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A fractional boundary value problem is considered. By means of Banach contraction principle,
Leray-Schauder nonlinear alternative, properties of the Green function, and Guo-Krasnosel’skii
fixed point theorem on cone, some results on the existence, uniqueness, and positivity of solutions
are obtained.

1. Introduction

Fractional differential equations are a natural generalization of ordinary differential
equations. In the last few decades many authors pointed out that differential equations of
fractional order are suitable for the metallization of various physical phenomena and that
they have numerous applications in viscoelasticity, electrochemistry, control and electro-
magnetic, and so forth, see [1–4].

This work is devoted to the study of the following fractional boundary value problem
(P1):

cD
q

0+u(t) = f
(
t, u(t),cDσ

0+u(t)
)
, 0 < t < 1, (1.1)

u(0) = u′′(0) = 0, u′(1) = αu′′(1), (1.2)

where f : [0, 1] × R × R → R is a given function, 2 < q < 3, 1 < σ < 2 and cD
q

0+ denotes the
Caputo’s fractional derivative. Our results allow the function f to depend on the fractional
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derivative cDσ
0+u(t) which leads to extra difficulties. No contributions exist, as far as we

know, concerning the existence of positive solutions of the fractional differential equation
(1.1) jointly with the nonlocal condition (1.2).

Our mean objective is to investigate the existence, uniqueness, and existence of pos-
itive solutions for the fractional boundary value problem (P1), by using Banach contraction
principle, Leray-Schauder nonlinear alternative, properties of the Green function and Guo-
Krasnosel’skii fixed point theorem on cone.

The research in this area has grown significantly and many papers appeared on this
subject, using techniques of nonlinear analysis, see [5–14].

In [6], El-Shahed considered the following nonlinear fractional boundary value
problem

D
q

0+u(t) + λa(t)f(u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,
(1.3)

where 2 < q ≤ 3 and D
q

0+ is the Riemann-Liouville fractional derivative. Using the
Krasnoselskii’s fixed-point theorem on cone, he proved the existence and nonexistence of
positive solutions for the above fractional boundary value problem.

Liang and Zhang in [9] studied the existence and uniqueness of positive solutions by
the properties of the Green function, the lower and upper solution method and fixed point
theorem for the fractional boundary value problem

D
q

0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =
m−2∑

i=1

βiu
′(ζi),

(1.4)

where 2 < q ≤ 3 and Dq

0+ is the Riemann-Liouville fractional derivative.
In [5] Bai and Lü investigated the existence and multiplicity of positive solutions for

nonlinear fractional differential equation boundary value problem:

D
q

0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.5)

where 1 < q ≤ 1 andDq

0+ is the Riemann-Liouville fractional derivative. Applying fixed-point
theorems on cone, they prove some existence and multiplicity results of positive solutions.

This paper is organized as follows, in the Section 2 we cite some definitions and
lemmas needed in our proofs. Section 3 treats the existence and uniqueness of solution
by using Banach contraction principle, Leray Schauder nonlinear alternative. Section 4 is
devoted to prove the existence of positive solutions with the help of Guo-Krasnoselskii
Theorem, then we give some examples illustrating the previous results.
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2. Preliminaries and Lemmas

In this section, we present some lemmas and definitions from fractional calculus theorywhich
will be needed later.

Definition 2.1. If g ∈ C([a, b]) and α > 0, then the Riemann-Liouville fractional integral is
defined by

Iαa+g(t) =
1

Γ(α)

∫ t

a

g(s)

(t − s)1−α
ds. (2.1)

Definition 2.2. Let α ≥ 0, n = [α] + 1. If f ∈ ACn[a, b] then the Caputo fractional derivative of
order α of f defined by

cDα
a+g(t) =

1
Γ(n − α)

∫ t

a

g(n)(s)

(t − s)α−n+1
ds, (2.2)

exists almost everywhere on [a, b] ([α] is the entire part of α).

