Research Article

Weak Solution to a Parabolic Nonlinear System Arising in Biological Dynamic in the Soil

Côme Goudjo, ${ }^{1}$ Babacar Lèye, ${ }^{\mathbf{2}}$ and Mamadou Sy ${ }^{\mathbf{2}}$
${ }^{1}$ Département de Mathématiques, Faculté des Sciences, Université d'Abomey Calavi, Cotonou, Benin
${ }^{2}$ Laboratoire d'Analyse Numérique et Informatique (LANI), IRD, Antenne de Saint-Louis Université Gaston Berger de Saint-Louis, UFR SAT, Umi-Ummisco 209, BP 234 Saint-Louis, Senegal

Correspondence should be addressed to Mamadou Sy, syndioum@yahoo.fr
Received 9 May 2011; Accepted 27 June 2011
Academic Editor: Elena I. Kaikina
Copyright © 2011 Côme Goudjo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study a nonlinear parabolic system governing the biological dynamic in the soil. We prove global existence (in time) and uniqueness of weak and positive solution for this reaction-diffusion semilinear system in a bounded domain, completed with homogeneous Neumann boundary conditions and positive initial conditions.

1. Introduction

Modelling biological dynamic in the soil is of great interest during these last years. Several attempts are made in $1 D, 2 D$, and rarely in $3 D$. For more details, readers are referred to [1-3]. We deal here with the mathematical study of the model described in [2].

Let $T>0$ be a fixed time, $\Omega \subset \mathbb{R}^{3}$ an open smooth bounded domain, $\left.Q_{T}=\right] 0, T[\times \Omega$, and $\left.\Gamma_{T}=\right] 0, T[\times \partial \Omega$.

The set of equations describing the organic matter cycle of decomposition in the soil is given by the following system:

$$
\text { (S) } \begin{cases}\frac{\partial u_{i}}{\partial t}-D_{i} \Delta u_{i}+q_{i}(u) u_{i}=f_{i}(u) & \text { in } Q_{T}, \tag{1.1}\\ \frac{\partial u_{i}}{\partial n}=0 & \text { over } \Gamma_{T}, \\ u_{i}(0, x)=u_{0 i}(x) & \text { in } \Omega,\end{cases}
$$

for $i=1, \ldots, 6$.

We have noticed $u=\left(u_{1}, u_{2}, \ldots, u_{6}\right)^{T}$ with u_{1} is the density of microorganisms (MB), u_{2} is the density of DOM, u_{3} is the density of SOM, u_{4} is the density of FOM, u_{5} is the density of enzymes, and u_{6} is the density of CO_{2},

$$
\begin{gather*}
q_{1}(u)=-\frac{k u_{2}}{K_{s}+u_{2}}+\mu+r+v, \quad q_{2}(u)=\frac{k u_{1}}{K_{s}+u_{2}}, \\
q_{3}(u)=\frac{c_{1} u_{5}}{K_{m}+u_{5}}, \quad q_{4}(u)=\frac{c_{2} u_{5}}{K_{m}+u_{5}}, \quad q_{5}(u)=\zeta, \quad q_{6}(u)=0 \tag{1.2}\\
f_{1}(u)=0, \quad f_{2}(u)=\frac{u_{5}}{K_{m}+u_{5}}\left(c_{1} u_{3}+c_{2} u_{4}\right)+\frac{\zeta u_{5}+\mu u_{1}}{2}, \\
f_{3}(u)=\frac{\zeta u_{5}+\mu u_{1}}{2}, \quad f_{4}(u)=0, \quad f_{5}(u)=v u_{1}, \quad f_{6}(u)=r u_{1}
\end{gather*}
$$

with μ mortality rate, r is the breathing rate, ν is the enzymes production rate, ζ is the transformation rate of deteriorated enzymes, c_{1} is the maximal transformation rate of SOM, c_{2} is the maximal transformation rate of FOM, k maximal growth rate, K_{m} and K_{s} represent half-saturation constants, and $D_{i}, i=1$ to 6 , are strictly positive constants.

System (\mathcal{S}) is introduced in [2]. To our knowledge, it is the first time that diffusion is used to model biological dynamics and linking it to real soil structure described by a 3D computed tomography image.

Similar systems to (\mathcal{S}) operate in other situations. It comes in population dynamics as Lotka-Voltera equation which corresponds to the case $f=0, u_{i}$ denoting the densities of species present and q_{i} growth rate. This system is also involved in biochemical reactions. In this case, the u_{i} are the concentrations of various molecules, q_{i} is the rate of loss, and f_{i} represents the gains.

For models in biology, interested reader can consult with profit [4] where the author presents some models based on partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptative dynamics, and bacterial movement. He describes original mathematical methods like the generalized relative entropy method, the description of Dirac concentration effects using a new type of Hamilton-Jacobi equations, and a general point of view on chemotaxis including various scales of description leading to kinetic, parabolic, or hyperbolic equations.

Theoretical study of semilinear equations is widely investigated. Some interesting mathematical difficulties arise with these equations because of blowup in finite time, nonexistence and uniqueness of solution, singularity of the solutions, and noncontinuity of the solution regarding data.

In [5], the authors prove the blowup in finite time for the system in $1 D$,

$$
\begin{gather*}
u_{t}=u_{x x}-a(x, t) f(u) \quad 0<x<1, t \in(0, T) \\
u_{x}(0, t)=0 \quad t \in(0, T) \tag{1.3}\\
u_{x}(1, t)=b(t) g(u(1, t)) \quad t \in(0, T)
\end{gather*}
$$

A sufficient condition for the blowup of the solution of parabolic semilinear secondorder equation is obtained in [6] with nonlinear boundary conditions, and so the set in which
the explosion takes place. He also gives a sufficient condition for the solution of this equation which tends to zero, and its asymptotic behavior.

Existence and uniqueness of weak solutions for the following system are considered in [7]:

$$
\left.\begin{array}{rl}
\left(\partial_{t}+\mathcal{L}\right) u+F(t, x, u, \nabla u) & =0 \quad \forall(t, x)
\end{array}\right)\left[0, T\left[\times \mathbb{R}^{d}, ~=g(x) \quad \forall x \in \mathbb{R}^{d}, ~ \$\right.\right.
$$

with

$$
\begin{align*}
F:[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} & \longrightarrow \mathbb{R}^{m}, \quad b \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right), \quad \sigma \in C_{b}^{3}\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times d}\right), \quad a=\sigma \sigma^{t} \\
\mathcal{L} & =\sum_{i=1}^{d} b_{i} \frac{\partial}{\partial x_{i}}+\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \tag{1.5}
\end{align*}
$$

with obstacles, giving a probabilistic interpretation of solution. This problem is solved using a probabilistic method under monotony assumptions.

By using bifurcation theory, in [8], authors determine the overall behavior of the dynamic system

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\Phi \Delta u+u f(x, u) \quad x \in \Omega, t>0 \tag{1.6}\\
u(x, 0)=u_{0}(x) \geq 0 \quad x \in \Omega
\end{gather*}
$$

A Cauchy problem for parabolic semilinear equations with initial data in $H_{p}^{s}\left(\mathbb{R}^{n}\right)$ is studied in [9]. Particularly the author solves local existence using distributions data.

Michel Pierre's paper, see [10], presents few results and open problems on reactiondiffusion systems similar to the following one:

$$
\begin{array}{ll}
\forall i=1, \ldots, m \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, \ldots, u_{m}\right) & \text { in }(0, T) \times \Omega \\
\alpha_{i} \frac{\partial u_{i}}{\partial n}+\left(1-\alpha_{i}\right) u_{i}=\beta_{i} & \text { on }(0, T) \times \partial \Omega \tag{1.7}\\
u_{i}(0)=u_{i 0} & \text { in } \Omega,
\end{array}
$$

where the $f_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ are C^{1} functions of $u=\left(u_{1}, \ldots, u_{m}\right)$, and $d_{i} \in(0, \infty), \alpha_{i} \in[0,1]$, $\beta_{i} \in C^{2}([0, T] \times \bar{\Omega}), \beta_{i} \geq 0$.

The systems usually satisfy the two main properties:
(i) the positivity of the solutions is preserved for all time,
(ii) the total mass of the components is uniformly controlled in time.

He recalls classical local existence result [11-13] under the above hypothesis.
It is assumed throughout the paper that
(i) all nonlinearities are quasipositives,
(ii) they satisfy a "mass-control structure"

$$
\begin{equation*}
\forall r=\left(r_{1}, \ldots, r_{n}\right), \quad \sum_{i=1}^{m} f(r) \leq C\left(1+\sum_{i=1}^{m} r_{i}\right), \quad C>0 . \tag{1.8}
\end{equation*}
$$

It follows that the total mass is bounded on any interval. Few examples of reactions-diffusion systems for which these properties hold are studied.

Systems where the nonlinearities are bounded in $L^{1}((0, T) \times \Omega)$ are also considered, for instance, for f_{i} in $L^{1}((0, T), \Omega)$ whose growth rate is less than $|u|^{(N+2) / N}$ when N tends to $+\infty$ [14].

