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We obtain a global existence result for the higher-dimensional thermoviscoelastic equations. Using
semigroup approach, we will establish the global existence of homogeneous, nonhomogeneous,
linear, semilinear, and nonlinear, thermoviscoelastic systems.

1. Introduction

In this paper, we consider global existence of the following thermoviscoelastic model:

utt − μΔu − (
λ + μ

)∇divu

+ μg ∗Δu +
(
λ + μ

)
g ∗ ∇divu + α∇θt = f, (x, t) ∈ Ω × (0,∞),

θtt −Δθt −Δθ + βdivut = h, (x, t) ∈ Ω × (0,∞),

(1.1)

where the sign “∗” denotes the convolution product in time, which is defined by

g ∗ v(t) =
∫ t

−∞
g(t − s)v(x, s)ds (1.2)

with the initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω,

θt(x, 0) = θ1(x), u(x, 0) − u(x,−s) = w0(x, s), (x, s) ∈ Ω × (0,∞)
(1.3)
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and boundary condition

u = 0, θ = 0, (x, t) ∈ Γ × (0,∞). (1.4)

The body Ω is a bounded domain in Rn with smooth boundary Γ = ∂Ω (say C2) and is
assumed to be linear, homogeneous, and isotropic. u(x, t) = (u1(x, t), u2(x, t), . . . , un(x, t)),
and θ(x, t) represent displacement vector and temperature derivations, respectively, from
the natural state of the reference configuration at position x and time t. λ, μ > 0 are Lamé’s
constants and α, β > 0 the coupling parameters; g(t) denotes the relaxation function, w0(x, s)
is a specified “history,” and u0(x), u1(x), θ0(x) are initial data. Δ, ∇, div denote the Laplace,
gradient, and divergence operators in the space variables, respectively.

We refer to the work by Dafermos [1–3]. The following basic conditions on the
relaxation function g(t) are

(H1) g ∈ C1[0,∞) ∩ L1(0,∞);

(H2) g(t) ≥ 0, g ′(t) ≤ 0, t > 0;

(H3) κ = 1 − ∫∞
0 g(t)dt > 0.

In what follows, we denote by ‖ · ‖ the norm of L2(Ω), and we use the notation

‖v‖2 =
n∑

i=1

‖vi‖2, for v = (v1, v2, . . . , vn). (1.5)

When f = g = h = 0, system (1.1)–(1.4) is reduced to the thermoelastic system:

utt − μΔu − (
λ + μ

)∇divu + α∇θt = 0, (x, t) ∈ Ω × (0,∞),

θtt −Δθt −Δθ + βdivut = 0, (x, t) ∈ Ω × (0,∞),

u = 0, θ = 0, (x, t) ∈ Γ × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω.

(1.6)

In the one-dimensional space case, there are many works (see e.g., [4–8]) on the global
existence and uniqueness. Liu and Zheng [9] succeeded in deriving in energy decay under
the boundary condition (1.4) or

u|x=0 = 0, σ|x=l = 0, θx|x=0,l = 0, (1.7)

u|x=0 = 0, σ|x=l = 0, θ|x=0 = 0, θx|x=l = 0, (1.8)

or

u|x=0 = 0, σ|x=l = 0, θ|x=0, l = 0, (1.9)

andHansen [10] used themethod of combining the Fourier series expansion with decoupling
technique to solve the exponential stability under the following boundary condition:

u|x=0 = 0, σ|x=l = 0, θx|x=0 = 0, θ|x=l = 0, (1.10)
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where σ = ux − γθ is the stress. Zhang and Zuazua [11] studied the decay of energy for the
problem of the linear thermoelastic system of type III by using the classical energy method
and the spectral method, and they obtained the exponential stability in one space dimension,
and in two or three space dimensions for radially symmetric situations while the energy
decays polynomially for most domains in two space dimensions.

When α = β = 0, f = h = 0, system (1.1)-(1.4) is decoupled into the following
viscoelastic system:

utt − μΔu − (
λ + μ

)∇divu + μg ∗Δu +
(
λ + μ

)
g ∗ ∇divu = 0, (x, t) ∈ Ω × (0,∞),

u = 0, (x, t) ∈ Γ × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), (x, t) ∈ Ω,

u(x, 0) − u(x,−s) = w0(x), (x, t) ∈ Ω × (0,∞),

(1.11)

and the wave equation.
There are many works (see, e.g., [9, 12–15]) on exponential stability of energy and

asymptotic stability of solution under different assumptions. The notation in this paper will
be as follows. Lp, 1 ≤ p ≤ +∞,Wm,p,m ∈ N,H1 = W1,2,H1

0 = W1,2
0 denote the usual (Sobolev)

spaces on Ω. In addition, ‖ · ‖B denotes the norm in the space B; we also put ‖ · ‖ = ‖ · ‖L2(Ω).
We denote by Ck(I, B), k ∈ N0, the space of k-times continuously differentiable functions
from J ⊆ I into a Banach space B, and likewise by Lp(I, B), 1 ≤ p ≤ +∞, the corresponding
Lebesgue spaces. Cβ([0, T], B) denotes the Hölder space of B-valued continuous functions
with exponent β ∈ (0, 1] in variable t.

