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This paper is concerned with a time-varying fishing model with delay. By means of the
continuation theorem of coincidence degree theory, we prove that it has at least one positive almost
periodic solution.

1. Introduction

Consider the following differential equation which is widely used in fisheries [1–4]:

Ṅ = N[L(t,N) −M(t,N)] −NF(t), (1.1)

where N = N(t) is the population biomass, L(t,N) is the per capita fecundity rate, M(t,N)
is the per capita mortality rate, and F(t) is the harvesting rate per capita.

In (1.1), let L(t,N) be a Hills’ type function ([1, 2])

L(t,N) =
a

1 + (N/K)γ (1.2)

and take into account the delay and the varying environments; Berezansky and Idels [5]
proposed the following time-lag model based on (1.1) [1–6]

Ṅ(t) = N(t)
[

a(t)
1 + (N(θ(t))/K(t))γ

− b(t)
]
, (1.3)

where b(t) = M(t,N) + F(t).
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The model (1.3) has recently attracted the attention of many mathematicians and
biologists; see the differential equations which are widely used in fisheries [1, 2]. However,
one can easily see that all equations considered in the above-mentioned papers are subject to
periodic assumptions, and the authors, in particular, studied the existence of their periodic
solutions. On the other hand, ecosystem effects and environmental variability are very
important factors and mathematical models cannot ignore, for example, reproduction rates,
resource regeneration, habitat destruction and exploitation, the expanding food surplus, and
other factors that affect the population growth. Therefore it is reasonable to consider the
various parameters of models to be changing almost periodically rather than periodically
with a common period. Thus, the investigation of almost periodic behavior is considered
to be more accordant with reality. Although it has widespread applications in real life, the
generalization to the notion of almost periodicity is not as developed as that of periodic
solutions; we refer the reader to [7–18].

Recently, the authors of [19] proved the persistence and almost periodic solutions
for a discrete fishing model with feedback control. In [20, 21], the contraction mapping
principle and the continuation theorem of coincidence degree have been employed to
prove the existence of positive almost periodic exponential stable solutions for logarithmic
population model, respectively. A primary purpose of this paper, nevertheless, is to utilize
the continuation theorem of coincidence degree for this purpose. To the best of the authors’
observation, there exists no paper dealing with the proof of the existence of positive almost
periodic solutions for (1.3) using the continuation theorem of coincidence degree. Therefore,
our result is completely different and presents a new approach.

2. Preliminaries

Our first observation is that under the invariant transformation N(t) = ey(t), (1.3) reduces to

ẏ(t) =
a(t)

1 +
(
ey(θ(t))/K(t)

)γ − b(t) (2.1)

for γ > 0, with the initial function and the initial value

y(t) = φ(t), y(0) = y0, t ∈ (−∞, 0). (2.2)

For (2.1) and (2.2), we assume the following conditions:

(A1) a(t), b(t) ∈ C([0,+∞), [0,+∞)) and K(t) ∈ C([0,+∞), (0,+∞));

(A2) θ(t) is a continuous function on [0,+∞) that satisfies θ(t) ≤ t;

(A3) φ(t) : (−∞, 0) → [0,∞) is a continuous bounded function, φ(t) ≥ 0, y0 > 0.

By a solution of (2.1) and (2.2) we mean an absolutely continuous function y(t)
defined on (−∞,+∞) satisfying (2.1) almost everywhere for t ≥ 0 and (2.2). As we are
interested in solutions of biological significance, we restrict our attention to positive ones.

According to [22], the initial value problem (2.1) and (2.2) has a unique solution
defined on (−∞,∞).
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Let X,Y be normed vector spaces, L : Dom L ⊂ X → Y be a linear mapping, and
N : X → Y be a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dim KerL = codim ImL < +∞ and Im L is closed in Y . If L is a Fredholm
mapping of index zero and there exist continuous projectors P : X → X and Q : Y → Y
such that Im P = Ker L, KerQ = ImL = Im(I −Q), it follows that the mapping L|Dom L∩KerP :
(I − P)X → Im L is invertible. We denote the inverse of that mapping by KP . If Ω is an
open bounded subset of X, then the mapping N will be called L-compact on Ω, if QN(Ω)
is bounded and KP (I − Q)N : Ω → X is compact. Since ImQ is isomorphic to KerL, there
exists an isomorphism J : ImQ → KerL.