Other situations are investigated, namely, when the growth of the nonlinearities is not small. But many questions are still unsolved, so several open problems are indicated.

A global existence result for the following system:

$$
\begin{gather*}
\partial_{t} u-d_{1} \Delta u=f(u, v), \\
\partial_{t} v-d_{2} \Delta v=g(u, v), \\
u(0, \cdot)=u_{0}(\cdot) \geq 0, \quad v(0, \cdot)=v_{0}(\cdot) \geq 0 \tag{1.9}
\end{gather*}
$$

with either: $\frac{\partial u}{\partial n}=\beta_{1}, \frac{\partial v}{\partial n}=\beta_{2} \quad$ on $(0,+\infty) \times \partial \Omega$,

$$
\text { or: } u=\beta_{1}, v=\beta_{2} \quad \text { on }(0,+\infty) \times \partial \Omega \text {, }
$$

where $d_{1}, d_{2} \in(0,+\infty), \beta_{1}, \beta_{2} \in[0,+\infty)$, and $f, g:[0,+\infty)^{2} \rightarrow \mathbb{R}$ are C^{1}, holds for the additional following hypothesis:

$$
\begin{align*}
& \forall u \geq U, \forall v \geq 0, \quad f(u, v) \leq C[1+u+v], \quad U, C \geq 0, \\
& \exists r \geq 1, \forall u, v \geq 0, \quad|g(u, v)| \leq C\left[1+u^{r}+v^{r}\right] . \tag{1.10}
\end{align*}
$$

This approach has been extended to $m \times m$ systems for which $f_{1}, f_{1}+f_{2}, f_{1}+f_{2}+f_{3}, \ldots$ are all bounded by a linear of the u_{i} (see [15]).

However, $L^{\infty}(\Omega)$-blow up may occur in finite time for polynomial 2×2 systems as proved in [16, 17].

A very general result for systems which preserves positivity and for which the nonlinearities are bounded in L^{1} may be found in [18]. It is assumed that, for all $i=1, \ldots, m$,

$$
\begin{gather*}
\left.f_{i}:\right] 0, T\left[\times \Omega \times[0,+\infty)^{m} \longrightarrow \mathbb{R} \text { is measurable, } \quad f_{i}(\cdot, 0) \in L^{1}(] 0, T[\times \Omega)\right. \\
\exists K:] 0, T[\times \Omega \times[0,+\infty) \longrightarrow[0,+\infty) \quad \text { with } \forall M>0, \\
\text { and a.e. }(t, x) \in] 0, T[\times \Omega) \in L^{1}(] 0, T[\times \Omega) \tag{1.11}\\
\left|f_{i}(t, x, r)-f_{i}(t, x, \tilde{r})\right| \leq K(t, x, M)|r-\tilde{r}|, \quad \forall r \in[0,+\infty)^{m} \quad \text { with }|r|,|\widetilde{r}| \leq M, \\
f_{i}\left(t, x, r_{1}, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_{m}\right) \geq 0,
\end{gather*}
$$

there is a sequence which converges in $L^{1}(] 0, T[\times \Omega)$ to a supersolution of (1.7).

One consequence is that global existence of weak solutions for systems whose nonlinearities are at most quadratic with $u_{0} \in L^{2}(\Omega)^{m}$ can be obtained.

Results are also obtained in the weak sense for systems satisfying $W_{t}-\Delta Z \leq H$, where $W=\sum_{i} u_{i}, Z=\sum_{i} d_{i} u_{i}$, and $H \in L^{2}(] 0, T[\times \Omega)$.

The aim of our paper is to study the global existence in time of solution for the system (S). In our work, we use an approach based both on variational method and semigroups method to demonstrate existence and uniqueness of weak solution.

The difficulty is that u being in the denominator of some $q_{i}(u)$ and $f_{i}(u)$, it is necessary to guarantee that u is nonnegative to avoid explosion of these expressions, whereas the classical methods assume that these expressions are bounded.

For instance, to show that weak solution is positive with an initial positive datum, Stampachia's method uses majoration of $q_{i}(u)$ by a function of t.

In our work, we show existence and unicity of a global positive weak solution of System (S) for an initial positive datum.

The work is organized as follows. In the first part, we recall some preliminary results concerning variational method and semigroups techniques. In the second part, we prove, using these methods, existence, uniqueness, and positivity of weak solution under assumptions of positive initial conditions.

2. Preliminary Results

2.1. Variational Method (See [19])

We consider two Hilbert spaces H and V such that V is embedded continuously and densely in H.

Then, we have duality $H^{\prime} \hookrightarrow V^{\prime}$. Using Riesz theorem, we identify H and H^{\prime}. So we get $V \hookrightarrow H \hookrightarrow V^{\prime}$.

Definition 2.1. We define the Hilbert space

$$
\begin{equation*}
W\left(0, T, V, V^{\prime}\right)=\left\{u \in L^{2}(] 0, T[, V) \text { such that } \frac{\partial u}{\partial t} \in L^{2}(] 0, T\left[, V^{\prime}\right)\right\}, \tag{2.1}
\end{equation*}
$$

equipped with the norm

$$
\begin{equation*}
\|u\|_{W}^{2}=\|u\|_{L^{2}(] 0, T[, V)}^{2}+\left\|\frac{\partial u}{\partial t}\right\|_{L^{2}(] 0, T\left[, V^{\prime}\right)}^{2} . \tag{2.2}
\end{equation*}
$$

We assume the two following lemmas, see [19].
Lemma 2.2. There exists a continuous prolongation operator P from $W\left(0, T, V, V^{\prime}\right)$ to $W(-\infty$, $\left.+\infty, V, V^{\prime}\right)$ such that

$$
\begin{equation*}
P u_{\mid] 0, T[}=u \quad \forall u \in W\left(0, T, V, V^{\prime}\right) . \tag{2.3}
\end{equation*}
$$

Lemma 2.3. $\oplus(\mathbb{R}, V)$ is dense in $W\left(-\infty,+\infty, V, V^{\prime}\right)$.

Corollary 2.4. $C^{\infty}([0, T], V)$ is dense in $W\left(0, T, V, V^{\prime}\right)$.
Proof. If $u \in W\left(0, T, V, V^{\prime}\right)$, one takes a sequence u_{n} of $\Phi(\mathbb{R}, V)$ which converges in $W\left(-\infty,+\infty, V, V^{\prime}\right)$ toward $P u$, and then $\left(u_{n}\right)_{\mid] 0, T[}$ converges toward u and $\left(u_{n}\right)_{\mid] 0, T[} \in$ $C^{\infty}([0, T], V)$ for all $n \in \mathbb{N}$.

Proposition 2.5. Every element $u \in W\left(0, T, V, V^{\prime}\right)$ is almost everywhere equal to a function in $C^{0}([0, T], H)$.

Furthermore, the injection of $W\left(0, T, V, V^{\prime}\right)$ into $C^{0}([0, T], H)$ is continuous when $C^{0}([0, T], H)$ is equipped with the supnorm.

Proof. See [19].

Application

For all $t \in[0, T]$, a bilinear form $(u, v) \rightarrow a(t ; u, v)$ is given on $V \times V$ such that for u and v fixed, $t \rightarrow a(t ; u, v)$ is measurable and

$$
\begin{equation*}
\exists M>0, \text { such that }|a(t ; u, v)| \leq M\|u\|_{V}\|v\|_{V} \quad \forall u, v \in V \tag{2.4}
\end{equation*}
$$

For each fixed t, one defines a continuous linear application $A(t) \in \mathcal{L}\left(V, V^{\prime}\right)$ by

$$
\begin{equation*}
\langle A(t) u, v\rangle=a(t ; u, v) \tag{2.5}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\|A(t)\|_{\mathcal{L}\left(V, V^{\prime}\right)} \leq M \tag{2.6}
\end{equation*}
$$

Also we associate, for all fixed t, an unbounded operator in H whose domain is the set of $u \in V$ such that $v \rightarrow a(t ; u, v)$ is continuous on V for the induced norm by H. It is exactly the set of $u \in V$ such that $A(t) u \in H$ and then

$$
\begin{equation*}
a(t ; u, v)=(A(t) u, v)_{H} . \tag{2.7}
\end{equation*}
$$

To simplify the writting the unbounded operator is noted $A(t)$. Let $\psi \in C^{\infty}([0, T], V)$, we have, for $v \in V$,

$$
\begin{equation*}
\frac{d}{d t}(\psi(t), v)_{H}=\left(\frac{\partial \psi}{\partial t}, v\right)_{H}=\left\langle\psi^{\prime}(t), v\right\rangle \tag{2.8}
\end{equation*}
$$

where the bracket is the duality between V^{\prime} and V because $V \hookrightarrow V^{\prime}$. By density, if $u \in$ $W\left(0, T, V, V^{\prime}\right)$, one has, for all $v \in V$,

$$
\begin{equation*}
\frac{d}{d t}(u(t), v)_{H}=\left\langle u^{\prime}(t), v\right\rangle \quad \text { for a.e. } t \tag{2.9}
\end{equation*}
$$

The variational parabolic problem associated to the triple $(H, V, a(t ; \cdot, \cdot)$) is the following.