Lemma 2.3 (see [15]). Let α, β > 0 and n = [α] + 1, then the following relations hold: cDα
0+t

β−1 =
(Γ(β)/Γ(β − α))tβ−1, β > n and cDα

0+ t
k = 0, k = 0, 1, 2, . . . , n − 1.

Lemma 2.4 (see [15]). For α > 0, g(t) ∈ C(0, 1), the homogenous fractional differential equation

cDα
a+g(t) = 0 (2.3)

has a solution

g(t) = c1 + c2t + c3t2 + · · · + cntn−1, (2.4)

where, ci ∈ R, i = 0, . . . , n, and n = [α] + 1.

Denote by L1([0, 1],R) the Banach space of Lebesgue integrable functions from [0, 1]
into R with the norm ||y||L1 =

∫1
0 |y(t)|dt.

The following Lemmas gives some properties of Riemann-Liouville fractional
integrals and Caputo fractional derivative.

Lemma 2.5 (see [16]). Let p, q ≥ 0, f ∈ L1[a, b]. Then I
p

0+I
q

0+f(t) = I
p+q
0+ f(t) = I

q

0+I
p

0+f(t) and
cD

q

0+I
q

0+f(t) = f(t), for all t ∈ a, b].

Lemma 2.6 (see [15]). Let β > α > 0. Then the formula cDα
0+I

β

0+f(t) = I
β−α
0+ f(t), holds almost

everywhere on t ∈ a, b], for f ∈ L1[a, b] and it is valid at any point x ∈ [a, b] if f ∈ C[a, b].

Now we start by solving an auxiliary problem.
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Lemma 2.7. Let 2 < q < 3, 1 < σ < 2 and y ∈ C[0, 1]. The unique solution of the fractional boundary
value problem

c
D
q

0+u(t) = y(t), 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) = αu′′(1)
(2.5)

is given by

u(t) =
1

Γ
(
q − 2

)
∫1

0
G(t, s)y(s)ds, (2.6)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t − s)q−1
q
(
q − 1

) +
αt

(1 − s)3−q
− t(1 − s)q−2

q − 1
, s ≤ t

αt

(1 − s)3−q
− t(1 − s)q−2

q − 1
, t ≤ s.

(2.7)

Proof. Applying Lemmas 2.4 and 2.5 to (2.5) we get

u(t) = Iq0+y(t) + c1 + c2t + c3t
2. (2.8)

Differentiating both sides of (2.8) and using Lemma 2.6 it yields

u′(t) = Iq−10+ y(t) + c2 + c3t,

u′′(t) = Iq−20+ y(t) + c3.
(2.9)

The first condition in (2.5) implies c1 = c3 = 0, the second one gives c2 = αI
q−2
0+ y(1) − Iq−10+ y(1).

Substituting c2 by its value in (2.8), we obtain

u(t) = Iq0+y(t) + t
(
αI

q−2
0+ y(1) − Iq−10+ y(1)

)
(2.10)

that can be written as

u(t) =
1

Γ
(
q − 2

)
∫ t

0

[
(t − s)q−1
q
(
q − 1

) +
αt

(1 − s)3−q
− t(1 − s)q−2

q − 1

]

y(s)ds

+
1

Γ
(
q − 2

)
∫1

t

[
αt

(1 − s)3−q
− t(1 − s)q−2

q − 1

]

y(s)ds

(2.11)
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that is equivalent to

u(t) =
1

Γ
(
q − 2

)
∫1

0
G(t, s)y(s)ds, (2.12)

where G is defined by (2.7). The proof is complete.