Theorem 2.1 (see [19]). Let Ω ⊂ X be an open bounded set and let N : X → Y be a continuous
operator which is L-compact on Ω. Assume that

(1) Ly /=λNy for every y ∈ ∂Ω ∩Dom L and λ ∈ (0, 1);

(2) QNy/= 0 for every y ∈ ∂Ω ∩ Ker L;

(3) the Brouwer degree deg{JQN,Ω ∩ Ker L, 0}/= 0.

Then Ly = Ny has at least one solution in Dom L ∩Ω.

3. Existence of Almost Periodic Solutions

LetAP(R) denote the set of all real valued almost periodic functions on R, for f ∈ AP(R)we
denote by

Λ
(
f
)
=

{
λ̃ ∈ R : lim

T →∞
1
T

∫T

0
f(s)e−iλ̃sds /= 0

}
,

mod
(
f
)
=

⎧⎨
⎩

m∑
j=1

njλ̃j : nj ∈ Z, m ∈ N, λ̃j ∈ Λ
(
f
)
, j = 1, 2, . . . , m

⎫⎬
⎭,

(3.1)

the set of Fourier exponents and the module of f , respectively. Let K(f, ε, S) denote the set
of ε-almost periods for f with respect to S ⊂ C((−∞, 0],R), l(ε) denote the length of the
inclusion interval, and m(f) = lim

T →∞
(1/T)

∫T
0 f(s) ds denote the mean value of f .

Definition 3.1. y(t) ∈ C(R,R) is said to be almost periodic onR if for any ε > 0 the setK(y, ε) =
{δ : |y(t + δ) − y(t)| < ε, ∀t ∈ R} is relatively dense; that is, for any ε > 0 it is possible to find
a real number l(ε) > 0 for any interval with length l(ε); there exists a number δ = δ(ε) in this
interval such that |y(t + δ) − y(t)| < ε for any t ∈ R.

Throughout the rest of the paper we assume the following condition for (2.1):

(H) a(t), b(t), K(t), t − θ(t) ∈ AP(R), m(b/Kγ)/= 0 and m(a)/=m(b).

In our case, we set

X = Y = V1 ⊕ V2, (3.2)
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where

V1 =
{
y ∈ AP(R) : mod

(
y
) ⊆ mod(F), ∀μ ∈ Λ

(
y
)
satisfies

∣∣μ∣∣ > α
}
,

V2 =
{
y(t) ≡ k, k ∈ R

}
,

(3.3)

where

F = F
(
t, φ
)
=

a(t)
1 +
(
eφ(θ(0))/K(t)

)γ − b(t), φ ∈ C([−∞, 0],R) (3.4)

and α is a given constant; define the norm

∥∥y∥∥ = sup
t∈R

∣∣y(t)∣∣, y ∈ X (or Y). (3.5)

Remark 3.2. If f is ε-almost periodic function, then
∫ t
f(s)ds is ε-almost periodic if and only

if m(f) = 0. Whereas f ∈ AP(R) does not necessarily have an almost periodic primitive,
m(f) = 0. That is why we can not make V1 = {z ∈ AP(R) : m(z) = 0} and let V1 = {y ∈
AP(R) : mod(y) ⊂ mod(F), ∀μ ∈ Λ(y) satisfy |μ| > α}.

We start with the following lemmas.

Lemma 3.3. X and Y are Banach spaces endowed with the norm ‖ · ‖.

Proof. If yn ∈ V1 and yn converge to y0, then it is easy to show that y0 ∈ AP(R) with mod
(y0) ⊂ mod(F). Indeed, for all |λ̃| ≤ α we have

lim
T →∞

1
T

∫ t

0
yn(s)e−iλ̃sds = 0. (3.6)

Thus

lim
T →∞

1
T

∫T

0
y0(s)e−iλ̃sds = 0, (3.7)

which implies that y0 ∈ V1. One can easily see that V1 is a Banach space endowed with the
norm ‖ · ‖. The same can be concluded for the spaces X and Y . The proof is complete.