Given $f(t) \in L^{2}(] 0, T\left[; V^{\prime}\right)$ and $u_{0} \in H$, find $u \in W\left(0, T, V, V^{\prime}\right)$ such that

$$
(D)\left\{\begin{array}{l}
\frac{d}{d t}(u(t), v)_{H}+a(t ; u(t), v)=(f(t), v) \quad \forall v \in V \tag{2.10}\\
u(0)=u_{0}
\end{array}\right.
$$

This problem is equivalent to

$$
\begin{gather*}
\frac{d u(t)}{d t}+A(t) u(t)=f(t), \tag{2.11}\\
u(0)=u_{0} .
\end{gather*}
$$

Definition 2.6. The form a is coercive or V coercive if $\alpha>0$ exists such that

$$
\begin{equation*}
a(t ; u, u) \geq \alpha\|u\|_{V}^{2} \quad \forall(t, u) \in[0, T] \times V \tag{2.12}
\end{equation*}
$$

Theorem 2.7. If the form is coercive, then the problem (P) admits a unique solution.
Proof. See Dautray-Lions [19].
Definition 2.8. The form is H coercive if there exist two constants λ and $\alpha>0$ such that

$$
\begin{equation*}
a(t ; u, u)+\lambda\|u\|_{H}^{2} \geq \alpha\|u\|_{V}^{2}, \quad \forall t \in[0, T], \quad \forall u \in V \tag{2.13}
\end{equation*}
$$

If we set $u(t)=e^{\lambda t} w(t)$, then u is solution of (D) if and only if w is solution of

$$
\left(D^{\prime}\right)\left\{\begin{array}{l}
\frac{d}{d t}(w(t), v)_{H}+a(t ; w, v)+\lambda(w, v)_{H}=\left\langle e^{-\lambda t} f(t), v\right\rangle \quad \forall v \in V \tag{2.14}\\
w(0)=u_{0}
\end{array}\right.
$$

Writing

$$
\begin{equation*}
b(t ; u, v)=a(t ; u, v)+\lambda(u, v)_{H} \tag{2.15}
\end{equation*}
$$

b is a coercive form, and then $\left(D^{\prime}\right)$ admits a unique solution, and therefore (D) too. We apply Theorem 2.7 in the following case:

$$
\begin{equation*}
H=L^{2}(\Omega), \quad V=H^{1}(\Omega) \tag{2.16}
\end{equation*}
$$

and defining

$$
\begin{equation*}
a(t ; u, v)=\sum_{i, j=1}^{3} \int_{\Omega} a_{i j}(t, x) \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} d x \tag{2.17}
\end{equation*}
$$

we assume that

$$
\begin{equation*}
a_{i j}(t, x) \in L^{\infty}(] 0, T[\times \Omega) \quad \forall i, j, \tag{2.18}
\end{equation*}
$$

and there exists $\alpha>0$ such that, for all $\zeta=\left(\zeta_{i}\right)_{i=1,2,3}$, we have

$$
\begin{equation*}
\left.\sum_{i, j=1}^{3} a_{i j}(t, x) \zeta_{i} \zeta_{j} \geq \alpha\|\zeta\|_{\mathbb{R}^{3}}^{2} \text { a.e. in }\right] 0, T[\times \Omega \tag{2.19}
\end{equation*}
$$

Then, we deduce that

$$
\begin{equation*}
a(t ; u, u) \geq \alpha \sum_{i=1}^{3}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{2}(\Omega)}^{2} \tag{2.20}
\end{equation*}
$$

The form is then H coercive, and it suffices to take $\lambda=\alpha$. In addition, let us take $a_{0} \in L^{\infty}(] 0, T[\times \Omega)$ with $a_{0}(t, x) \geq 0$ for all t, x. The form

$$
\begin{equation*}
b(t ; u, v)=a(t ; u, v)+\left(a_{0}(t) u, v\right)_{H} \tag{2.21}
\end{equation*}
$$

is still H coercive. We have the following theorem.
Theorem 2.9. Under the previous hypothesis, problem (D) associated to the triple (H, V, b) admits a unique solution for all $u_{0} \in H$ and $f \in L^{2}(] 0, T\left[; V^{\prime}\right)$.

Moreover, if $u_{0} \geq 0$ and

$$
\begin{equation*}
\langle f(t), v\rangle \geq 0 \quad \forall v \in V \text { such that } v \geq 0, t \in] 0, T[\text { a.e., } \tag{2.22}
\end{equation*}
$$

one has $u(t) \geq 0$ for all $t \in[0, T]$.
Proof. It remains to show that the solution is nonnegative.
Given $u \in L^{2}(\Omega)$, we set $u^{+}=\max (0, u(x))$ and $u^{-}=\max (0,-u(x))$. If $u \in H^{1}(\Omega)$, then we have u^{+}and $u^{-} \in H^{1}(\Omega)$.

By replacing v by $u^{-}(t)$ in (D), we obtain

$$
\begin{equation*}
\left\langle\frac{d u}{d t}, u^{-}(t)\right\rangle+a\left(t ; u(t), u^{-}(t)\right)+\left(a_{0}(t) u, u^{-}\right)_{H}=\left\langle f(t), u^{-}\right\rangle \tag{2.23}
\end{equation*}
$$

One gets

$$
\begin{equation*}
u=u^{+}-u^{-}, \quad u^{+} u^{-}=0, \quad \frac{d u^{+}}{d t} u^{-}=0 \tag{2.24}
\end{equation*}
$$

and by linearity, we obtain

$$
\begin{equation*}
-\left\langle\frac{d u^{-}}{d t}, u^{-}\right\rangle-a\left(t ; u^{-}(t), u^{-}(t)\right)-\left(a_{0}(t) u^{-}, u^{-}\right)_{H}=\left\langle f(t), u^{-}\right\rangle \tag{2.25}
\end{equation*}
$$

but

$$
\begin{equation*}
\left\langle\frac{d u^{-}}{d t}, u^{-}\right\rangle=\frac{1}{2} \frac{d}{d t}\left(u^{-}(t), u^{-}(t)\right)_{H^{-}} \tag{2.26}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left(a(t) u^{-}, u^{-}\right) \geq 0, \quad\left(a_{0}(t) u^{-}, u^{-}\right)_{H} \geq 0, \quad\left\langle f(t), u^{-}(t)\right\rangle \geq 0, \tag{2.27}
\end{equation*}
$$

it comes that

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{-}(t)\right\|_{H}^{2} \leq 0 \tag{2.28}
\end{equation*}
$$

By integration over $] 0, t[$, we deduce

$$
\begin{equation*}
\left\|u^{-}(t)\right\|_{H}^{2} \leq\left\|u^{-}(0)\right\|_{H^{\prime}}^{2} \quad \forall t . \tag{2.29}
\end{equation*}
$$

But $u_{0} \geq 0$, then $u_{0}^{-}=0$, so $u^{-}(0)=0$.
Hence, we conclude that $u^{-}(t)=0$ for all t.
Instead of $a_{0}(t, x) \geq 0$, assume that

$$
\begin{equation*}
\exists C>0 \quad \text { such that } a_{0}(t, x) \geq-C \quad \forall t, x . \tag{2.30}
\end{equation*}
$$

As previously mentioned, if we set $u(t)=e^{\lambda t} w(t), w(t)$ is solution of

$$
\begin{equation*}
\frac{d}{d t}(w(t), v)_{H}+a(t ; w(t), v)+\left(\left(a_{0}(t)+\lambda\right) w, v\right)_{H}=\left\langle e^{-\lambda t} f(t), v\right\rangle \tag{2.31}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{0}(t, x)+\lambda \geq \lambda-C . \tag{2.32}
\end{equation*}
$$

It suffices to take $\lambda \geq C$ to reduce to the previous case, and $w(t) \geq 0$ implies $u(t) \geq 0$. Then, we get.

Corollary 2.10. Consider the triple (H, V, a) satisfying assumptions of Theorem 2.9. If $a_{0} \in L^{\infty}(] 0, T[\times \Omega)$ and

$$
\begin{equation*}
\left.\exists C>0 \quad \text { such that } a_{0}(t, x) \geq-C \text { for a.e. }(t, x) \in\right] 0, T[\times \Omega, \tag{2.33}
\end{equation*}
$$

then the variational problem

$$
\begin{gather*}
\frac{d}{d t}(u(t), v)+a(t ; u, v)+\left(a_{0}(t) u, v\right)_{H}=\langle f(t), v\rangle \quad \forall v \in V \tag{2.34}\\
u(0)=u_{0}
\end{gather*}
$$

admits a unique solution in $W\left(0, T, V, V^{\prime}\right)$ for all $u_{0} \in H$ and $f \in L^{2}(] 0, T\left[, V^{\prime}\right)$.
Moreover, if $u_{0} \geq 0$ and

$$
\begin{equation*}
\langle f(t), v\rangle \geq 0 \quad \forall v \in V, t \in] 0, T[\text { a.e. } \tag{2.35}
\end{equation*}
$$

then one has $u(t) \geq 0$ for all $t \in[0, T]$.