2. Main Results

Let the “history space” L2(g, (0,∞), (H1
0(Ω))n) consist of ((H1

0(Ω))n)-valued functions w on
(0,∞) for which

‖w‖2
L2(g, (0,∞),(H1

0 (Ω))n)=
∫∞

0
g(s)‖w(s)‖2(H1

0 (Ω))nds < ∞. (2.1)

Put

H =
(
H1

0(Ω)
)n ×

(
L2(Ω)

)n ×H1
0(Ω) × L2(Ω) × L2

(
g, (0,∞),

(
H1

0(Ω)
)n)

(2.2)

with the energy norm

‖(u, v, θ, θt,w)‖H =
{
κ‖u‖2(H1

0 (Ω))n +
1
2

(
‖v‖2 + α

β
‖θt‖2 + ‖∇θ‖

)

+
∫∞

0
g(s)‖w(s)‖2(H1

0 (Ω))n ds

}1/2

,

(2.3)

where κ denotes the positive constant in (H3), that is,

κ = 1 −
∫∞

0
g(t)dt > 0. (2.4)
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Thus we consider the following thermoviscoelastic system:

utt − μΔu − (
λ + μ

)∇divu + μg ∗Δu +
(
λ + μ

)
g ∗ ∇divu + α∇θt = 0, (x, t) ∈ Ω × (0,∞),

θtt −Δθt −Δθ + βdivut = 0, (x, t) ∈ Ω × (0,∞),

u = 0, θ = 0, (x, t) ∈ Γ × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x), x ∈ Ω,

u(x, 0) − u(x,−s) = w0(x, s), (x, t) ∈ Ω × (0,∞).
(2.5)

Let

v(x, t) = ut(x, t), w(x, t, s) = u(x, t) − u(x, t − s). (2.6)

Since

∂

∂ν

∫ t

−∞
g(t − s)u(s)ds =

∂

∂ν

∫∞

0
g(s)u(t − s)ds

=
∫∞

0
g(s)

∂

∂ν
(u(t) −w(t, s))ds

= (1 − κ)
∂u(x, t)

∂ν
−
∫∞

0
g(s)

∂w(t, s)
∂ν

ds,

(2.7)

System (2.5) can be written as follows:

utt − κμΔu − κ
(
λ + μ

)∇divu

+ α∇θt − μ

∫∞

0
g(s)Δw(t, s)ds

− (
λ + μ

)
∫∞

0
g(s)∇divw(t, s)ds = 0, (x, t) ∈ Ω × (0,∞),

θtt −Δθt −Δθ + βdivut = 0, (x, t) ∈ Ω × (0,∞),

w(x, t, s) = u(x, t) − u(x, t − s), (x, t, s) ∈ Ω × (0,∞) × (0,∞),

u = 0, θ = 0, (x, t) ∈ Γ × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x), x ∈ Ω,

w(0, s) = w0(s), (x, t) ∈ Ω × (0,∞).

(2.8)

We define a linear unbounded operator A on H by

A(u, v, θ, θt,w) =
(
v, B(u,w) − α∇θt, θt,Δθt + Δθ − βdivv, v −ws

)
, (2.9)



International Journal of Differential Equations 5

where ws = ∂w/∂s and

B(u,w) = κμΔu + κ
(
λ + μ

)∇divu + μ

∫∞

0
g(s)Δw(s)ds

+
(
λ + μ

)
∫∞

0
g(s)∇divw(s)ds.

(2.10)

Set

v(x, t) = ut(x, t), w(x, t, s) = u(x, t) − u(x, t − s),

Φ = (u, v, θ, θt,w), K =
(
0, f, 0, h, 0

)
.