Lemma 3.4. Let L : X → Y and

Ly =
a(t)

1 +
(
ey(θ(t))/K(t)

)γ − b(t), (3.8)

where Ly = y′ = dy/dt. Then L is a Fredholmmapping of index zero.
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Proof. It is obvious that L is a linear operator and Ker L = V2. It remains to prove that Im L =
V1. Suppose that φ(t) ∈ Im L ⊂ Y . Then, there exist φ1 ∈ V1 and φ2 ∈ V2 such that

φ = φ1 + φ2. (3.9)

From the definitions of φ(t) and φ1(t), one can deduce that
∫ t
φ(s)ds and

∫ t
φ1(s)ds are almost

periodic functions and thus φ2(t) ≡ 0, which implies that φ(t) ∈ V1. This tells us that

Im L ⊂ V1. (3.10)

On the other hand, if ϕ(t) ∈ V1 \ {0} then we have
∫ t
0 ϕ(s)ds ∈ AP(R). Indeed, if λ̃ /= 0 then we

obtain

lim
T →∞

1
T

∫T

0

[∫ t

0
ϕ(s)ds

]
e−iλ̃tdt =

1

iλ̃
lim
T →∞

1
T

∫T

0
ϕ(t)e−iλ̃t dt. (3.11)

It follows that

Λ

[∫ t

0
ϕ(s)ds −m

(∫ t

0
ϕ(s)ds

)]
= Λ
(
ϕ(t)
)
. (3.12)

Thus

∫ t

0
ϕ(s)ds −m

(∫ t

0
ϕ(s)ds

)
∈ V1 ⊂ X. (3.13)

Note that
∫ t
0 ϕ(s)ds − m(

∫ t
0 ϕ(s)ds) is the primitive of ϕ in X; therefore we have ϕ ∈ Im L.

Hence, we deduce that

V1 ⊂ Im L, (3.14)

which completes the proof of our claim. Therefore,

Im L = V1. (3.15)

Furthermore, one can easily show that Im L is closed in Y and

dim Ker L = 1 = codim Im L. (3.16)

Therefore, L is a Fredholm mapping of index zero.
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Lemma 3.5. LetN : X → Y , P : X → X, and Q : Y → Y such that

Ny =
a(t)

1 +
(
ey(θ(t))/K(t)

)γ − b(t), y ∈ X,

Py = m
(
y
)
, y ∈ X, Qz = m(z), z ∈ Y.

(3.17)

Then, N is L-compact on Ω (Ω is an open and bounded subset of X).

Proof. The projections P and Q are continuous such that

Im P = Ker L, Im L = Ker Q. (3.18)

It is clear that

(I −Q)V2 = {0},

(I −Q)V1 = V1.
(3.19)

Therefore

Im(I −Q) = V1 = Im L. (3.20)

In view of

Im P = Ker L,

Im L = Ker Q = Im(I −Q),
(3.21)

we can conclude that the generalized inverse (of L) KP : Im L → Ker P ∩Dom L exists and
is given by

KP (z) =
∫ t

0
z(s)ds −m

[∫ t

0
z(s)ds

]
. (3.22)

Thus

QNy = m

[
a(t)

1 +
(
ey(θ(t))/K(t)

)γ − b(t)

]
,

KP (I −Q)Ny = f
[
y(t)
] −Qf

[
y(t)
]
,

(3.23)

where f[y(t)] is defined by

f
[
y(t)
]
=
∫ t

0

[
Ny(s) −QNy(s)

]
ds. (3.24)
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The integral form of the terms of both QN and (I − Q)N implies that they are
continuous. We claim that KP is also continuous. By our hypothesis, for any ε < 1 and any
compact set S ⊂ C((−∞, 0],R), let l(ε, S) be the inclusion interval of K(F, ε, S). Suppose that
{zn(t)} ⊂ ImL = V1 and zn(t) uniformly converges to z0(t). Because

∫ t
0 zn(s)ds ∈ Y (n =

0, 1, 2, 3, . . .), there exists ρ(0 < ρ < ε) such thatK(F, ρ, S) ⊂ K(
∫ t
o zn(s) ds, ε). Let l(ρ, S) be the

inclusion interval of K(F, ρ, S) and

l = max
{
l
(
ρ, S
)
, l(ε, S)

