of BVP(1.1).

Assume that x∗ − x has a negative minimum, and let t0 = sup{t ∈ [0, 1] | (x∗ − x)(t) =
min
s∈[0,1]

((x∗ − x)(s))}.
If t0 = 0, then,

0 ≤ x∗(0)′ − x(0)′ ≤ α1

α2

(
x∗(0) − x(0)

)
< 0, (3.27)

which reaches a contradiction. Similarly, t0 /= 1.
If t0 ∈ (0, 1), there exist an open interval I0 and t1 ∈ I0 with t1 < t0, x∗(t) < x(t), t ∈ I0,

x∗(t1)′ < x(t1)′. Hence,

0 > φp

(
(x∗)′(t1)

) − φp

(
x′(t1)

)
=
∫ t1

t0

[(
φp

(
(x∗)′(s)

))′ − (φp

(
x′(s)

))′]
ds

≥
∫ t0

t1

[
−a(s)φp(x∗(s)) + f(s, x∗(s)) + a(s)φp

(
x(s)

) − f
(
s, x(s)

)]
ds

=
∫ t0

t1

a(s)
[
φp

(
x(s)

) − φp(x∗(s))
]
ds > 0.

(3.28)

From the discussion above, one has x∗(t) ≥ x(t). Similarly, x∗(t) ≤ x(t). Then, x∗ ∈ I. Since
x(t) and x(t) are the strictly lower and upper solutions of BVP(1.1), respectively, x∗(t)x(t),
x∗(t)x(t). Therefore, we obtain a positive solution of BVP (1.1).
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