(2.11)

Then problem (2.8) can be formulated as an abstract Cauchy problem

dΦ
dt

= AΦ +K, (2.12)

on the Hilbert space H for an initial condition Φ(0) = (u0, u1, θ0, θ1, w0). The domain of A is
given by

D(A) =
{
(u, v, θ,w) ∈ H : θ ∈ H1

0(Ω), θt ∈ H1
0(Ω), θ + θt ∈ H2(Ω) ∩H1

0(Ω),

v ∈
(
H1

0(Ω)
)n

, κu +
∫∞

0
g(s)w(s)ds ∈

(
H2(Ω) ∩H1

0(Ω)
)n

,

w(s) ∈ H1
(
g, (0,∞),

(
H1

0(Ω)
)n)

, w(0) = 0
}
,

(2.13)

where

H1
(
g, (0,∞),

(
H1

0(Ω)
)n)

=
{
w : w,ws ∈ L2

(
g, (0,∞),

(
H1

0(Ω)
)n)}

. (2.14)

It is clear that D(A) is dense in H.
Our hypotheses on f, h can be stated as follows, which will be used in different

theorems:

(A1) f = h = 0;

(A2) f = f(x, t) ∈ C1([0,∞), (L2(Ω))n), h = h(x, t) ∈ C1([0,∞), L2(Ω));

(A3) f(x, t) ∈ C([0,∞), (H1
0(Ω))n), h(x, t) ∈ C([0,∞),H2(Ω));

(A4) f(x, t) ∈ C([0,∞), (L2(Ω))n), h(x, t) ∈ C([0,∞), L2(Ω)), and for any T > 0, ft ∈
L1((0, T), (L2(Ω))n), ht ∈ L1((0, T), L2(Ω)).

We are now in a position to state our main theorems.

Theorem 2.1. Suppose that condition (A1) holds. Relaxation function g satisfies (H1)–(H3). Then
for any Φ(0) = (u0, u1, θ0, θ1, w0) ∈ D(A), there exists a unique global classical solution Φ =
(u, v, θ, θt,w) to system (2.8) satisfying Φ = (u, v, θ, θt,w) ∈ C1([0,∞),H) ∩ C([0,∞), D(A)).

Theorem 2.2. Suppose that condition (A2) holds. Relaxation function g satisfies (H1)–( H3). Then
for any Φ(0) = (u0, u1, θ0, θ1, w0), there exists a unique global classical solution Φ = (u, v, θ, θt,w)
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to system (2.8) satisfying Φ = (u, v, θ, θt,w) ∈ C1([0,∞),H) ∩ C([0,∞), D(A)), that is,

u ∈ C1
(
[0,∞),

(
H1

0(Ω)
)n) ∩ C

(
[0,∞),

(
H2(Ω) ∩H1

0(Ω)
)n)

,

v ∈ C1
(
[0,∞),

(
L2(Ω)

)n) ∩ C
(
[0,∞),

(
H1

0(Ω)
)n)

,

θ ∈ C1
(
[0,∞),H1

0(Ω)
)
∩ C

(
[0,∞),H2(Ω) ∩H1

0(Ω)
)
,

θt ∈ C1
(
[0,∞), L2(Ω)

)
∩ C

(
[0,∞),H1

0(Ω)
)
,

w ∈ C1
(
[0,∞), L2

(
g, (0,∞),

(
H1

0(Ω)
)n)) ∩ C

(
[0,∞),H1

(
g, (0,∞),

(
H1

0(Ω)
)n))

.

(2.15)

Corollary 2.3. Suppose that condition (A3) or (A4) holds. Relaxation function g satisfies (H1)–(H3).
Then for any Φ(0) = (u0, u1, θ0, θ1, w0) ∈ D(A), there exists a unique global classical solution
Φ = (u, v, θ, θt,w) ∈ C1([0,∞),H) ∩ C([0,∞), D(A)) to system (2.8).

Corollary 2.4. If f(x, t) and h(x, t) are Lipschitz continuous functions from [0, T] into (L2(Ω))n

and L2(Ω), respectively, then for any Φ = (u, v, θ, θt,w) ∈ D(A), there exists a unique global
classical solution Φ = (u, v, θ, θt,w) ∈ C1([0,∞),H) ∩ C([0,∞), D(A)) to system (2.8).

Theorem 2.5. Suppose relaxation function g satisfies (H1)–(H3), f = f(Φ), and h = h(Φ),Φ =
(u, v, θ, θt,w), and K = (0, f, 0, h, 0) satisfies the global Lipschitz condition on H; that is, there is a
positive constant L such that for all Φ1,Φ2 ∈ H,

‖K(Φ1) −K(Φ2)‖H ≤ L‖Φ1 −Φ2‖H. (2.16)

Then for any Φ(0) = (u0, u1, θ0, θ1, w0) ∈ H, there exists a global mild solution Φ to system (2.8)
such that Φ ∈ C([0,∞),H), that is,

u ∈ C
(
[0,∞),

(
H1

Γ1(Ω)
)n)

, θ ∈ C
(
[0,∞),H1

0(Ω)
)
, θt ∈ C

(
[0,∞), L2(Ω)

)
,

v ∈ C
(
[0,∞),

(
L2(Ω)

)n)
, w ∈ C([0,∞), L2

(
g, (0,∞),

(
H1

0(Ω)
)n)

.