3. Existence and Uniqueness Results

In this section we prove the existence and uniqueness of solutions in the Banach space E of
all functions u ∈ C2[0, 1] into R, with the norm ||u|| = maxt∈[0,1]|u(t)|+maxt∈[0,1]|cDσ

0+u(t)|. We
know that cDσ

0+u ∈ C[0, 1], 1 < σ < 2, see [15]. Denote by E+ = {u ∈ E, u(t) ≥ 0, t ∈ [0, 1]}.
Throughout this section, we suppose that f ∈ C([0, 1]×R×R,R). Define the integral operator
T : E → E by

Tu(t) =
1

Γ
(
q − 2

)
∫1

0
G(t, s)f

(
s, u(s), cDσ

0+u(s)
)
ds. (3.1)

Lemma 3.1. The function u ∈ E is solution of the fractional boundary value problem (P1) if and only
if Tu(t) = u(t), for all t ∈ [0, 1].

Proof. Let u be solution of (P1) and v(t) =
∫1
0 G(t, s)f(s, u(s),

c Dσ
0+u(s))ds. In view of (2.10)

we have

v(t) = Iq0+f
(
t, u(t),c Dσ

0+u(t)
)

+ αtIq−20+ f
(
1, u(1),c Dσ

0+u(1)
) − tIq−10+ f

(
1, u(1),c Dσ

0+u(1)
)
.

(3.2)

With the help of Lemma 2.6 we obtain

cD
q

0+v(t) =
c
D
q

0+ I
q

0+f
(
t, u(t),c Dσ

0+u(t)
)

+ tαIq−20+ f
(
1, u(1),c Dσ

0+u(1)
) − tIq−10+ f

(
1, u(1),c Dσ

0+u(1)
)

= f
(
t, u(t),c Dσ

0+u(t)
)
.

(3.3)

It is clear that v satisfies conditions (1.2), then it is a solution for the problem (P1). The proof
is complete.

Theorem 3.2. Assume that there exist nonnegative functions g, h ∈ L1([0, 1],R+) such that for all
x, y ∈ R and t ∈ [0, 1], one has

∣∣f(t, x, x) − f(t, y, y)∣∣ ≤ g(t)∣∣x − y∣∣ + h(t)∣∣x − y∣∣, (3.4)

Cg + Ch < 1, Ag +Ah < (2 − σ)Γ(2 − σ), (3.5)
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where

Cg =
∥
∥
∥I

q−1
0+ g

∥
∥
∥
L1

+ |α|Iq−20+ g(1) + Iq−10+ g(1), Ag = 2Iq−10+ g(1) + |α|Iq−20+ g(1),

Ch =
∥
∥
∥I

q−1
0+ h

∥
∥
∥
L1

+ |α|Iq−20+ h(1) + Iq−10+ h(1), Ah = 2Iq−10+ h(1) + |α|Iq−20+ h(1).
(3.6)

Then the fractional boundary value problem (P1) has a unique solution u in E.

To prove Theorem 3.2, we use the following property of Riemann-Liouville fractional
integrals.

Lemma 3.3. Let q > 0, f ∈ L1([a, b],R+). Then, for all t ∈ a, b] we have

I
q+1
0+ f(t) ≤

∥
∥∥I

q

0+f
∥
∥∥
L1
. (3.7)

Proof. Let f ∈ L1([a, b],R+), then

∥∥∥I
q

0+f
∥∥∥
L1

=
∫1

0
I
q

0+f(r)dr ≥
1

Γ
(
q
)
∫ t

a

∫ r

a

f(s)

(r − s)1−q
ds dr

=
1

Γ
(
q
)
∫ t

a

(∫ t

s

f(s)

(r − s)1−q
dr

)

ds = Iq+10+ f(t).

(3.8)

Now we prove Theorem 3.2.