}
. (3.25)

It is easy to see that l is the inclusion interval of both K(F, ε, S) and K(F, ρ, S). Hence, for all
t /∈ [0, l], there exists μt ∈ K(F, ρ, S) ⊂ K(

∫ t
0 zn(s)ds, ε) such that t + μt ∈ [0, l]. Therefore, by

the definition of almost periodic functions we observe that

∥∥∥∥∥
∫ t

0
zn(s)ds

∥∥∥∥∥ = sup
t∈R

∣∣∣∣∣
∫ t

0
zn(s)ds

∣∣∣∣∣

≤ sup
t∈[0,l]

∣∣∣∣∣
∫ t

0
zn(s)ds

∣∣∣∣∣ + sup
t/∈[0,l]

∣∣∣∣∣
(∫ t

0
zn(s)ds −

∫ t+μt

0
zn(s)ds

)
+
∫ t+μt

0
zn(s)ds

∣∣∣∣∣

≤ 2 sup
t∈[0,l]

∣∣∣∣∣
∫ t

0
zn(s)ds

∣∣∣∣∣ + sup
t/∈[0,l]

∣∣∣∣∣
∫ t

0
zn(s)ds −

∫ t+μt

0
zn(s)ds

∣∣∣∣∣

≤ 2
∫ l

0
|zn(s)|ds + ε.

(3.26)

By applying (3.26), we conclude that
∫ t
0 z(s)ds(z ∈ Im L) is continuous and consequentlyKP

and KP (I −Q)Ny are also continuous.

From (3.26), we also have that
∫ t
0 z(s)ds and KP (I − Q)Ny are uniformly bounded

in Ω. In addition, it is not difficult to verify that QN(Ω) is bounded and KP (I − Q)Ny is
equicontinuous in Ω. Hence by the Arzelà-Ascoli theorem, we can immediately conclude
that KP (I −Q)N(Ω) is compact. ThusN is L-compact on Ω.

Theorem 3.6. Let condition (H) hold. Then (2.1) has at least one positive almost periodic solution.

Proof. It is easy to see that if (2.1) has one almost periodic solution y, thenN = ey is a positive
almost periodic solution of (1.3). Therefore, to complete the proof it suffices to show that (2.1)
has one almost periodic solution.

In order to use the continuation theorem of coincidence degree theory, we set the
Banach spaces X and Y the same as those in Lemma 3.3 and the mappings L, N, P , Q the
same as those defined in Lemmas 3.4 and 3.5, respectively. Thus, we can obtain that L is a
Fredholm mapping of index zero and N is a continuous operator which is L-compact on Ω.
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It remains to search for an appropriate open and bounded subset Ω. Corresponding to the
operator equation

Ly = λNy, λ ∈ (0, 1), (3.27)

we may write

ẏ(t) = λ

[
a(t)

1 +
(
ey(θ(t))/K(t)

)γ − b(t)

]
. (3.28)

Assume that y = y(t) ∈ X is a solution of (3.28) for a certain λ ∈ (0, 1). Denote

y∗ = sup
t∈R

y(t), y∗ = inf
t∈R

y(t). (3.29)

In view of (3.28), we obtain

m(a(t) − b(t)) = m

(
b(t)
Kγ(t)

(
ey(θ(t))

)γ)
(3.30)

and consequently,

m(a(t) − b(t)) ≥ m

(
b(t)
Kγ(t)

)
eγy∗ , (3.31)

which implies from (H) that

y∗ ≤ γ−1 ln
(

m[a(t) − b(t)]
m(b(t)/Kγ(t))

)
. (3.32)

Similarly, we can get

y∗ ≥ γ−1 ln
(

m(a(t) − b(t))
m(b(t)/Kγ(t))

)
. (3.33)

By inequalities (3.32) and (3.33), we can find that there exists t1 ∈ R such that

∣∣y(t1)∣∣ ≤ M, (3.34)

where

M =
∣∣∣∣γ−1 ln

(
m(a(t) − b(t))
m(b(t)/Kγ(t))

