
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2011, Article ID 808175, 12 pages
doi:10.1155/2011/808175

Research Article
The Existence of Positive Solutions for
Singular Impulse Periodic Boundary Value Problem

Zhaocai Hao and Tanggui Chen

Department of Mathematics, Qufu Normal University, Qufu,
Shandong 273165, China

Correspondence should be addressed to Zhaocai Hao, zchjal@163.com

Received 15 May 2011; Accepted 1 July 2011

Academic Editor: Jian-Ping Sun

Copyright q 2011 Z. Hao and T. Chen. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We obtain new result of the existence of positive solutions of a class of singular impulse periodic
boundary value problem via a nonlinear alternative principle of Leray-Schauder.We do not require
the monotonicity of functions in paper (Zhang and Wang, 2003). An example is also given to
illustrate our result.

1. Introduction

Because of wide interests in physics and engineering, periodic boundary value problems have
been investigated by many authors (see [1–19]). In most real problems, only the positive
solution is significant.

In this paper, we consider the following periodic boundary value problem (PBVP in
short) with impulse effects:

−u′′(t) +Mu(t) = f(t, u(t)), t ∈ J ′,

Δu|t=tk = Ik(u(tk)), −Δu′∣∣
t=tk

= Jk(u(tk)), k = 1, 2, . . . l,

u(0) = u(2π), u′(0) = u′(2π).

(1.1)

Here, J = [0, 2π], 0 < t1 < t2 < · · · < tl < 2π , J ′ = J\{t1, t2, . . . , tl},M > 0, f ∈ C(J×R+, R
+), Ik ∈

C(R+, R), Jk ∈ C(R+, R+),R+ = [0,+∞),R+ = (0,+∞)with −(1/m)Jk(u) < Ik(u) < (1/m)Jk(u),
u ∈ R+, m =

√
M. Δu|t=tk = u(t+k) − u(t−k), Δu′|t=tk = u′(t+k) − u′(t−k), where u(i)(t+k) and u(i)(t−k),

i = 0, 1, respectively, denote the right and left limit of u(i)(t) at t = tk.
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In [7], Liu applied Krasnoselskii’s and Leggett-Williams fixed-point theorem to estab-
lish the existence of at least one, two, or three positive solutions to the first-order periodic
boundary value problems

x′(t) + a(t)x(t) = f(t, x(t)), a.e. t ∈ [0, T] \ {

t1, . . . , tp
}

,

Δx|t=tk = Ik(x(tk)), k = 1, . . . , p,

x(0) = x(T).

(1.2)

Jiang [5] has applied Krasnoselskii’s fixed point theorem to establish the existence of positive
solutions of problem

x′′(t) +Mx(t) = f(t, x(t)), t ∈ [0, 2π],

x(0) = x(2π), x′(0) = x′(2π).
(1.3)

The work [5] proved that periodic boundary value problem (PBVP in short) (1.3) without
singularity have at least one positive solutions provided f(t, x) is superlinear or sublinear
at x = 0+ and x = +∞. In [14], Tian et al. researched PBVP (1.1) without singularity.
They obtained the existence of multiple positive solutions of PBVP (1.1) by replacing
the suplinear condition or sublinear condition of [4] with the following limit inequality
condition:

(A1)

[

2πf0 +
l∑

i=1

J0(i)

]

σ > 2πM,

[

2πf∞ +
l∑

i=1

J∞(i)

]

σ > 2πM, (1.4)

(A2)

[

2πf0 +
l∑

i=1

J0(i)

]

σ < 2πM,

[

2πf∞ +
l∑

i=1

J∞(i)

]

σ < 2πM. (1.5)

Nieto [10] introduced the concept of a weak solution for a damped linear equation with
Dirichlet boundary conditions and impulses. These results will allow us in the future to deal
with the corresponding nonlinear problems and look for solutions as critical points of weakly
lower semicontinuous functionals.