Proof. We transform the fractional boundary value problem to a fixed point problem. By
Lemma 3.1, the fractional boundary value problem (P1) has a solution if and only if the
operator T has a fixed point in E. Now we will prove that T is a contraction. Let u, v ∈ E,
in view of (2.10) we get

Tu(t) − Tv(t) = 1
Γ
(
q − 2

)
∫1

0
G(t, s)

(
f
(
s, u(s),c Dσ

0+u(s)
) − f(s, v(s),c Dσ

0+v(s)
))
ds

= Iq0+
(
f
(
t, u(t),c Dσ

0+u(t)
) − f(s, v(t),c Dσ

0+v(t)
))

+ tα
[
I
q−2
0+
(
f
(
1, u(1),c Dσ

0+u(1)
) − f(1, v(1),c Dσ

0+v(1)
))

−tIq−10+
(
f
(
1, u(1),c Dσ

0+u(1)
) − f(1, v(1),c Dσ

0+v(1)
))]

,

(3.9)

with the help of (3.4)we obtain

|Tu(t) − Tv(t)| ≤ max|u(t) − v(t)|
(
I
q

0+g(t) + |α|Iq−20+ g(1) + Iq−10+ g(1)
)

+max
∣∣ cDσ

0+ u(t) −c Dσ
0+v(t)

∣∣
(
I
q

0+h(t) + |α|Iq−20+ h(1) + Iq−10+ h(1)
)
.

(3.10)
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Lemma 3.3 implies

|Tu(t) − Tv(t)| ≤ ‖u − v‖
[∥∥
∥I

q−1
0+ g

∥
∥
∥
L1

+ |α|Iq−20+ g(1) + Iq−10+ g(1)

+
∥
∥
∥I

q−1
0+ h

∥
∥
∥
L1

+ |α|Iq−20+ h(1) + Iq−10+ h(1)
]
= ‖u − v‖(Cg + Ch

)
.

(3.11)

In view of (3.5) it yields

|Tu − Tv| < ‖u − v‖. (3.12)

On the other hand we have

cDσ
0+Tu −c Dσ

0+Tv =
1

Γ(2 − σ)
∫ t

0

(Tu)′(s) − (Tv)′(s)

(t − s)σ−1
ds, (3.13)

where

(Tu)′(t) =
1

Γ
(
q − 2

)
∫1

0
G1(t, s)f

(
s, u(s),cDσ

0+u(s)
)
ds,

G1(t, s) =
∂G(t, s)
∂t

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(t − s)q−2
q

+
α

(1 − s)3−q
− (1 − s)q−2

q − 1
, 0 ≤ s ≤ t ≤ 1

α

(1 − s)3−q
− (1 − s)q−2

q − 1
, 0 ≤ t ≤ s ≤ 1.

(3.14)

Therefore

cDσ
0+Tu −c Dσ

0+Tv =
1

Γ
(
q − 2

)
Γ(2 − σ)

∫ t

0

∫1

0
(t − s)−σ+1G1(s, r)

× (f(r, u(r),c Dσ
0+u(r)

) − f(r, v(r),c Dσ
0+v(r)

))
dr ds.

(3.15)

Applying hypothesis (3.4) we get

∣∣cDσ
0+Tu −c Dσ

0+Tv
∣∣ ≤ max|u − v|

Γ
(
q − 2

)
Γ(2 − σ)

∫ t

0

∫1

0
(t − s)−σ+1|G1(s, r)|g(r)dr ds

+
max

∣∣cDσ
0+u −c Dσ

0+v
∣∣

Γ
(
q − 2

)
Γ(2 − σ)

∫ t

0

∫1

0
(t − s)−σ+1|G1(s, r)|h(r)dr ds.

(3.16)

Let us estimate the term
∫1
0 (∂G(s, r)/∂s)g(r)dr. We have

∫1

0
|G1(s, r)|g(r)dr ≤ Γ

(
q − 2

)
⎛

⎝2
(
q − 2

)
I
q−1
0+ g(1)

q − 1
+ |α|Iq−20+ g(1)

⎞

⎠

= Γ
(
q − 2

)(
2Iq−10+ g(1) + |α|Iq−20+ g(1)

)
= Γ
(
q − 2

)
Ag.