Equivalence of the Variational Solution with the Initial Problem
We have

$$
\begin{equation*}
\partial Q_{T}=(\{0\} \times \Omega) \cup(\{T\} \times \Omega) \cup(] 0, T[\times \partial \Omega) . \tag{2.36}
\end{equation*}
$$

For the sake of simplicity, we set $a_{i j}=\delta_{i j}$ which is the Kronecker symbol. Then, $A=-\Delta$ over $\Theta(\Omega)$, and we have

$$
\begin{equation*}
\left.\frac{\partial u}{\partial t}-\Delta u+a_{0} u=f \quad \text { in }\right] 0, T[\times \Omega \tag{2.37}
\end{equation*}
$$

We assume that $f \in L^{2}(] 0, T[, H)$, then

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\Delta u \in L^{2}(] 0, T[, H) \tag{2.38}
\end{equation*}
$$

if $u \in L^{2}(] 0, T[, V)$. We set

$$
\begin{equation*}
v=(u,-\operatorname{grad}(u))^{T}=\left(u,-\frac{\partial u}{\partial x_{1}},-\frac{\partial u}{\partial x_{2}},-\frac{\partial u}{\partial x_{3}}\right)^{T} . \tag{2.39}
\end{equation*}
$$

Consequently, we have $v \in\left(L^{2}(] 0, T[\times \Omega)\right)^{4}$ and

$$
\begin{equation*}
\operatorname{div}(v)=\frac{\partial u}{\partial t}-\Delta u \in L^{2}(] 0, T[\times \Omega) \tag{2.40}
\end{equation*}
$$

Then $u(0, x), u(T, x)$, and $\partial u / \partial n_{\mid] 0, T[\times \partial \Omega}$ are well defined.
It remains to show that $\partial u / \partial n_{[] 0, T[\times \partial \Omega}=0$.
Let $\phi \in \mathscr{\Phi}(] 0, T[)$, and we multiply $(2.34)_{1}$ by ϕ, and by integration over $] 0, T$ [, one gets

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega} \phi v \frac{\partial u}{\partial t} d t d x+\sum_{i=1}^{3} \int_{0}^{T} \int_{\Omega} \phi \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d t d x+\int_{0}^{T} \int_{\Omega} \phi a_{0} u v d t d x \tag{2.41}\\
& \quad=\int_{0}^{T} \int_{\Omega} f v \phi d t d x \quad \forall v \in H^{1}(\Omega)
\end{align*}
$$

Using Green formula with $(u,-\operatorname{grad}(u))^{T}$, we have

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \phi v\left(\frac{\partial u}{\partial t}-\Delta u+a_{0} u\right) d x d t=\int_{0}^{T} \int_{\Omega} f \phi v d x d t-\int_{0}^{T} \int_{\partial \Omega} \phi v \frac{\partial u}{\partial n} d s d t \tag{2.42}
\end{equation*}
$$

As

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\Delta u+a_{0} u=f \tag{2.43}
\end{equation*}
$$

we can conclude the following statement:

$$
\begin{equation*}
\int_{0}^{T} \int_{\partial \Omega} \phi v \frac{\partial u}{\partial n} d t d s=0 \quad \forall(\phi, v) \in \Phi(] 0, T[) \times H^{1}(\Omega) \tag{2.44}
\end{equation*}
$$

We deduce that

$$
\begin{equation*}
\left\langle v, \frac{\partial u}{\partial n}\right\rangle_{H^{1 / 2} H^{-1 / 2}}=0 \quad \forall v \in H^{1}(\Omega) \text { and } t \text { a.e. } \tag{2.45}
\end{equation*}
$$

Function $v \rightarrow v_{\mid \partial \Omega}$ from $H^{1}(\Omega)$ into $H^{1 / 2}(\partial \Omega)$ being surjective, we deduce that

$$
\begin{equation*}
\frac{\partial u}{\partial n}=0 \text { in } H^{-1 / 2}(\Gamma) \text { for } t \text { a.e. } \tag{2.46}
\end{equation*}
$$

2.2. Semigroup Method

Consider the variational triple (H, V, a) where a is independent of t. We associate operators $A \in \mathcal{L}\left(V, V^{\prime}\right)$ and A_{H} in H with

$$
\begin{equation*}
D\left(A_{H}\right)=\{u \in V \text { such that } A u \in H\} . \tag{2.47}
\end{equation*}
$$

Assume that a is H coercive, then A_{H} is the infinitesimal generator of semigroup $t \mapsto$ $G(t)$ of class \mathcal{C}^{0} over H, and $G(t)$ operates over V and V^{\prime}. If we note $\widetilde{\mathcal{G}(t)}$ the extension of $G(t)$ by 0 for $t<0$, then the Laplace transform of $\widetilde{\mathcal{G}(t)}$ is the resolvent of A_{H}.

Proposition 2.11. For $u_{0} \in H$ and $f \in L^{2}(] 0, T\left[, V^{\prime}\right)$, problem (D) which consists in finding $u \in$ $W\left(0, T, V, V^{\prime}\right)$ such that

$$
\begin{equation*}
\frac{d u}{d t}+A u=f \quad \text { with } u(0)=u_{0} \tag{2.48}
\end{equation*}
$$

admits a unique solution given by

$$
\begin{equation*}
u(t)=G(t) u_{0}+\int_{0}^{t} G(t-s) f(s) d s \tag{2.49}
\end{equation*}
$$

Proof. Note \tilde{u} and \tilde{f} the extensions by 0 of u and f outside $] 0, T[$, then we have

$$
\begin{equation*}
\frac{d \tilde{u}}{d t}=\frac{d u}{d t}+u(0) \delta(t)-u(T) \delta(T-t) \tag{2.50}
\end{equation*}
$$

with $\delta(t)$ the Dirac measure on \mathbb{R}.
Thus,

$$
\begin{align*}
\frac{d \tilde{u}}{d t}+A \tilde{u} & =\frac{d u}{d t}+\tilde{A} u+u(0) \delta(t)-u(T) \delta(T-t) \tag{2.51}\\
& =\tilde{f}+u(0) \delta(t)-u(T) \delta(T-t)
\end{align*}
$$

Hence, an equation of the form

$$
\begin{equation*}
\frac{d U}{d t}+A U=F \quad \text { in } \Phi_{+}^{\prime}\left(V^{\prime}\right) \tag{2.52}
\end{equation*}
$$

where $\mathscr{\Phi}_{+}^{\prime}\left(V^{\prime}\right)$ is the space of distributions over \mathbb{R} into V^{\prime} whose support is in $[0,+\infty[$. By Laplace transform, one is reduced to

$$
\begin{equation*}
(A+P I) \bumpeq(U)=\Omega(F) \tag{2.53}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{L}(U)=(A+P I)^{-1} \mathcal{L}(F) \tag{2.54}
\end{equation*}
$$

and therefore, we have $U=\tilde{G} * F$.
But since

$$
\begin{equation*}
\operatorname{supp}(\delta(T-t))=T, \quad \operatorname{supp}(\tilde{G} *(U(T) \delta(T-t))) \subset[T,+\infty[\tag{2.55}
\end{equation*}
$$

we have

$$
\begin{equation*}
u_{\mid 00, T[}=u=(\tilde{G} * F)_{\mid 00, T[} . \tag{2.56}
\end{equation*}
$$

Hence, we get the result.

3. System (\mathcal{S}) Resolution

In this part, we go back to system (\mathcal{S}) with assumptions and will analyze this problem by using the framework described in the previous section.

We define $H=L^{2}(\Omega)$ and $V=H^{1}(\Omega)$ and the following hypothesis for initial conditions:

$$
\begin{equation*}
u_{01} \in L^{\infty}(\Omega), \quad u_{0 i} \in H \quad \text { for } i \in\{2, \ldots, 6\}, \quad u_{0 i} \geq 0 \quad \text { for } i \in\{1, \ldots, 6\} . \tag{3.1}
\end{equation*}
$$

We will make a resolution component by applying Theorem 2.7 with, for each i, the form

$$
\begin{equation*}
\mathrm{a}(t ; u, v)=\sum_{j=1}^{3} D_{i} \int_{\Omega} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} d x . \tag{3.2}
\end{equation*}
$$

One approaches the solution by a sequence of solutions of linear equations.