We note that the function f involved in above papers [5, 7, 10, 14] does not have
singularity. Xiao et al. [16] investigate the multiple positive solutions of singular boundary
value problem for second-order impulsive singular differential equations on the halfline,
where the function f(t, u) is singular only at t = 0 and/or t = 1. Reference [19] studied
PBVP (1.3), where the function f has singularity at x = 0. The authors present the existence
of multiple positive solutions via the Krasnoselskii’s fixed point theorem under the following
conditions.
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(A′
1) There exist nonnegative valued ξ(x), η(x) ∈ C((0,∞)) and P(t), Q(t) ∈ L1[0, 2π]

such that

0 ≤ f(t, x) ≤ P(t)ξ(x) +Q(t)η(x), a.e. (t, x) ∈ [0, 2π] × (0,∞),

sup
x∈(0,∞)

⎧

⎨

⎩

x
(∫2π

0 P(t)dtξ(x)/η(x) +
∫2π
0 Q(t)dt

)

η
(

δjt
)

⎫

⎬

⎭
> Bj,

(1.6)

where η(x) is nonincreasing and ξ(x)/η(x) is nondecreasing on (0,∞),

(A′
2)

lim
t→ 0+

inf
min

{∫2π
0 f(x,w)dx : δjt ≤ w ≤ t

}

t
>

1
Aj

, (1.7)

(A′
3)

lim
t→+∞

inf
min

{∫2π
0 f(x,w)dx : δjt ≤ w ≤ t

}

t
>

1
Aj

. (1.8)

Here, δj ,Aj , Bj are some constants.

In this paper, the nonlinear term f(t, u) is singular at u = 0, and positive solution of
PBVP (1.1) is obtained by a nonlinear alternative principle of Leray-Schauder type in cone.
We do not require the monotonicity of functions η, ξ/η used in [19]. An example is also given
to illustrate our result.

This paper is organized as follows. In Section 1, we give a brief overview of recent
results on impulsive and periodic boundary value problems. In Section 2, we present some
preliminaries such as definitions and lemmas. In Section 3, the existence of one positive
solution for PBVP (1.1)will be established by using a nonlinear alternative principle of Leray-
Schauder type in cone. An example is given in Section 4.

2. Preliminaries

Consider the space PC[J, R] = {u : u is a map from J into R such that u(t) is continuous at
t /= tk, left continuous at t = tk, and u(t+

k
) exists, for k = 1, 2, . . . l.}. It is easy to say that PC[J, R]

is a Banach space with the norm ‖u‖pc = supt∈J |u(t)|. Let PC1[J, R] = {u ∈ PC[J, R] : u′(t)
exists at t /= tk and is continuous at t /= tk, and u′(t+

k
), u′(t−

k
) exist and u′(t) is left continuous at

t = tk, for k = 1, 2, . . . l.} with the norm ‖u‖pc1 = max{‖u‖pc, ‖u′‖pc}. Then, PC1[J, R] is also

a Banach space.
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Lemma 2.1 (see [15]). u ∈ PC1(J, R) ∩ C2(J ′, R) is a solution of PBVP (1.1) if and only if u ∈
PC(J) is a fixed point of the following operator T :

Tu(t) =
∫2π

0
G(t, s)f(s, u(s))ds +

l∑

k=1

G(t, tk)Jk(u(tk)) +
l∑

k=1

∂G(t, s)
∂s

∣
∣
∣
∣
s=tk

Ik(u(tk)), (2.1)

where G(t, s) is the Green’s function to the following periodic boundary value problem:

−u′′ +Mu = 0,

u(0) = u(2π), u′(0) = u′(2π),

G(t, s) :=
1
Γ

⎧

⎪⎨

⎪⎩

⎧

⎪⎨

⎪⎩

em(t−s) + em(2π−t+s), 0 ≤ s ≤ t ≤ 2π,

em(s−t) + em(2π−s+t), 0 ≤ t ≤ s ≤ 2π,

(2.2)

here, Γ = 2m(e2mπ − 1). It is clear that

2emπ

Γ
= G(π) ≤ G(t, s) ≤ G(0) =

e2mπ + 1
Γ

. (2.3)

Define

K =
{

u ∈ PC[J, R] : u(t) ≥ σ‖u‖pc, t ∈ J
}

, (2.4)

where

σ =
1

e2mπ
. (2.5)

The following nonlinear alternative principle of Leray-Schauder type in cone is very
important for us.

Lemma 2.2 (see [4]). Assume that Ω is a relatively open subset of a convex set K in a Banach space
PC[J, R]. Let T : Ω → K be a compact map with 0 ∈ Ω. Then, either

(i) T has a fixed point in Ω, or,

(ii) there is a u ∈ ∂Ω and a λ < 1 such that u = λTu.