(3.17)
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Consequently (3.16) becomes

∣
∣cDσ

0+Tu −c Dσ
0+Tv

∣
∣ ≤ ‖u − v‖ 1

(2 − σ)Γ(2 − σ)
(
Ag +Ah

)
. (3.18)

With the help of hypothesis (3.5) it yields

∣
∣cDσ

0+Tu −c Dσ
0+Tv

∣
∣ ≤ ‖u − v‖. (3.19)

Taking into account (3.12)–(3.19)we obtain

‖Tu − Tv‖ < ‖u − v‖, (3.20)

from here, the contraction principle ensures the uniqueness of solution for the fractional
boundary value problem (P1). This finishes the proof.

Now we give an existence result for the fractional boundary value problem (P1).

Theorem 3.4. Assume that f(t, 0, 0)/= 0 and there exist nonnegative functions k, h, g ∈ L1([0, 1],
R+), φ, ψ ∈ C(R+,R

∗
+) nondecreasing on R+ and r > 0, such that

∣∣f(t, x, x)
∣∣ ≤ k(t)ψ(|x|) + h(t)φ(|x|) + g(t), a.e. (t, x) ∈ [0, 1] × R. (3.21)

(
ψ(r) + φ(r) + 1

)
(

C1

Γ
(
q − 2

) +
C2

(2 − σ)Γ(2 − σ)

)

< r, (3.22)

where C1 = max{Ck,Ch, Cg}, C2 = max{Ak,Ah,Ag}, Ch and Cg are defined as in Theorem 3.2 and

Ck =
∥∥∥I

q−1
0+ k

∥∥∥
L1

+ |α|Iq−20+ k(1) + Iq−10+ k(1),

Ak = 2Iq−10+ k(1) + |α|Iq−20+ k(1).

(3.23)

Then the fractional boundary value problem (P1) has at least one nontrivial solution u∗ ∈ E.

To prove this Theorem, we apply Leray-Schauder nonlinear alternative.

Lemma 3.5 (see [17]). Let F be a Banach space andΩ a bounded open subset of F, 0 ∈ Ω. T : Ω → F
be a completely continuous operator. Then, either there exists x ∈ ∂Ω, λ > 1 such that T(x) = λx, or
there exists a fixed point x∗ ∈ Ω.

Proof. First let us prove that T is completely continuous. It is clear that T is continuous since
f and G are continuous. Let Br = {u ∈ E, ‖u‖ ≤ r} be a bounded subset in E. We shall prove
that T(Br) is relatively compact.
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(i) For u ∈ Br and using (3.21)we get

|Tu(t)| ≤ 1
Γ
(
q − 2

)
∫1

0
|G(t, s)|[k(s)ψ(|u(s)|) + h(s)φ(∣∣cDσ

0+u(s)
∣
∣) + g(s)

]
ds. (3.24)

Since ψ and φ are nondecreasing then (3.24) implies

|Tu(t)| ≤ 1
Γ
(
q − 2

)
∫1

0
|G(t, s)|[k(s)ψ(‖u‖) + h(s)φ(‖u‖) + g(s)]ds

≤ 1
Γ
(
q − 2

)
∫1

0
|G(t, s)|[k(s)ψ(r) + h(s)φ(r) + g(s)]ds,

(3.25)

using similar techniques as to get (3.12) it yields

|Tu(t)| ≤ 1
Γ
(
q − 2

)
[
ψ(r)

(∥∥∥I
q−1
0+ k

∥∥∥
L1

+ |α|Iq−20+ k(1) + Iq−10+ k(1)
)

+ φ(r)
(∥∥∥I

q−1
0+ h

∥∥∥
L1

+ |α|Iq−20+ h(1) + Iq−10+ h(1)
)

+
(∥∥∥I

q−1
0+ g

∥∥∥
L1

+ |α|Iq−20+ g(1) + Iq−10+ g(1)
)]

=
1

Γ
(
q − 2

)
(
Ckψ(r) + Chφ(r) + Cg

)
.