3.1. Recursive Sequence of Solutions

For $n=0$, we note that u_{i}^{0} is the solution of

$$
\begin{array}{ll}
\frac{\partial u_{i}^{0}}{\partial t}-D_{i} \Delta u_{i}^{0}=0 & \text { in } Q_{T}, \\
u_{i}^{0}(0)=u_{0 i} & \text { in } \Omega, \tag{3.3}\\
\frac{\partial u_{i}^{0}}{\partial n}{ }_{\mid \partial \Omega}=0 . &
\end{array}
$$

This equation admits strong solution and $u_{i}^{0} \geq 0$.
By induction, we note that u_{i}^{n} is solution of equation

$$
\begin{array}{cc}
\frac{\partial u_{i}^{n}}{\partial t}-D_{i} \Delta u_{i}^{n}+q_{i}\left(u^{n-1}\right) u_{i}^{n}=f_{i}\left(u^{n-1}\right) & \text { in } Q_{T}, \\
u_{i}^{n}(0)=u_{0 i} & \text { in } \Omega, \tag{3.4}\\
\frac{\partial u_{i}^{n}}{\partial n}=0 . &
\end{array}
$$

It is a linear equation within the framework of Corollary 2.10 with $a_{0}=q_{i}\left(u^{n-1}\right)$ and $f(t)=f_{i}\left(u^{n-1}(t)\right)$. Let us suppose that there exists a unique nonnegative solution u^{n-1}. Assuming by induction that $u_{i}^{j} \geq 0$ for $0 \leq j \leq n-1$, we have

$$
\begin{equation*}
0 \leq \frac{k u_{2}^{n-1}}{K_{s}+u_{2}^{n-1}} \leq k \tag{3.5}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\mu+r+v-k \leq q_{1}\left(u^{n-1}\right) \leq \mu+r+v \tag{3.6}
\end{equation*}
$$

u^{n-1} is nonnegative also that implies that there are two positive constants C_{1}, C_{2} such that

$$
\begin{equation*}
0 \leq q_{3}\left(u^{n-1}\right) \leq C_{1}, \quad 0 \leq q_{4}\left(u^{n-1}\right) \leq C_{2} \tag{3.7}
\end{equation*}
$$

For the rest, we notice that q_{5} and q_{6} are constant.
We have shown that $q_{i}\left(u^{n-1}\right) \in L^{\infty}(] 0, T[\times \Omega)$ for $i \neq 2$. It remains to prove that the same property is satisfied by $q_{2}\left(u^{n-1}\right)$.

To prove that $q_{2}\left(u^{n-1}\right)$ is bounded, we need to show that $u_{1}^{n} \in L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)$.

Case of u_{1}^{0}

Let $k \in \mathbb{N}^{*}$, we multiply $(3.3)_{1}$ by $\left(u_{1}^{0}\right)^{2 k-1}$ and integrate it over Ω, and it comes that

$$
\begin{equation*}
\frac{1}{2 k} \frac{d}{d t} \int_{\Omega}\left(u_{1}^{0}\right)^{2 k} d x+(2 k-1) D_{1} \int_{\Omega}\left(u_{1}^{0}\right)^{2(k-1)}\left|\nabla u_{1}^{0}\right|^{2} d x=0 \tag{3.8}
\end{equation*}
$$

The second term is nonnegative, then we have

$$
\begin{equation*}
\frac{1}{2 k} \frac{d}{d t} \int_{\Omega}\left(u_{1}^{0}\right)^{2 k} d x \leq 0 \tag{3.9}
\end{equation*}
$$

By integrating over $] 0, t[$, we obtain

$$
\begin{equation*}
\left\|u_{1}^{0}(t)\right\|_{L^{2 k}(\Omega)} \leq\left\|u_{01}\right\|_{L^{2 k}(\Omega)} \tag{3.10}
\end{equation*}
$$

When k tends to $+\infty$, it comes that,

$$
\begin{equation*}
\left\|u_{1}^{0}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{01}\right\|_{L^{\infty}(\Omega)} \tag{3.11}
\end{equation*}
$$

which implies that $u_{1}^{0} \in L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)$.

Case of u_{1}^{n} with $n \in \mathbb{N}^{*}$
By induction, we suppose that $u_{1}^{0}, u_{1}^{1}, \ldots, u_{1}^{n-1}$ are in $L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)$.
Remark 3.1. We make the following change: $w_{i}^{n}=e^{-\lambda t} u_{i}^{n}, i=1, \ldots, 6$. We obtain

$$
\begin{equation*}
\frac{\partial w_{1}^{n}}{\partial t}-D_{1} \Delta w_{1}^{n}+\left(\lambda+q_{1}\left(\left(e^{\lambda t} w_{i}^{n-1}\right)_{i}\right)\right) w_{1}^{n}=0 \tag{3.12}
\end{equation*}
$$

The function q_{1} being undervalued, we can choose $\lambda \geq 0$ such that

$$
\begin{equation*}
\lambda+q_{1}\left(\left(e^{\lambda t} w_{i}^{n-1}\right)_{i}\right) \geq 0 \tag{3.13}
\end{equation*}
$$

We multiply (3.12) by $\left(w_{1}^{n}\right)^{2 k-1}$ and integrate it over Ω. We obtain

$$
\begin{gather*}
\frac{1}{2 k} \frac{d}{d t} \int_{\Omega}\left(w_{1}^{n}\right)^{2 k} d x+(2 k-1) D_{1} \int_{\Omega}\left(w_{1}^{n}\right)^{2(k-1)}\left|\nabla w_{1}^{n}\right|^{2} d x \tag{3.14}\\
+\int_{\Omega}\left(\lambda+q_{1}\left(\left(e^{\lambda t} w_{i}^{n-1}\right)_{i}\right)\right)\left(w_{1}^{n}\right)^{2 k} d x=0
\end{gather*}
$$

The second and third term being nonnegative, we can conclude as in the previous case that

$$
\begin{equation*}
\left\|w_{1}^{n}(t)\right\|_{L^{2 k}(\Omega)} \leq\left\|u_{01}\right\|_{L^{2 k}(\Omega)} \tag{3.15}
\end{equation*}
$$

Since k tends to ∞, it follows that

$$
\begin{equation*}
\left\|w_{1}^{n}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{01}\right\|_{L^{\infty}(\Omega)} \tag{3.16}
\end{equation*}
$$

As a result, we have proved that $w_{1}^{n} \in L^{\infty}\left(0, \infty ; L^{\infty}(\Omega)\right)$, and since $u_{1}^{n}=e^{\lambda t} w_{1}^{n}$, we have $u_{1}^{n} \in L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)$.

Conclusion 1. With the previous demonstration, we obtain by induction that if $u_{01} \in L^{\infty}(\Omega)$ with $u_{01} \geq 0$, then $q_{i}\left(u^{n}\right) \in L^{\infty}(] 0, T[\times \Omega)$ for all n and $i=1, \ldots, 6$.

We also have $f_{i}\left(u^{n-1}\right) \geq 0$ and $f_{i}\left(u^{n-1}\right) \in L^{2}(] 0, T\left[; V^{\prime}\right)$. Then by means of Corollary 2.10, there exists a unique solution $u_{i}^{n} \in W\left(0, T, V, V^{\prime}\right)$ with $u_{i}^{n} \geq 0$.

3.2. Boundedness of the Solution

Let us show that the sequence is bounded. u_{i}^{n} satisfies (2.34), so

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(u_{i}^{n}, v\right)_{H}+D_{i} a\left(u_{i}^{n}, v\right)+\left(q_{i}\left(u^{n-1}\right) u_{i}^{n}, v\right)_{H}=\left\langle f_{i}\left(u^{n-1}\right), v\right\rangle \quad \forall v \in V \tag{3.17}
\end{equation*}
$$

We remark that

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(u_{i}^{n}, v\right)_{H}=\left\langle\frac{\partial u_{i}^{n}}{\partial t}, v\right\rangle \tag{3.18}
\end{equation*}
$$

For $\psi \in C^{\infty}([0, T], V)$,

$$
\begin{equation*}
\left\langle\frac{\partial \psi(t)}{\partial t}, \psi(t)\right\rangle=\frac{1}{2} \frac{d}{d t}(\psi(t), \psi(t))_{H} \tag{3.19}
\end{equation*}
$$

By density and choosing $v=u_{i}^{n}(t)$, we have

$$
\begin{equation*}
\left\langle\frac{\partial u_{i}^{n}(t)}{\partial t}, u_{i}^{n}(t)\right\rangle=\frac{1}{2} \frac{d}{d t}\left(u_{i}^{n}(t), u_{i}^{n}(t)\right)_{H} \tag{3.20}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|u_{i}^{n}\right\|_{H}^{2}+D_{i} a\left(u_{i}^{n}, u_{i}^{n}\right)+\left(q_{i}\left(u^{n-1}\right) u_{i}^{n}, u_{i}^{n}\right)_{H}=\left\langle f_{i}\left(u^{n-1}\right), u_{i}^{n}\right\rangle \tag{3.21}
\end{equation*}
$$

We have seen that we can obtain problem (D^{\prime}) replacing $u(t)$ by $w(t)=e^{-\lambda t} u(t)$, and since $0 \leq t \leq T$, if w is bounded, u is also bounded.