)∣∣∣∣ + 1. (3.35)
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Then from (3.26), we have

∥∥y(t)∥∥ ≤ ∣∣y(t1)∣∣ + sup
t∈R

∣∣∣∣∣
∫ t

t2

y′(s)ds

∣∣∣∣∣ ≤ M + 2 sup
t∈[t2,t2+l]

∫ t

t2

∣∣y′(s)
∣∣ds + ε (3.36)

or

∥∥y(t)∥∥ ≤ M + 2
∫ t2+l

t2

∣∣y′(s)
∣∣ds + 1. (3.37)

Choose the point ν − t2 ∈ [l, 2l] ∩ K(F, ρ, S), where ρ(0 < ρ < ε) satisfies K(F, ρ) ⊂ K(z, ε).
Integrating (3.28) from t2 to ν, we get

λ

∫ν

t2

a(t)
1 + [K(s)]−γeγy(θ(s))

ds = λ

∫ν

t2

|b(s)|ds +
∫ν

t2

y′(s)ds

≤ λ

∫ν

t2

|b(s)|ds + ε.

(3.38)

However, from (3.28) and (3.38), we obtain

∫ν

t2

∣∣y′(s)
∣∣ds ≤ λ

∫ν

t2

|b(s)|ds + λ

∫ν

t2

a(t)
1 + [K(s)]−γeγy(θ(s))

ds,

≤ 2
∫ν

t2

|b(s)|ds + ε

≤ 2
∫ν

t2

|b(s)|ds + 1.

(3.39)

Substituting back in (3.37) and for ν ≥ t2 + l, we have

∥∥y(t)∥∥ ≤ M′, (3.40)

where

M′ = M + 4
∫ν

0
|b(s)|ds + 3. (3.41)

Let M̃ = M +M′. Obviously, it is independent of λ. Take

Ω =
{
y ∈ X :

∥∥y∥∥ < M̃
}
. (3.42)
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Figure 1: Transient response of state N(t) when γ = 2.

It is clear that Ω satisfies assumption (1) of Theorem 2.1. If y ∈ ∂Ω ∩ Ker L, then y is a
constant with ‖y‖ = M̃. It follows that

QNy = m

(
a(t)

1 +
(
ey(θ(t))/K(t)

)γ − b(t)

)
/= 0, (3.43)

which implies that assumption (2) of Theorem 2.1 is satisfied. The isomorphism J : Im Q →
Ker L is defined by J(z) = z for z ∈ R. Thus, JQNy /= 0. In order to compute the Brouwer
degree, we consider the homotopy

H
(
y, s
)
= −sy + (1 − s)JQNy, 0 ≤ s ≤ 1. (3.44)

For any y ∈ ∂Ω ∩ Ker L, s ∈ [0, 1], we have H(y, s)/= 0. By the homotopic invariance of
topological degree, we get

deg{JQN,Ω ∩ Ker L, 0} = deg
{−y,Ω ∩ Ker L, 0

}
/= 0. (3.45)

Therefore, assumption (3) of Theorem 2.1 holds. Hence, Ly = Ny has at least one solution in
Dom L∩Ω. In other words, (2.1) has at least one positive almost periodic solution. Therefore,
(1.3) has at least one positive almost periodic solution. The proof is complete.
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4. An Example

Let a(t) = eπ(3 + cos
√
2t), b(t) = (1/2)eπ(3 + cos

√
2t), K(t) = 4 + sin

√
t, γ > 0, θ(t) = t − 2 −

sin
√
3t. Then (1.3) has the form

Ṅ(t) = N(t)

⎡
⎢⎣

eπ
(
3 + cos

√
2t
)

1 +
(
N
(
t − 2 − sin

√
3t
)
/
(
4 + sin

√
t
))γ − 1

2
eπ
(
3 + cos

√
2t
)
⎤
⎥⎦. (4.1)

One can easily realize that m(b(t)/[K(t)]γ) > 0 and m(a(t)) > m(b(t)); thus condition (H)
holds. Therefore, by the consequence of Theorem 3.6, (4.1) has at least one positive almost
periodic solution (Figure 1).
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