(3.26)

Hence

|Tu(t)| ≤ C1

Γ
(
q − 2

)
[
ψ(r) + φ(r) + 1

]
. (3.27)

Moreover, we have

∣∣(Tu(t))′
∣∣ ≤ 1

Γ
(
q − 2

)

[

ψ(r)
∫1

0

∣∣∣
∣
∂G

∂t
(t, s)

∣∣∣∣k(s)ds+φ(r)
∫1

0

∣∣∣
∣
∂G

∂t
(t, s)

∣∣∣∣h(s)+
∫1

0

∣∣∣
∣
∂G

∂t
(t, s)

∣∣∣∣g(s)ds

]

.

(3.28)

Using (3.17)we obtain

∣∣cDσ
0+Tu

∣∣ ≤ C2

(2 − σ)Γ(2 − σ)
(
ψ(r) + φ(r) + 1

)
. (3.29)

From (3.27) and (3.29) we get

‖Tu‖ =
(
ψ(r) + φ(r) + 1

)
(

C1

Γ
(
q − 2

) +
C2

(2 − σ)Γ(2 − σ)

)

, (3.30)

then T(Br) is uniformly bounded.
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(ii) T(Br) is equicontinuous. Indeed for all t1, t2 ∈ [0, 1], t1 < t2, u ∈ Br , let C =
max(|f(t, u(t),cDσ

0+u(t))|, 0 ≤ t ≤ 1, ‖u‖ < r), therefore

|Tu(t1) − Tu(t2)| ≤ C

Γ
(
q − 2

)

(∫ t1

0
|G(t1, s) −G(t2, s)|ds

+
∫ t2

t1

|G(t1, s) −G(t2, s)|ds +
∫1

t2

|G(t1, s) −G(t2, s)|ds
)

,

(3.31)

that implies

|Tu(t1) − Tu(t2)| ≤ C

Γ
(
q − 2

)
∫ t1

0

(t2 − s)q−1 − (t1 − s)q−1
q
(
q − 1

)

+ (t2 − t1)
(

|α|
(1 − s)3−q

− (1 − s)q−2
q − 1

)

ds +
∫ t2

t1

(t2 − s)q−1
q
(
q − 1

)

+ (t2 − t1)
(

|α|
(1 − s)3−q

− (1 − s)q−2
q − 1

)

ds

+
∫1

t2

(t1 − t2)
(

|α|
(1 − s)3−q

− (1 − s)q−2
q − 1

)

ds.

(3.32)

Let us consider the functionΦ(x) = xq−1−(q−1)x, we see thatΦ is decreasing on [0, 1],
consequently (t2 − s)q−1 − (t1 − s)q−1 ≤ (q − 1)(t2 − t1), from which we deduce

|Tu(t1) − Tu(t2)| ≤ C

Γ
(
q − 2

)

[

(t2 − t1)
∫ t1

0

1
q
(
q − 1

) +

∣∣∣∣∣
α

(1 − s)3−q
− (1 − s)q−2

q − 1

∣∣∣∣∣
ds

+
∫ t2

t1

(t2 − s)q−1
q
(
q − 1

) + (t2 − t1)
∣∣∣∣∣

|α|
(1 − s)3−q

− (1 − s)q−2
q − 1

∣∣∣∣∣
ds

+(t1 − t2)
∫1

t2

∣∣∣∣∣
|α|

(1 − s)3−q
− (1 − s)q−2

q − 1

∣∣∣∣∣
ds

]

.

(3.33)

Some computations give

|Tu(t1) − Tu(t2)| ≤ C(t2 − t1)
Γ
(
q − 2

)

(
1

q
(
q − 1

) +
3|α|
(
q − 2

) +
3

q − 1

)

+
C

Γ
(
q − 2

)
∫ t2

t1

(t2 − s)q−1
q
(
q − 1

) ds.