(2.17)

Theorem 2.6. Suppose f = f(Φ) and h = h(Φ),Φ = (u, v, θ, θt,w), and K = (0, f, 0, h, 0) is a
nonlinear operator from D(A) into D(A) and satisfies the global Lipschitz condition on D(A); that
is, there is a positive constant L such that for all Φ1,Φ2 ∈ D(A),

‖K(Φ1) −K(Φ2)‖D(A) ≤ L‖Φ1 −Φ2‖D(A). (2.18)

Then for any Φ(0) = (u0, u1, θ0, θ1, w0) ∈ D(A), there exists a unique global classical solution
Φ = (u, v, θ, θt,w) ∈ C1([0,∞),H) ∩ C([0,∞), D(A)) to system (2.8).
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3. Some Lemmas

In this section in order to complete proofs of Theorems 2.1–2.6, we need first Lemmas 3.1–3.5.
For the abstract initial value problem,

du

dt
+ Bu = K,

u(0) = u0,

(3.1)

where B is a maximal accretive operator defined in a dense subsetD(B) of a Banach spaceH.
We have the following.

Lemma 3.1. Let B be a linear operator defined in a Hilbert space H,B : D(B) ⊂ H 
→ H. Then the
necessary and sufficient conditions for B being maximal accretive are

(i) Re(Bx, x) ≥ 0, for all x ∈ D(B),

(ii) R(I + B) = H.

Proof. We first prove the necessity. B is an accretive operator, so we have

(x, x) = ‖x‖2 ≤ ‖x + λBx‖2 = (x, x) + 2λRe(Bx, x) + λ2‖Bx‖2. (3.2)

Thus, for all λ > 0,

Re(Bx, x) ≥ −λ
2
‖Bx‖2. (3.3)

Letting λ → 0, we get (i). Furthermore, (ii) immediately follows from the fact that B is m-
accretive.

We now prove the sufficiency. It follows from (i) that for all λ > 0,

∥∥x − y
∥∥2 ≤ Re

(
x − y, x − y + λB

(
x − y

))

≤ ∥∥x − y
∥∥∥∥x − y + λ

(
Bx − By

)∥∥.
(3.4)

Now it remains to prove that B is densely defined. We use a contradiction argument. Suppose
that it is not true. Then there is a nontrivial element x0 belonging to orthogonal supplement
of D(B) such that for all x ∈ D(B),

(x, x0) = 0. (3.5)

It follows from (ii) that there is x∗ ∈ D(B) such that

x∗ + Bx∗ = x0. (3.6)

Taking the inner product of (3.5)with x∗, we deduce that

(x∗ + Bx∗, x∗) = 0. (3.7)
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Taking the real part of (3.7), we deduce that x∗ = 0, and by (3.6), x0 = 0, which is a
contradiction. Thus the proof is complete.

Lemma 3.2. Suppose that B ism-accretive in a Banach spaceH, and u0 ∈ D(B). Then problem (3.1)
has a unique classical solution u such that

u ∈ C1([0,∞),H) ∩ C([0,∞), D(B)). (3.8)

Lemma 3.3. Suppose that K = K(t), and

K(t) ∈ C1([0,∞),H), u0 ∈ D(B). (3.9)

Then problem (3.1) admits a unique global classical solution u such that

u ∈ C1([0,∞),H) ∩ C([0,∞), D(B)) (3.10)

which can be expressed as

u(t) = S(t)u0 +
∫ t

0
S(t − τ)K(τ)dτ. (3.11)

Proof. Since S(t)u0 satisfies the homogeneous equation and nonhomogeneous initial
condition, it suffices to verify that w(t) given by

w(t) =
∫ t

0
S(t − τ)K(τ)dτ (3.12)

belongs to C1([0,∞),H) ∩ C([0,∞), D(B)) and satisfies the nonhomogeneous equation.
Consider the following quotient of difference

w(t + h) −w(t)
h

=
1
h

(∫ t+h

0
S(t + h − τ)K(τ)dτ −

∫ t

0
S(t − τ)K(τ)dτ

)