We take then $\lambda=\beta+\delta$, and one is reduced to

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|u_{i}^{n}\right\|_{H}^{2}+D_{i} a\left(u_{i}^{n}, u_{i}^{n}\right)+\beta\left\|u_{i}^{n}\right\|_{H}^{2}+\left(\left(\delta+q_{i}\left(u^{n-1}\right)\right) u_{i}^{n}, u_{i}^{n}\right)_{H}=\left\langle f_{i}\left(u^{n-1}\right), u_{i}^{n}\right\rangle \tag{3.22}
\end{equation*}
$$

The form $D_{i} a$ is H coercive, so we take β such that

$$
\begin{equation*}
D_{i} a(u, u)+\beta\|u\|_{H}^{2} \geq \alpha\|u\|_{V}^{2} \quad \forall u \in V \tag{3.23}
\end{equation*}
$$

The q_{i} are bounded, so

$$
\begin{equation*}
\exists \delta>0 \quad \text { such that } \delta+q_{i}(u) \geq l \quad \forall i, u \geq 0 \tag{3.24}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left\|u_{i}^{n}\right\|_{H}^{2}+\alpha\left\|u_{i}^{n}\right\|_{V}^{2}+l\left\|u_{i}^{n}\right\|_{H}^{2} & \leq\left\|f_{i}\left(u^{n-1}\right)\right\|_{V^{\prime}}\left\|u_{i}^{n}\right\|_{V} \tag{3.25}\\
& \leq \frac{\epsilon}{2}\left\|u_{i}^{n}\right\|_{V}^{2}+\frac{1}{2 \epsilon}\left\|f_{i}\left(u^{n-1}\right)\right\|_{V^{\prime}}^{2} \quad \epsilon>0
\end{align*}
$$

We take ϵ small enough such that $\alpha-\epsilon / 2=\gamma>0$. Hence,

$$
\begin{equation*}
\frac{1}{2}\left\|u_{i}^{n}\right\|_{H}^{2}+\gamma\left\|u_{i}^{n}\right\|_{V}^{2}+l\left\|u_{i}^{n}\right\|_{H}^{2} \leq \frac{1}{2 \epsilon}\left\|f_{i}\left(u^{n-1}\right)\right\|_{V^{\prime}}^{2} \tag{3.26}
\end{equation*}
$$

For $i=1$ and $i=4, f_{i}=0$. Therefore, by integration,

$$
\begin{equation*}
\frac{1}{2}\left\|u_{i}^{n}(t)\right\|_{H}^{2}+\gamma \int_{0}^{t}\left\|u_{i}^{n}(s)\right\|_{V}^{2} d s+l \int_{0}^{t}\left\|u_{i}^{n}(s)\right\|_{H}^{2} \leq \frac{1}{2}\left\|u_{i}^{n}(0)\right\|_{H}^{2} \tag{3.27}
\end{equation*}
$$

We deduce that $\left(u_{1}^{n}\right)$ and $\left(u_{4}^{n}\right)$ remain bounded in $C^{0}([0, T], H)$ and $L^{2}(] 0, T[, V)$.
$f_{5}(u)=v u_{1}$, thus, $f_{5}\left(u^{n-1}\right)=v u_{1}^{n-1}$ remains bounded in $L^{2}(] 0, T[, V)$; therefore, u_{5}^{n} has the same property as u_{1}^{n}, u_{4}^{n}. It is the same for u_{6}^{n} because $f_{6}(u)=r u_{1}$.

We have $f_{3}(u)=\left(\zeta u_{5}+\mu u_{1}\right) / 2$; therefore, we have the same conclusion for u_{3}^{n} and finally for u_{2}^{n} because $f_{2}(u)$ depends on u_{1}, u_{2}, u_{4}, and u_{5}.

3.3. Convergence of the Sequence

We deduce at this stage that the sequence $\left(u_{i}^{n}\right)_{n \geq 0}$ (one can extract subsequence $\left.\left(u_{i}^{m}\right)_{m \geq 0}\right)$ converges weakly in $L^{2}(] 0, T[, V)$ to u_{i} and weakly star in $L^{\infty}(] 0, T[, H)$ to u_{i}.

But it is not enough to pass to the limit in the equation, we need the pouctual convergence for almost all t to deduce that $u_{i} \geq 0$ for all i and to pass to the limit in $q_{i}\left(u^{n-1}\right)$ and $f_{i}\left(u^{n-1}\right)$. To pass to the limit, we need strong compactness. Using Proposition 2.11, for all n, we have

$$
\begin{equation*}
u_{i}^{n}(t)=\int_{0}^{t} G_{i}(t-s) g_{i}^{\mathrm{n}}(s) d s+G_{i}(t) u_{0 i} \tag{3.28}
\end{equation*}
$$

where $G_{i}(t)$ is the semigroup generated by the unbounded operator $-D_{i} A_{H}$. Let us denote

$$
\begin{equation*}
g_{i}^{n}(s)=-q_{i}\left(u^{n-1}(s)\right) u_{i}^{n}(s)+f_{i}\left(u^{n-1}(s)\right), \tag{3.29}
\end{equation*}
$$

and we deduce $g_{i}^{n} \in L^{2}(] 0, T[, V)$.
Moreover, the sequence $\left(u_{i}^{n}\right)_{n \geq 0}$ is bounded in $C^{0}([0, T], H)$ which implies that the sequence $\left(g_{i}^{n}\right)_{n \geq 0}$ is bounded in $C^{0}([0, T], H)$ for all i.

Then, we can conclude showing that operator \mathcal{G}_{i} from $C^{0}([0, T], H)$ into $C^{0}([0, T], H)$ defined by

$$
\begin{equation*}
\mathcal{G}_{i}(f)(t)=\int_{0}^{t} G_{i}(t-s) f(s) d s \tag{3.30}
\end{equation*}
$$

is compact.
One takes the triple $\left(L^{2}(\Omega), H^{1}(\Omega), a\right)$ with

$$
\begin{equation*}
a(u, v)=\sum_{j=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} d x, \tag{3.31}
\end{equation*}
$$

where Ω is regular and bounded. The unbounded variational operator A_{H} associated to a is a positive symmetric operator with compact resolvent. It admits a sequence $\left(\lambda_{k}\right)_{k}$ of positive
eigenvalues with $\lim _{k \rightarrow+\infty} \lambda_{k}=+\infty$ and a Hilbert basis $\left(e_{k}\right)_{k}$ of H consisting of eigenvectors of A_{H}. If $(G(t))_{t>0}$ is the semigroup generated by $-A_{H}$, then for all $u_{0} \in H$,

$$
\begin{equation*}
G(t) u_{0}=\sum_{k=0}^{+\infty} e^{-t \lambda_{k}}\left(u_{0}, e_{k}\right) e_{k} \tag{3.32}
\end{equation*}
$$

which proves that the operator is compact for all $t>0$ because

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} e^{-t \lambda_{k}}=0 \tag{3.33}
\end{equation*}
$$

We have the same formula for $G_{i}(t)$, and it suffices to replace λ_{k} by $D_{i} \lambda_{k}$.
If we set

$$
\begin{equation*}
G_{N}(t) u=\sum_{k=0}^{N} e^{-t \lambda_{k}}\left(u, e_{k}\right) e_{k} \tag{3.34}
\end{equation*}
$$

then $G_{N}(t)$ is an operator with finite rank which converges to $G(t)$.
Theorem 3.2. Let $t \rightarrow G(t)$ be an application from $[0, \infty[$ into $\mathcal{L}(H)$. One assumes that there exists a sequence of operators $\left(G_{N}(t)\right)_{N \geq 0}$ of H with the following properties:
(1) for all N and all $t>0, G_{N}(t)$ is finite rank independent of t,
(2) $t \rightarrow G_{N}(t)$ is continuous from $[0, \infty[$ into $\mathcal{L}(H)$ for all N,
(3) for $N \rightarrow \infty, G_{N}(t)$ converges to $G(t)$ in $L^{1}(] 0, T[, \mathcal{L}(H))$ for all $T>0$,
then the operator \mathcal{G} is compact from $\mathcal{C}^{0}([0, T], H)$ into $\mathcal{C}^{0}([0, T], H)$ for all $T>0$.
Proof. Regarding property (3) of Theorem $3.2, \mathcal{G}$ is well defined on $\mathcal{C}^{0}([0, T], H)$, and we have

$$
\begin{equation*}
\left\|\int_{0}^{t} G(s) f(t-s) d s-\int_{0}^{t} G_{N}(s) f(t-s) d s\right\| \leq\left(\int_{0}^{T}\left\|G(s)-G_{N}(s)\right\| d s\right)\|f\|_{\infty} \tag{3.35}
\end{equation*}
$$

This proves that \mathcal{G}_{N} converges to \mathcal{G} in $\mathcal{L}([0, T], H)$ using property (3) of Theorem 3.2.
To show that \mathcal{G} is compact, it suffices to show that for all N, \mathcal{G}_{N} is compact.
Let \mathcal{B} be a bounded set of $\mathcal{C}^{0}([0, T], H), \mathcal{G}_{N}(\mathbb{B})$ is bounded in $\mathcal{C}^{0}([0, T], H)$, using Ascoli result, it will be relatively compact if $\mathcal{G}_{N}(\mathcal{B})$ is equicontinuous and if for all t_{0} in $[0, T]$, $\mathcal{G}_{N}(\mathbb{B})\left(t_{0}\right)$ is relatively compact in H.

But $\mathcal{G}_{N}(\mathbb{B})\left(t_{0}\right)$ being bounded and embedded in a subspace of finite dimension of H is relatively compact in H. Then, let us show the equicontinuity on t_{0}.