3. Main Results

In this section, we establish the existence of positive solutions of PBVP (1.1).
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Theorem 3.1. Assume that the following three hypothesis hold:

(H1) there exists nonnegative functions ξ(u), η(u), γ(u) ∈ C(0,+∞) and p(t), q(t) ∈
L1([0, 2π]) such that

f(t, u) ≤ p(t)ξ(u) + q(t)η(u), (t, u) ∈ [0, 2π] × (0,∞), (3.1)

max
1≤k≤l

Jk(u) ≤ γ(u), (t, u) ∈ [0, 2π] × (0,+∞), (3.2)

(H2) there exists a positive number r > 0 such that

A

2

{

max
x∈[σr,r]

ξ(x)
∫2π

0
p(s)ds + max

x∈[σr,r]
η(x)

∫2π

0
q(s)ds

}

+Alγ(r) < r, (3.3)

(H3) for the constant r in (H2), there exists a function Φr > 0 such that

f(t, u) > Φr(t), (t, u) ∈ [0, 2π] × (0, r],
∫2π

0
Φr(s)ds > 0. (3.4)

Then PBVP (1.1) has at least one positive periodic solution with 0 < ‖u‖ < r, where

A =
e2mπ + 1

m(e2mπ − 1)
=

e2π
√
M + 1

√
M

(

e2π
√
M − 1

) . (3.5)

Proof. The existence of positive solutions is proved by using the Leray-Schauder alternative
principle given in Lemma 2.2. We divide the rather long proof into six steps.

Step 1. From (3.3), we may choose n0 ∈ {1, 2, . . .} such that

A

2

{

max
x∈[σr,r]

ξ(x)
∫2π

0
p(s)ds + max

x∈[σr,r]
η(x)

∫2π

0
q(s)ds

}

+Alγ(r) +
1
n0

< r. (3.6)

Let N0 = {n0, n0 + 1, . . .}. For n ∈ N0. We consider the family of equations

−u′′(t) +Mu(t) = λfn(t, u(t)) +
M

n
, t ∈ J ′,

Δu|t=tk = Ik(u(tk)), −Δu′∣∣
t=tk

= Jk(u(tk)), k = 1, 2, . . . l,

u(0) = u(2π), u′(0) = u′(2π),

(3.7)
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where λ ∈ [0, 1] and

fn(t, u) = f

(

t,max
{

u,
1
n

})

, (t, u) ∈ J × [0,+∞). (3.8)

For every λ and n ∈ N0, define an operator as follows:

Tλ,nu(t) = λ

∫2π

0
G(t, s)fn(s, u(s))ds +

l∑

k=1

G(t, tk)Jk(u(tk))

+
l∑

k=1

∂G(t, s)
∂s

∣
∣
∣
∣
s=tk

Ik(u(tk)), u ∈ K.

(3.9)

Then, we may verify that

Tλ,n : K −→ K is completely continuous. (3.10)

To find a positive solution of (3.7) is equivalent to solve the following fixed point problem in
PC[J, R]:

u = Tλ,nu +
1
n
. (3.11)

Let

Ω = {x ∈ K : ‖x‖ < r}, (3.12)

then Ω is a relatively open subset of the convex set K.

Step 2. We claim that any fixed point u of (3.11) for any λ ∈ [0, 1) must satisfies ‖u‖/= r.
Otherwise, we assume that u is a solution of (3.11) for some λ ∈ [0, 1) such that ‖u‖ = r.

Note that fn(t, u) ≥ 0. u(t) ≥ 1/n for all t ∈ J and r ≥ u(t) ≥ (1/n) + σ‖u − 1/n‖. By the choice
of n0, 1/n ≤ 1/n0 < r. Hence, for all t ∈ J , we get

r ≥ u(t) ≥ 1
n
+ σ

∥
∥
∥
∥
u − 1

n

∥
∥
∥
∥
≥ 1

n
+ σ

∣
∣
∣
∣
‖u‖ − 1

n

∣
∣
∣
∣
≥ 1

n
+ σ

(

r − 1
n

)

> σr. (3.13)

From (3.2), we have

Jk(u(tk)) ≤ max
1≤k≤l

Jk(u(tk)) ≤ γ(u(tk)) ≤ γ(r). (3.14)

Consequently, for any fixed point u of (3.11), by (3.8), (3.13), and (3.14), we have

u(t) = λ

∫2π

0
G(t, s)fn(s, u(s))ds + k = 1

l∑

k=1

G(t, tk)Jk(u(tk)) +
l∑

k=1

∂G(t, s)
∂s

∣
∣
∣
∣
s=tk

Ik(u(tk)) +
1
n

≤
∫2π

0
G(t, s)f(s, u(s))ds +

l∑

k=1

G(t, tk)Jk(u(tk)) +
l∑

k=1

∂G(t, s)
∂s

∣
∣
∣
∣
s=tk

Ik(u(tk)) +
1
n
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≤
∫2π

0
G(t, s)f(s, u(s))ds

+
1
Γ

{
∑

tk≤t

[

em(t−tk) + em(2π−t+tk)
]