=
1
h

∫ t+h

t

S(t + h − τ)K(τ)dτ +
1
h

∫ t

0
(S(t + h − τ) − S(t − τ))K(τ)dτ

=
1
h

∫ t+h

t

S(z)K(t + h − z)dz +
1
h

∫ t

0
S(z)(K(t + h − z) −K(t − z))dz.

(3.13)

When h → 0, the terms in the last line of (3.13) have limits:

S(t)K(0) +
∫ t

0
S(z)K′(t − z)dz ∈ C([0,∞),H). (3.14)
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It turns out that w ∈ C1([0,∞),H) and the terms in the third line of (3.13) have limits too,
which should be

S(0)K(t) − Bw(t) = K(t) − Bw(t). (3.15)

Thus the proof is complete.

Lemma 3.4. Suppose that K = K(t), and

K(t) ∈ C([0,∞), D(B)), u0 ∈ D(B). (3.16)

Then problem (3.1) admits a unique global classical solution.

Proof. From the proof of Lemma 3.2, we can obtain

w(t + h) −w(t)
h

=
1
h

∫ t+h

t

S(t + h − τ)K(τ)dτ +
1
h

∫ t

0
(S(t + h − τ) − S(t − τ))K(τ)dτ

=
1
h

∫ t+h

t

S(t + h − τ)K(τ)dτ +
1
h

∫ t

0
S(t − τ)

(
S(h) − I

h

)
K(τ)dτ.

(3.17)

When h → 0, the last terms in the line of (3.17) have limits:

S(0)K(t) −
∫ t

0
S(t − τ)BK(τ)dτ

= S(0)K(t) − B

∫ t

0
S(t − τ)K(τ)dτ = K(t) − Bw(t).

(3.18)

Combining the results of Lemma 3.3 proves the lemma.

Lemma 3.5. Suppose that K = K(t), and

K(t) ∈ C([0,∞),H), u0 ∈ D(B), (3.19)

and for any T > 0,

Kt ∈ L1([0, T],H). (3.20)

Then problem (3.1) admits a unique global classical solution.

Proof. We first prove that for any K1 ∈ L1([0, T],H), the function w given by the following
integral:

w(t) =
∫ t

0
S(t − τ)K1dτ (3.21)
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belongs to C([0, T],H). Indeed, we infer from the difference

w(t + h) −w(t) =
∫ t+h

0
S(t + h − τ)K1(τ)dτ −

∫ t

0
S(t − τ)K1(τ)dτ

= (S(h) − I)w(t) +
∫ t+h

t

S(t + h − τ)K1(τ)dτ

(3.22)

that as h → 0,

‖w(t + h) −w(t)‖ ≤ ‖(S(h) − I)w(t)‖ +
∫ t+h

t

‖K1(τ)‖dτ −→ 0, (3.23)

where we have used the strong continuity of S(t) and the absolute continuity of integral for
‖K1‖ ∈ L1[0, t].

Now it can be seen from the last line of (3.13) that for almost every t ∈ [0, T], dw/dt
exists, and it equals

S(t)K(0) +
∫ t

0
S(z)K′(t − z)dz

= S(t)K(0) +
∫ t

0
S(t − τ)K′(τ)dτ ∈ C([0, T],H).

(3.24)

Thus, for almost every t,

dw

dt
= −Bw +K. (3.25)

Since w and K both belong to C([0, T],H), it follows from (3.25) that for almost every t, Bw
equals a function belonging to C([0, T],H). Since B is a closed operator, we conclude that

w ∈ C([0, T], D(B)) ∩ C1([0, T],H) (3.26)

and (3.25) holds for every t. Thus the proof is complete.

To prove that the operator A defined by (2.14) is dissipative, we need the following
lemma.

Lemma 3.6. If the function f : [0,∞) → R is uniformly continuous and is in L1(0,∞), then

lim
t→∞

f(t) = 0. (3.27)

Lemma 3.7. Suppose that the relaxation function g satisfies (H1) and (H2). If w ∈ H1(g, (0,∞),
(H1

0(Ω))n) and w(0) = 0, then

g ′(s)‖w(s)‖2(H1
0 (Ω))n ∈ L1(0,∞),

lim
s→∞

g(s)‖w(s)‖2
(H1

0 (Ω))n
= 0.

(3.28)

Proof. See, for example, the work by Liu in [16].
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Lemma 3.8. Suppose relaxation function g satisfies (H1)–(H3). The operator A defined by (2.13) is
dissipative; furthermore, 0 ∈ ρ(A), where ρ(A) is the resolvent of the operator A.