Let M and C_{N} such that

$$
\begin{equation*}
\|f\|_{\infty} \leq M, \quad \forall f \in \mathbb{B}, \quad\left\|\mathcal{G}_{N}(t)\right\| \leq C_{N} \quad \forall t \in[0, T] \tag{3.36}
\end{equation*}
$$

For $0 \leq t_{0} \leq t \leq T$, one has

$$
\begin{equation*}
\mathcal{G}_{N}(f)(t)-\mathcal{G}_{N}(f)\left(t_{0}\right)=\int_{0}^{t_{0}}\left(G_{N}(t-s)-G_{N}\left(t_{0}-s\right)\right) f(s) d s+\int_{t_{0}}^{t} G_{N}(t-s) f(s) d s \tag{3.37}
\end{equation*}
$$

We have

$$
\begin{align*}
\left\|\int_{t_{0}}^{t} G_{N}(t-s) f(s) d s\right\| & \leq M C_{N}\left|t-t_{0}\right| \\
\left\|\int_{0}^{t_{0}}\left(G_{N}(t-s)-G_{N}\left(t_{0}-s\right)\right) f(s) d s\right\| & \leq M \int_{0}^{t_{0}}\left\|G_{N}(t-s)-G_{N}\left(t_{0}-s\right)\right\| d s \tag{3.38}
\end{align*}
$$

which tend to 0 when $t \rightarrow t_{0}$ using property (2) of Theorem 3.2 and the continuity under the integral.

We apply Theorem 3.2 to the semigroup generated by the Laplacien, and we obtain
(1) $G_{N}(t)$ is of rank $N+1$ for all $t \geq 0$,
(2) $\left\|G_{N}(t)-G_{N}\left(t_{0}\right)\right\|^{2} \leq \sum_{k=0}^{N}\left|e^{-t \lambda_{k}}-e^{-t_{0} \lambda_{k}}\right|^{2}$ which tends to 0 if $t \rightarrow t_{0}$,
(3) $\left\|G(t) u-G_{N}(t) u\right\|^{2} \leq \sum_{k=N+1}^{\infty} e^{-2 t \lambda_{k}}\left|u_{k}\right|^{2} \leq e^{-2 t \lambda_{N+1}}\|u\|^{2}$ if we take an increasing sequence $\left(\lambda_{k}\right)$, then one gets

$$
\begin{equation*}
\left\|G(t)-G_{N}(t)\right\| \leq e^{-t \lambda_{N+1}} \tag{3.39}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\int_{0}^{T}\left\|G(t)-G_{N}(t)\right\| d t \leq \frac{1}{\lambda_{N+1}} \tag{3.40}
\end{equation*}
$$

which tends to 0 if $N \rightarrow \infty$.
Thus, \mathcal{G}_{i} is compact for all i. We have

$$
\begin{equation*}
u_{i}^{n}(t)=G_{i}(t) u_{i}^{0}+\mathcal{G}_{i}\left(g_{i}^{n}\right)(t) \tag{3.41}
\end{equation*}
$$

where $\left(g_{i}^{n}\right)_{n \geq 0}$ is bounded in $C^{0}([0, T], H)$, then $\left(u_{i}^{n}\right)_{n \geq 0}$ belongs to a relatively compact set of $C^{0}([0, T], H)$.

Therefore, from the sequence $\left(u_{i}^{n}\right)_{n \geq 0}$, we can extract a subsequence $\left(u_{i}^{m}\right)_{m \geq 0}$ which converges uniformly to $u_{i} \in \mathcal{C}^{0}([0, T], H)$ for each i.

Moreover, we can assume that u_{i}^{m} converges weakly to u_{i} in $L^{2}(] 0, T[, V)$.
But $A_{i} \in \mathcal{L}\left(V, V^{\prime}\right)$ and $\left(u_{i}^{n}\right)$ bounded in $L^{2}(] 0, T[, V)$ imply

$$
\begin{equation*}
\int_{0}^{T}\left\|A_{i} u_{i}^{n}\right\|_{V^{\prime}}^{2} d t \leq\left\|A_{i}\right\|^{2} \int_{0}^{T}\left\|u_{i}^{n}\right\|_{V}^{2} d t \tag{3.42}
\end{equation*}
$$

Thus, the sequence $\left(A_{i} u_{i}^{n}\right)_{n \geq 0}$ is bounded in $L^{2}(] 0, T\left[, V^{\prime}\right)$. We can assume that $A_{i} u_{i}^{m}$ converges weakly to $A_{i} u_{i}$ in $L^{2}(] 0, T\left[, V^{\prime}\right)$.

Remark that for all $T<\infty$, we have

$$
\begin{equation*}
\mathcal{C}^{0}([0, T], H) \hookrightarrow L^{2}(] 0, T\left[, V^{\prime}\right) \tag{3.43}
\end{equation*}
$$

Conclusion 2. One has

$$
\begin{equation*}
u_{i}^{m} \longrightarrow u_{i} \quad \text { in } \mathcal{C}^{0}([0, T], H) \tag{3.44}
\end{equation*}
$$

Thus, $u_{i} \geq 0$ and $u_{i}(0)=u_{0 i}$.
We check that

$$
\begin{gather*}
q_{i}\left(u^{m-1}\right) \longrightarrow q_{i}(u) \\
q_{i}\left(u^{m-1}\right) u_{i}^{m} \longrightarrow q_{i}(u) u_{i} \quad \text { in } \mathcal{C}^{0}([0, T], H) \quad \forall i . \tag{3.45}
\end{gather*}
$$

We have also

$$
\begin{equation*}
f_{i}\left(u^{m-1}\right) \longrightarrow f_{i}(u) \quad \text { in } \mathcal{C}^{0}([0, T], H) \cap L^{2}(] 0, T\left[, V^{\prime}\right) \quad \forall i . \tag{3.46}
\end{equation*}
$$

For all i, u_{i}^{m} is solution of

$$
\begin{equation*}
\left\langle\frac{\partial u_{i}^{m}}{\partial t}, v\right\rangle+\left\langle A_{i} u_{i}^{m}, v\right\rangle+\left(q_{i}\left(u^{m-1}\right) u_{i}^{m}, v\right)=\left\langle f_{i}\left(u^{m-1}\right), v\right\rangle \quad \forall v \in V \tag{3.47}
\end{equation*}
$$

We take $\phi \in \mathscr{\Phi}(] 0, T[)$, and therefore $\phi v \in L^{2}(] 0, T[, V)$,

$$
\begin{align*}
& \int_{0}^{T}\left\langle\frac{\partial u_{i}^{m}}{\partial t}, \phi v\right\rangle d t+\int_{0}^{T}\left\langle A_{i} u_{i}^{m}, \phi v\right\rangle d t+\int_{0}^{T}\left(q_{i}\left(u^{m-1}\right) u_{i}^{m}, \phi v\right) d t \tag{3.48}\\
&=\int_{0}^{T}\left\langle f_{i}\left(u^{m-1}\right), \phi v\right\rangle d t
\end{align*}
$$

The second term in the left side and the right side of the egality converges due to the weak convergence in $L^{2}(] 0, T\left[, V^{\prime}\right)$. The third term in the left-hand side also passes to the limit, due to the convergence in $\mathcal{C}^{0}([0, T], H)$.

We deduce that $\partial u_{i}^{m} / \partial t$ converges weakly in $L^{2}(] 0, T\left[, V^{\prime}\right)$.
But we have

$$
\begin{equation*}
u_{i}^{m} \longrightarrow u_{i} \quad \text { in } \mathcal{C}^{0}([0, T], H) \tag{3.49}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\partial u_{i}^{m}}{\partial t} \longrightarrow \frac{\partial u_{i}}{\partial t} \quad \text { in } \Phi^{\prime}(] 0, T[, H) \tag{3.50}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{gather*}
\frac{\partial u_{i}^{m}}{\partial t} \longrightarrow \frac{\partial u_{i}}{\partial t} \text { weakly in } L^{2}(] 0, T\left[, V^{\prime}\right) \\
\int_{0}^{T}\left\langle\frac{\partial u_{i}}{\partial t}, \phi v\right\rangle d t+\int_{0}^{T}\left\langle A_{i} u_{i}, \phi v\right\rangle d t+\int_{0}^{T}\left(q_{i}(u) u_{i}, \phi v\right)_{H} d t=\int_{0}^{T}\left\langle f_{i}(u), \phi v\right\rangle d t \tag{3.51}
\end{gather*}
$$

This formulation being true for all ϕ, we have

$$
\begin{equation*}
\left\langle\frac{\partial u_{i}}{\partial t}, v\right\rangle+\left\langle A_{i} u_{i}, v\right\rangle+\left(q_{i}(u) u_{i}, v\right)_{H}=\left\langle f_{i}(u), v\right\rangle \quad \forall v \in V \tag{3.52}
\end{equation*}
$$

that is to say,

$$
\begin{gather*}
\frac{d}{d t}\left(u_{i}, v\right)_{H}+a\left(u_{i}, v\right)+\left(q_{i}(u) u_{i}, v\right)_{H}=\left\langle f_{i}(u), v\right\rangle \quad \forall v \in V, i \tag{3.53}\\
\frac{\partial u_{i}}{\partial t}=f_{i}(u)-A_{i} u_{i}-q_{i}(u) u_{i} \in L^{2}(] 0, T\left[, V^{\prime}\right) \quad \forall i
\end{gather*}
$$

For all i, one has

$$
\begin{equation*}
u_{i}^{m}(t)=G_{i}(t) u_{0 i}+\int_{0}^{t} G_{i}(t-s)\left(-q_{i}\left(u^{m-1}\right) u_{i}^{m}+f_{i}\left(u_{i}^{m-1}\right)\right)(s) d s \tag{3.54}
\end{equation*}
$$

and as $q_{i}\left(u^{m-1}\right) u_{i}^{m}$ and $f_{i}\left(u^{m-1}\right)$ converge in $C^{0}([0, T], H)$, we have

$$
\begin{equation*}
u_{i}(t)=G_{i}(t) u_{0 i}+\int_{0}^{t} G_{i}(t-s)\left(-q_{i}(u) u_{i}+f_{i}(u)\right)(s) d s \tag{R}
\end{equation*}
$$

3.4. Main Result

Theorem 3.3. If the initial condition satisfies (3.1), then system (\mathcal{S}) admits a unique nonnegative solution $u_{i} \in W\left(0, T, V, V^{\prime}\right)$ for all i.