Jk(u(tk))

+
∑

tk>t

[

em(tk−t) + em(2π−tk+t)
]

Jk(u(tk)) +
∑

tk≤t

[

−em(t−tk) + em(2π−t+tk)
]

mIk(u(tk))

+
∑

tk>t

[

em(tk−t) − em(2π−tk+t)
]

mIk(u(tk))

}

+
1
n

=
∫2π

0
G(t, s)f(s, u(s))ds

+
1
Γ

{
∑

tk≤t
em(t−tk)[Jk(u(tk)) −mIk(u(tk))]

+
∑

tk≤t
em(2π−t+tk)[Jk(u(tk)) +mIk(u(tk))] +

∑

tk>t

em(tk−t)[Jk(u(tk)) +mIk(u(tk))]

+
∑

tk>t

em(2π−tk+t)[Jk(u(tk)) −mIk(u(tk))]

}

+
1
n
.

(3.15)

It follows from −(1/m)Jk(u) < Ik(u) < (1/m)Jk(u) that

Jk(u(tk)) −mIk(u(tk)) > 0, Jk(u(tk)) +mIk(u(tk)) > 0. (3.16)

So, we get from (3.1), (3.2), and (3.3) that

u(t) ≤
∫2π

0
G(t, s)f(s, u(s))ds +

2
(

e2mπ + 1
)

Γ

l∑

k=1

Jk(u(tk)) +
1
n

≤
∫2π

0
G(t, s)

[

p(s)ξ(u(s)) + q(s)η(u(s))
]

ds +Alγ(r) +
1
n0

≤ A

2

[∫2π

0
p(s)ds max

x∈[σr,r]
ξ(x) +

∫2π

0
q(s)ds max

x∈[σr,r]
ξ(x)

]

+Alγ(r) +
1
n0

.

(3.17)

Therefore,

r = ‖u‖ ≤ A

2

[∫2π

0
p(s)ds max

x∈[σr,r]
ξ(x) +

∫2π

0
q(s)ds max

x∈[σr,r]
ξ(x)

]

+Alγ(r) +
1
n0

< r. (3.18)

This is a contraction, and so the claim is proved.
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Step 3. From the above claim and the Leray-Schauder alternative principle, we know that
operator (3.9) (with λ = 1) has a fixed point denoted by un in Ω. So, (3.7) (with λ = 1) has a
positive solution un with

‖un‖ < r, un(t) ≥ 1
n
, t ∈ J. (3.19)

Step 4. We show that {un} have a uniform positive lower bound; that is, there exists a constant
δ > 0, independent of n ∈ N0, such that

min
t
{un(t)} ≥ δ. (3.20)

In fact, from (3.4), (3.8), (3.16), and (3.19), we get

un(t) =
∫2π

0
G(t, s)fn(s, un(s))ds +

l∑

k=1

G(t, tk)Jk(un(tk))

+
l∑

k=1

∂G(t, s)
∂s

∣
∣
∣
∣
s=tk

Ik(un(tk)) +
1
n

=
∫2π

0
G(t, s)f(s, un(s))ds +

l∑

k=1

G(t, tk)Jk(un(tk))

+
l∑

k=1

∂G(t, s)
∂s

∣
∣
∣
∣
s=tk

Ik(un(tk)) +
1
n

≥
∫2π

0
G(t, s)Φr(s)ds

+
1
Γ

{
∑

tk≤t
em(t−tk)[Jk(un(tk)) −mIk(un(tk))]

+
∑

tk≤t
em(2π−t+tk)[Jk(un(tk)) +mIk(un(tk))]

+
∑

tk>t

em(tk−t)[Jk(un(tk)) +mIk(un(tk))]

+
∑

tk>t

em(2π−tk+t)[Jk(un(tk)) −mIk(un(tk))]

}

+
1
n

≥
∫2π

0
G(t, s)Φr(s)ds

≥ 2emπ

Γ

∫2π

0
Φr(s)ds := δ > 0.