Proof. By a straightforward calculation, it follows from Lemma 3.7 that

〈A(u, v, θ, θt,w), (u, v, θ, θt,w)〉H

= κ(v, u)(H1
0 (Ω))n +

1
2
(B(u,w) − α∇θt, v) +

α

2β
(∇θt,∇θ)

+
α

2β
(Δθt + Δθ − divv, θt) + (v −ws,w)L2(g,(0,∞),(H1

0 (Ω))n)

= − α

2β
‖∇θt‖2 +

∫∞

0
g ′(s)‖w(s)‖2(H1

0 (Ω))nds

≤ 0.

(3.29)

Thus, A is dissipative.
To prove that 0 ∈ ρ(A), for any G = (g1, g2, g3, g4, g5) ∈ H, consider

AΦ = G, (3.30)

that is,

v = g1, in
(
H1

0(Ω)
)n

, (3.31)

B(u,w) − α∇θt = g2, in
(
L2(Ω)

)n
, (3.32)

θt = g3, in L2(Ω), (3.33)

Δθt + Δθ − βdivv = g4, in L2(Ω), (3.34)

v −ws = g5, in L2
(
g, (0,∞),

(
H1

0(Ω)
)n)

. (3.35)

Inserting v = g1 and θt = g3 obtained from (3.31), (3.33) into (3.34), we obtain

Δθ = g4 + βdiv g1 −Δg3 ∈ L2(Ω). (3.36)

By the standard theory for the linear elliptic equations, we have a unique θ ∈ H2(Ω)∩H1
0(Ω)

satisfying (3.36).
We plug v = g1 obtained from (3.31) into (3.35) to get

ws = g1 − g5 ∈ L2
(
g, (0,∞),

(
H1

Γ1(Ω)
)n)

. (3.37)

Applying the standard theory for the linear elliptic equations again, we have a unique
w ∈ H1(g, (0,∞), (H1

0(Ω))n) satisfying (3.37). Then plugging θ and w just obtained from
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solving (3.36), (3.37), respectively, into (3.32) and applying the standard theory for the linear
elliptic equations again yield the unique solvability of u ∈ D(A) for (3.32) and such that
κu +

∫∞
0 g(s)w(s)ds ∈ (H2(Ω) ∩H1

0(Ω))n. Thus the unique solvability of (3.30) follows. It is
clear from the regularity theory for the linear elliptic equations that ‖Φ‖H ≤ K‖G‖H with K
being a positive constant independent of Φ. Thus the proof is completed.

Lemma 3.9. The operator A defined by (2.13) is closed.

Proof. To prove that A is closed, let (un, vn, θn, θnt,wn) ∈ D(A) be such that

(un, vn, θn, θnt,wn) −→ (u, v, θ, θt,w) in H,

A(un, vn, θn, θtn,wn) −→ (a, b, c, d, e) in H.
(3.38)

Then we have

un −→ u in
(
H1

0(Ω)
)n
, (3.39)

vn −→ v in
(
L2(Ω)

)n
, (3.40)

θn −→ θ in H1
0(Ω), (3.41)

θnt −→ θt in L2(Ω), (3.42)

wn −→ w in L2
(
g, (0,∞),

(
H1

0(Ω)
)n)

, (3.43)

vn −→ a in
(
H1

0(Ω)
)n

, (3.44)

B(un,wn) − α∇θnt −→ b in
(
L2(Ω)

)n
, (3.45)

θnt −→ c in H1
0(Ω), (3.46)

Δθnt + Δθn − βdivvn −→ d in L2(Ω), (3.47)

vn −wns −→ e in L2
(
g, (0,∞),

(
H1

0(Ω)
)n)

. (3.48)

By (3.40) and (3.44), we deduce

vn −→ v in
(
H1

0(Ω)
)n
, (3.49)

v = a ∈
(
H1

0(Ω)
)n

. (3.50)

By (3.42) and (3.46), we deduce

θnt −→ θt in H1
0(Ω), (3.51)

θt = c ∈ H1
0(Ω). (3.52)
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By (3.47) and (3.49), we deduce

Δθnt + Δθn −→ d + βdivv in L2(Ω), (3.53)

and consequently, it follows from (3.41), that

θnt + θn −→ θt + θ in H2(Ω) ∩H1
0(Ω), (3.54)

since Δ is an isomorphism from H2(Ω) ∩H1
0(Ω) onto L2(Ω). It therefore follows from (3.47)

and (3.54) that

d = Δθnt + Δθn − βdivv, θt + θ ∈ H2(Ω) ∩H1
0(Ω). (3.55)