Moreover, for all i, u_{i} satisfies relation (3.62).
Proof. We have already shown existence of solution; thus, it remains to show uniqueness.
Let v be another solution of system (\mathcal{S})

$$
\begin{equation*}
v_{i} \in W\left(0, T, V, V^{\prime}\right) \Longrightarrow v_{i} \in \mathcal{C}^{0}([0, T], H), \quad v_{i} \geq 0 \tag{3.55}
\end{equation*}
$$

Consequently, we obtain

$$
\begin{equation*}
q_{i}(v) v_{i}+f_{i}(v) \in L^{2}(] 0, T\left[, V^{\prime}\right) \tag{3.56}
\end{equation*}
$$

Thus, by Proposition 2.11, we have

$$
\begin{equation*}
v_{i}(t)=G_{i}(t) u_{0 i}+\int_{0}^{t} G_{i}(t-s)\left(-q_{i}(v) v_{i}+f_{i}(v)\right)(s) d s \tag{3.57}
\end{equation*}
$$

By subtraction, we have

$$
\begin{equation*}
u_{i}(t)-v_{i}(t)=\int_{0}^{t} G_{i}(t-s)\left(-q_{i}(u) u_{i}+q_{i}(v) v_{i}+f_{i}(u)-f_{i}(v)\right)(s) d s \tag{3.58}
\end{equation*}
$$

with

$$
\begin{equation*}
q_{i}(u) u_{i}-q_{i}(v) v_{i}=q_{i}(u)\left(u_{i}-v_{i}\right)+\left(q_{i}(u)-q_{i}(v)\right) v_{i} \tag{3.59}
\end{equation*}
$$

u_{i} being positive, we have

$$
\begin{equation*}
\left\|\frac{u_{j}}{K+u_{i}}\right\| \leq \frac{1}{K}\left\|u_{j}\right\|_{\infty^{\prime}} \tag{3.60}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\left\|u_{j}\right\|_{\infty}=\left\|u_{j}\right\|_{L^{\infty}(] 0, T[, H)} . \tag{3.61}
\end{equation*}
$$

If we define

$$
\begin{equation*}
\|u\|_{\infty}=\sum_{j=1}^{6}\left\|u_{j}\right\|_{\infty^{\prime}} \tag{3.62}
\end{equation*}
$$

there is $M_{1}>0$ such that

$$
\begin{equation*}
\left\|q_{i}(u)\right\|_{\infty} \leq M_{1}\|u\|_{\infty} \quad \forall u \tag{3.63}
\end{equation*}
$$

So the numerator of $q_{i}(u)-q_{i}(v)$ is the sum of terms of form $\left(u_{k}-v_{k}\right) v_{j}$ or $\left(u_{j}-v_{j}\right) u_{k}$, and we can find $M_{2}>0$ such that

$$
\begin{equation*}
\left|q_{i}(u)-q_{i}(v)\right|_{H}(s) \leq M_{2}\left(\sum_{j=1}^{6}\left|u_{j}(s)-v_{j}(s)\right|_{H}\right) . \tag{3.64}
\end{equation*}
$$

Also we can find $M_{3}>0$ such that

$$
\begin{equation*}
\left|f_{i}(u)-f_{i}(v)\right|_{H}(s) \leq M_{3}\left(\sum_{j=1}^{6}\left|u_{j}(s)-v_{j}(s)\right|_{H}\right) . \tag{3.65}
\end{equation*}
$$

Summing and noting that $\left\|G_{i}(t-s)\right\| \leq N_{i} e^{\Omega_{i} T}$ with $N_{i}, \Omega_{i}>0$, we can find M such that

$$
\begin{equation*}
\sum_{i=1}^{6}\left|u_{i}(t)-v_{i}(t)\right|_{H} \leq M\|u-v\|_{\infty} . \tag{3.66}
\end{equation*}
$$

Replacing in (3.58), we obtain

$$
\begin{equation*}
\sum_{i=1}^{6}\left|u_{i}(t)-v_{i}(t)\right|_{H} \leq M^{2}\|u-v\|_{\infty} \int_{0}^{t} s d s=M^{2} \frac{t^{2}}{2}\|u-v\|_{\infty} . \tag{3.67}
\end{equation*}
$$

By induction, we have

$$
\begin{gather*}
\sum_{j=1}^{6}\left|u_{j}(t)-v_{j}(t)\right|_{H} \leq \frac{M^{n}}{n!} T^{n}\|u-v\|_{\infty} \tag{3.68}\\
\lim _{n \rightarrow+\infty} \frac{M^{n}}{n!} T^{n}\|u-v\|_{\infty}=0
\end{gather*}
$$

Acknowledgment

The third author thanks Associate and Federation Schemes of ICTP for its support.

References

[1] S. D. Allison, "Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments," Ecology Letters, vol. 8, no. 6, pp. 626-635, 2005.
[2] B. Lèye, O. Monga, and P. Garnier, "Simulating biological dynamics using partial differential equations: application to decomposition of organic matter in 3D soil structure," submitted to Environmental and Engineering Geoscience.
[3] J. P. Schimel and M. N. Weintraub, "The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model," Soil Biology and Biochemistry, vol. 35, no. 4, pp. 549563, 2003.
[4] B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, Basel, Switzerland, 2007.
[5] L. A. Assalé, T. K. Boni, and D. Nabongo, "Numerical blow-up time for a semilinear parabolic equation with nonlinear boundary conditions," Journal of Applied Mathematics, vol. 2008, Article ID 753518, 29 pages, 2008.
[6] T. K. Boni, "Sur l'explosion et le comportement asymptotique de la solution d'une équation parabolique semi-linéaire du second ordre," Comptes Rendus de l'Académie des Sciences, vol. 326, no. 3, pp. 317-322, 1998.
[7] A. Matoussi and M. Xu, "Sobolev solution for semilinear PDE with obstacle under monotonicity condition," Electronic Journal of Probability, vol. 13, no. 35, pp. 1035-1067, 2008.
[8] J. Shi and R. Shivaji, Persistence in Reaction Diffusion Models with Weak Allee Effect, Springer, 2006.
[9] F. Ribaud, "Problème de Cauchy pour les équations aux dérivées partielles semi linéaires," Comptes Rendus de l'Académie des Sciences, vol. 322, no. 1, pp. 25-30, 2006.
[10] M. Pierre, "Global existence in reaction-diffiusion systems with control of mass: a survey," Milan Journal of Mathematics, vol. 78, no. 2, pp. 417-455, 2010.
[11] D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1981.
[12] F. Rothe, Global Solutions of Reaction-Diffusion Systems, vol. 1072 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1984.
[13] H. Amann, "Global existence for semilinear parabolic systems," Journal für die Reine und Angewandte Mathematik, vol. 360, pp. 47-83, 1985.
[14] N. D. Alikakos, " ${ }^{p}$-bounds of solutions of reaction-diffusion equations," Communications in Partial Differential Equations, vol. 4, no. 8, pp. 827-868, 1979.
[15] J. Morgan, "Global existence for semilinear parabolic systems," SIAM Journal on Mathematical Analysis, vol. 20, no. 5, pp. 1128-1144, 1989.
[16] M. Pierre and D. Schmitt, "Blowup in reaction-diffusion systems with dissipation of mass," SIAM Journal on Mathematical Analysis, vol. 28, no. 2, pp. 259-269, 1997.
[17] M. Pierre and D. Schmitt, "Blow up in reaction-diffusion systems with dissipation of mass," SIAM Review, vol. 42, no. 1, pp. 93-106, 2000.
[18] M. Pierre, "Weak solutions and supersolutions in l^{1} for reaction-diffusion systems," Journal of Evolution Equations, vol. 3, no. 1, pp. 153-168, 2003.
[19] R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique Pour les Sciences et les Techniques, vol. 8 of Evolution : Semi-Groupe, Variationnel, Masson, Paris, 1988.