(3.34)
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On the other hand we have

∣
∣cDσ

0+Tu(t1) −c Dσ
0+Tu(t2)

∣
∣ ≤ +

1
Γ(2 − σ)

∫ t1

0

(
(t1 − s)−σ+1 − (t2 − s)−σ+1

)∣
∣(Tu(s))′

∣
∣ds

+
1

Γ(2 − σ)
∫ t2

t1

(t2 − s)−σ+1
∣
∣(Tu(s))′

∣
∣ds.

(3.35)

Using (3.17) and (3.28) it yields

∣
∣(Tu(t))′

∣
∣ ≤ [ψ(r) + φ(r) + 1

]
C2, (3.36)

then

∣∣cDσ
0+Tu(t1) −c Dσ

0+Tu(t2)
∣∣ ≤

[
ψ(r) + φ(r) + 1

]
C2

(2 − σ)Γ(2 − σ)
[
2(t2 − t1)2−σ + t2−σ2 − t12−σ

]
, (3.37)

when t1 → t2, in (3.34) and (3.37) then |Tu(t1)− Tu(t2)| and |cDσ
0+Tu(t1)−c Dσ

0+Tu(t2)| tend to
0. Consequently T(Br) is equicontinuous. From Arzelá-Ascoli Theorem we deduce that T is
completely continuous operator.

Now we apply Leray Schauder nonlinear alternative to prove that T has at least one
nontrivial solution in E.

Letting Ω = {u ∈ E : ‖u‖ < r}, for any u ∈ ∂Ω, such that u = λTu, 0 < λ < 1, we get,
with the help of (3.27),

|u(t)| = λ|Tu(t)| ≤ |Tu(t)| ≤ C1

Γ
(
q − 2

)
[
ψ(r) + φ(r) + 1

]
. (3.38)

Taking into account (3.29)we obtain

∣∣cDσ
0+u(t)

∣∣ ≤ C2

(2 − σ)Γ(2 − σ)
(
ψ(r) + φ(r) + 1

)
. (3.39)

From (3.38), (3.39), and (3.22) we deduce that

‖u‖ ≤ (ψ(r) + φ(r) + 1
)
(

C1

Γ
(
q − 2

) +
C2

(2 − σ)Γ(2 − σ)

)

< r, (3.40)

this contradicts the fact that u ∈ ∂Ω. Lemma 3.5 allows us to conclude that the operator T has
a fixed point u∗ ∈ Ω and then the fractional boundary value problem (P1) has a nontrivial
solution u∗ ∈ E. The proof is complete.

4. Existence of Positive Solutions

In this section we investigate the positivity of solution for the fractional boundary value
problem (P1), for this we make the following hypotheses.
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(H1) f(t, u, v) = a(t)f1(u, v)where a ∈ C((0, 1), (0,∞)) and f1 ∈ C(R+ × R,R+).

(H2) 0 <
∫1
0 G(s, s)a(s)ds <∞.

Now we give the properties of the Green function.

Lemma 4.1. Let G(t, s) be the function defined by (2.7). If α ≥ 1 then G(t, s) has the following
properties:

(i) G(t, s) ∈ C([0, 1] × [0, 1]), G(t, s) > 0, for all t, s ∈]0, 1[.
(ii) If t, s ∈ (τ, 1), τ > 0, then

0 < τG(s, s) ≤ G(t, s) ≤ 2
τ
G(s, s). (4.1)

Proof. (i) It is obvious that G(t, s) ∈ C([0, 1] × [0, 1]), moreover, we have

αt

(1 − s)3−q
− t(1 − s)q−2

q − 1
=

t

q − 1(1 − s)3−q
[(
q − 1

)
α − (1 − s)]