By (3.43), (3.48), and (3.49), we deduce

wn −→ w in H1
(
g, (0,∞),

(
H1

Γ1(Ω)
)n)

, (3.56)

e = v −ws, w ∈ H1
(
g, (0,∞),

(
H1

0(Ω)
)n)

, w(0) = 0. (3.57)

In addition, it follows from (3.39), (3.43), (3.51) that

B(un,wn) − α∇θnt −→ B(u,w) − α∇θt (3.58)

in the distribution. It therefore follows from (3.45) and (3.58) that

b = B(u,w) − α∇θt, B(u,w) ∈
(
L2(Ω)

)n
, (3.59)

and consequently,

κu +
∫∞

0
g(s)w(s)ds ∈

(
H2(Ω) ∩H1

0(Ω)
)n

, (3.60)

since μΔ + (λ + μ)∇div is an isomorphism fromH2(Ω) ∩H1
0(Ω) onto L2(Ω). Thus, by (3.50),

(3.52), (3.55), (3.57), (3.59), (3.60), we deduce

A(u, v, θ, θt,w) = (a, b, c, d, e), (u, v, θ, θt,w) ∈ D(A). (3.61)

Hence, A is closed.

Lemma 3.10. Let A be a linear operator with dense domain D(A) in a Hilbert space H. If A is
dissipative and 0 ∈ ρ(A), the resolvent set of A, then A is the infinitesimal generator of a C0-
semigroup of contractions on H.

Proof. See, for example, the work by Liu and Zheng in [17] and by Pazy in [18].
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Lemma 3.11. Let A be a densely defined linear operator on a Hilbert space H. Then A generates a
C0-semigroup of contractions on H if and only if A is dissipative and R(I −A) = H.

Proof. See, for example, the work by Zheng in [19].

4. Proofs of Theorems 2.1–2.5

Proof of Theorem 2.1. By (2.2), it is clear thatH is a Hilbert space. By Lemmas 3.8–3.10, we can
deduce that the operator A is the infinitesimal generator of a C0-semigroup of contractions
on Hilbert space H. Applying the result and Lemma 3.2, we can obtain our result.

Proof of Theorem 2.2. we have known that the operatorA is the infinitesimal generator of a C0-
semigroup of contractions on Hilbert space H. Applying the result and Lemma 3.11, we can
conclude that R(I −A) = H. If we choose operator B = −A, we can obtain D(B) = D(A) and
D(B) is dense in H. Noting that by (A2), we know that K = (0, f, 0, h, 0) ∈ C1([0,∞),H);
therefore, applying Lemma 3.1, we can conclude the operator B is the maximal accretive
operator. Then we can complete the proof of Theorem 2.2 in term of Lemma 3.3.

Proof of Corollary 2.3. By (A3) or (A4), we derive that K = (0, f, 0, h, 0) ∈ C([0,∞), D(A)) or
K ∈ C([0,∞),H), and for any T > 0, Kt ∈ L1((0, T),H). Noting that B = −A is the maximal
accretive operator, we use Lemmas 3.4 and 3.5 to prove the corollary.

Proof of Corollary 2.4. We know that K(x, t) = (0, f, 0, h, 0) are Lipschitz continuous functions
from [0, T] intoH. Moreover, by (2.2), it is clear thatH is a reflexive Banach space. Therefore,
Kt ∈ L1([0, T],H). Hence applying Lemma 3.5, we may complete the proof of the corollary.

Proof of Theorem 2.5. By virtue of the proof of Theorem 2.2, we know that B = −A is the
maximal accretive operator of a C0 semigroup S(t). On the other hand, K = (0, f, 0, h, 0)
satisfies the global Lipschitz condition on H. Therefore, we use the contraction mapping
theorem to prove the present theorem. Two key steps for using the contraction mapping
theorem are to figure out a closed set of the considered Banach space and an auxiliary problem
so that the nonlinear operator defined by the auxiliary problemmaps from this closed set into
itself and turns out to be a contraction. In the following we proceed along this line.