(3.21)
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Step 5. We prove that

∥
∥u′

n

∥
∥ < H, n ≥ n0 (3.22)

for some constant H > 0. Equations (3.19) and (3.20) tell us that δ ≤ un(t) ≤ r, so we may let

M1 = max
t∈J, u∈[δ,r]

f(t, u), M2 = max
t, s∈J

∣
∣G′

t(t, s)
∣
∣, M3 = max

u∈[δ,r]

l∑

k=1

Jk(u). (3.23)

Then,

∥
∥u′

n

∥
∥ = sup

t∈J

∣
∣u′

n(t)
∣
∣

= sup
t∈J

∣
∣
∣
∣
∣

∫2π

0
G′

t(t, s)f(s, un(s))ds +
l∑

k=1

G′
t(t, tk)Jk(un(tk))

+
l∑

k=1

∂

∂t

(

∂G(t, s)
∂s

∣
∣
∣
∣
s=tk

)

Ik(un(tk))

∣
∣
∣
∣
∣

= sup
t∈J

∣
∣
∣
∣
∣

∫2π

0
G′

t(t, s)f(s, un(s))ds

+
m

Γ

{
∑

tk≤t
em(t−tk)[Jk(un(tk)) −mIk(un(tk))]

−
∑

tk≤t
em(2π−t+tk)[Jk(un(tk)) +mIk(un(tk))]

−
∑

tk>t

em(tk−t)[Jk(un(tk)) +mIk(un(tk))]

+
∑

tk>t

em(2π−tk+t)[Jk(un(tk)) −mIk(un(tk))]

}∣
∣
∣
∣
∣

≤ sup
t∈J

∫2π

0

∣
∣G′

t(t, s)
∣
∣f(s, un(s))ds +

2m
(

e2mπ + 1
)

Γ

l∑

k=1

Jk(un(tk))

≤ 2πM1M2 +
2m

(

e2mπ + 1
)

Γ
M3 := H.

(3.24)

Step 6. Now, we pass the solution un of the truncation equation (3.7) (with λ = 1) to that of the
original equation (1.1). The fact that ‖un‖ < r and (3.22) show that {un}n∈N0

is a bounded and
equi-continuous family on [0, 2π]. Then, the Arzela-Ascoli Theorem guarantees that {un}n∈N0

has a subsequence {unj}j∈N , converging uniformly on [0, 2π]. From the fact ‖un‖ < r and
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(3.20), u satisfies δ ≤ u(t) ≤ r for all t ∈ J . Moreover, unj also satisfies the following integral
equation:

unj (t) =
∫2π

0
G(t, s)f

(

s, unj (s)
)

ds

+
l∑

k=1

G(t, tk)Jk
(

unj (tk)
)

+
l∑

k=1

∂G(t, s)
∂s

∣
∣
∣
∣
s=tk

Ik
(

unj (tk)
)

+
1
nj

.

(3.25)

Let j → +∞, and we get

u(t) =
∫2π

0
G(t, s)f(s, u(s))ds

+
l∑

k=1

G(t, tk)Jk(u(tk)) +
l∑

k=1

∂G(t, s)
∂s

∣
∣
∣
∣
s=tk

Ik(u(tk)),

(3.26)

where the uniform continuity of f(t, u) on J × [δ, r] is used. Therefore, u is a positive solution
of PBVP (1.1). This ends the proof.

4. An Example

Consider the following impulsive PBVP:

−u′′(t) +Mu(t) = t2
(

1 +
|sinu|
u3/2

)

+ t(1 + |cosu|), t ∈ J ′,

Δu|t=tk =
min{c1, c2, . . . , cl}

2
√
M

u(tk), −Δu′∣∣
t=tk

= cku(tk), k = 1, 2, . . . , l,

u(0) = u(2π), u′(0) = u′(2π),

(4.1)

where ck > 0 are constants. Then, PBVP (4.1) has at least one positive solution u with 0 <
‖u‖ < 1.

To see this, we will apply Theorem 3.1.
Let

f(t, u) = t2
(

1 +
|sinu|
u3/2

)

+ t(1 + |cosu|), (4.2)

then f(t, u) has a repulsive singularity at u = 0

lim
u→ 0+

f(t, u) = +∞, uniformaly in t. (4.3)
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Denote

p(t) = t2, q(t) = t, ξ(u) = 1 +
|sinu|
u3/2

, η(u) = 1 + |cosu|,

γ(u) = max{c1, c2, . . . , cl}u,

r = 1, Φr(t) = t + t2.

(4.4)

Then, it is easy to say that (3.1), (3.2), and (3.3) hold. From (3.5), we know

lim
M→+∞

A = lim
M→+∞

e2π
√
M + 1

√
M

(

e2π
√
M − 1

) = 0. (4.5)

So, we may choose M large enough to guarantee that (3.3) holds. Then, the result follows
from Theorem 3.1.

Remark 4.1. Functions ξ, η in example (4.1) do not have the monotonicity required as in [19].
So, the results of [19] cannot be applied to PBVP (4.1).
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