Let

φ(Φ) = S(t)Φ0 +
∫ t

0
S(t − τ)K(Φ(τ))dτ, (4.1)

Ω =

{

Φ ∈ C([0,+∞),H) | sup
t≥0

(
‖Φ(t)‖e−kt

)
< ∞

}

, (4.2)

where k is a positive constant such that k > L. In Ω, we introduce the following norm:

‖Φ‖Ω = sup
t≥0

(
‖Φ(t)‖e−kt

)
. (4.3)
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Clearly, Ω is a Banach space. We now show that the nonlinear operator φ defined by (4.1)
maps Ω into itself, and the mapping is a contraction. Indeed, for Φ ∈ Ω, we have

‖φ(Φ)‖ ≤ ‖S(t)Φ0‖ +
∫ t

0
‖S(t − τ)‖‖K(Φ)‖dτ

≤ ‖Φ0‖ +
∫ t

0
‖K(Φ)‖dτ ≤ ‖Φ0‖ +

∫ t

0
(L‖Φ(τ)‖ + ‖K(0)‖)dτ

≤ ‖Φ0‖ + C0t + Lsup
t≥0

‖Φ(t)‖e−kt
∫ t

0
ekτdτ

≤ ‖Φ0‖ + C0t +
L

k
ekt‖Φ‖Ω,

(4.4)

where C0 = ‖K(0)‖. Thus,

∥∥φ(Φ)
∥∥
Ω
≤ sup

t≥0

[
(‖Φ0‖ + C0t)e−kt

]
+
L

k
‖Φ‖Ω < ∞. (4.5)

that is, φ(Φ) ∈ Ω.
For Φ1,Φ2 ∈ Ω, we have

∥∥φ(Φ1) − φ(Φ2)
∥∥
Ω = sup

t≥0
e−kt

∥∥∥∥∥

∫ t

0
S(t − τ)(K(Φ1(τ)) −K(Φ2(τ)))dτ

∥∥∥∥∥

≤ sup
t≥0

e−ktL
∫ t

0
‖Φ1 −Φ2‖dτ ≤ sup

t≥0

(
e−kt · L

k
·
(
ekt − 1

))
‖Φ1 −Φ2‖Ω

≤ L

k
‖Φ1 −Φ2‖Ω.

(4.6)

Therefore, by the contraction mapping theorem, the problem has a unique solution in Ω.
To show that the uniqueness also holds in C([0,∞),H), let Φ1,Φ2 ∈ C([0,∞),H) be two
solutions of the problem and let Φ = Φ1 −Φ2. Then

Φ(t) =
∫ t

0
S(t − τ)(K(Φ1) −K(Φ2))dτ,

‖Φ(t)‖ ≤ L

∫ t

0
‖Φ(τ)‖dτ.

(4.7)

By the Gronwall inequality, we immediately conclude thatΦ(t) = 0; that is, the uniqueness in
C([0,∞),H) follows. Thus the proof is complete.
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Proof of Theorem 2.6. Since B is the maximal accretive operator, K = (0, f, 0, h, 0) satisfies the
global Lipschitz condition on D(A). Let

A1 = D(B), B1 = B2 : D(B1) = D
(
B2

)

−→ A1. (4.8)

Then A1 is a Banach space, and B1 = B2 is a densely defined operator from D(B2) into A1. In
what follows we prove that B1 is m-accretive in A1 = D(B).

Indeed, for any x, y ∈ D(B2), since B is accretive inH, we have

∥
∥x − y + λ

(
Bx − By

)∥∥
D(B) =

(∥
∥x − y + λ

(
Bx − By

)∥∥2 +
∥
∥
∥Bx − By + λ

(
B2x − B2y

)∥∥
∥
2
)1/2

≥
(∥
∥x − y

∥
∥2 +

∥
∥Bx − By

∥
∥2

)1/2
=
∥
∥x − y

∥
∥
D(B).

(4.9)

that is, B1 is accretive in A1. Furthermore, since B is m-accretive in H, for any y ∈ H, there is
a unique x ∈ D(B) such that

x + Bx = y. (4.10)

Now for any y ∈ A1 = D(B), (4.10) admits a unique solution x ∈ D(B). It turns out that

Bx = y − x ∈ D(B). (4.11)

Thus x ∈ D(B2); that is, B1 is m-accretive in A1. Let S1(t) be the semigroup generated by B1.
If Φ0 ∈ D(B2) = D(B1), then

Φ(t) = S1(t)Φ0 ∈ C
(
[0,+∞), D

(
B2

))
∩ C1([0,+∞), D(B)) (4.12)

is unique classical solution of the problem. On the other hand,Φ(t) = S1(t)Φ0 is also a classical
solution in

C([0,+∞), D(B)) ∩ C1([0,+∞),H). (4.13)

This implies that S1(t) is a restriction of S(t) onA1. By virtue of the proof of Theorem 2.5, there
exists a unique mild solution Φ ∈ C([0,+∞), A1). Since S1(t) is a restriction of S(t) on D(B),
and moreover, we infer fromK(Φ) being an operator fromD(B) toD(B) and Lemma 3.4 that
Φ is a classical solution to the problem. Thus the proof is complete.
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