≥ t

q − 1(1 − s)3−q
[α − 1 + s],

(4.2)

which is positive if α ≥ 1. Hence G(t, s) is nonnegative for all t, s ∈]0, 1[.
(ii) Let t, s ∈ (τ, 1), it is easy to see that G(s, s)/= 0, then we have

G(t, s)
G(s, s)

=
(t − s)q−1(1 − s)3−q

qs
[(
q − 1

)
α − (1 − s)] +

t

s

≤ 1 + (1 − s)2
s

≤ 2
τ
, 0 < τ ≤ s ≤ t < 1,

G(t, s)
G(s, s)

=
t

s
≤ 2
τ
, 0 < τ ≤ t ≤ s ≤ 1.

(4.3)

Now we look for lower bounds of G(t, s)

G(t, s)
G(s, s)

≥ t

s
≥ τ

s
≥ τ, 0 < τ ≤ s ≤ t < 1, 0 < τ ≤ t ≤ s ≤ 1. (4.4)

Finally, since G(s, s) is nonnegative we obtain 0 < τG(s, s) ≤ G(t, s) ≤ (2/τ)G(s, s).

We recall the definition of positive of solution.

Definition 4.2. A function u(t) is called positive solution of the fractional boundary value
problem (P1) if u(t) ≥ 0, for all t ∈ [0, 1].
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Lemma 4.3. If u ∈ E+ and α ≥ 1, then the solution of the fractional boundary value problem (P1) is
positive and satisfies

min
t∈(τ,1)

(
u(t) +c Dσ

0+u(t)
) ≥ τ2

2
‖u‖. (4.5)

Proof. First let us remark that under the assumptions on u and f , the function cDσ
0+u is

nonnegative. From Lemma 3.1 we have

u(t) =
1

Γ
(
q − 2

)
∫1

0
G(t, s)a(s)f1

(
u(s),c Dσ

0+u(s)
)
ds. (4.6)

Applying the right-hand side of inequality (4.1) we get

u(t) ≤ 2
τΓ
(
q − 2

)
∫1

0
G(s, s)a(s)f1

(
u(s),c Dσ

0+u(s)
)
ds. (4.7)

Moreover, (4.1) gives

cDσ
0+u(t) =

1
Γ
(
q − 2

)
Γ(2 − σ)

∫ t

0

∫1

0
(t − s)−σ+1G1(s, r)

× a(r)f1
(
u(r),cDσ

0+u(r)
)
dsdr

≤ 1
τ(2 − σ)Γ(q − 2

)
Γ(2 − σ)

∫1

0
G1(r, r)a(r)f1

(
u(r),c Dσ

0+u(r)
)
dr.

(4.8)

Combining (4.7) and (4.8) yields

‖u‖ ≤ 2
τΓ
(
q − 2

)
∫1

0

[
G(s, s) +

G1(s, s)
(2 − σ)Γ(2 − σ)

]
a(s)f1

(
u(s),c Dσ

0+u(s)
)
ds, (4.9)

hence

∫1

0

[
G(s, s) +

G1(s, s)
(2 − σ)Γ(2 − σ)

]
a(s)f1

(
u(s),c Dσ

0+u(s)
)
ds ≥ τΓ

(
q − 2

)

2
‖u‖. (4.10)

In view of the-left hand side of (4.1), we obtain for all t ∈ (τ, 1)

u(t) ≥ τ

Γ
(
q − 2

)
∫1

0
G(s, s)a(s)f1

(
u(s),c Dσ

0+u(s)
)
ds, (4.11)
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on the other hand we have

cDσ
0+u(t) ≥

τ2−σ

(2 − σ)Γ(q − 2
)
Γ(2 − σ)

∫1

0
G1(r, r)a(r)f1

(
u(r),cDσ

0+u(r)
)
dr. (4.12)

From (4.11) and (4.12) we get

min
t∈(τ,1)

(
u(t) +c Dσ

0+u(t)
) ≥ τ

Γ
(
q − 2

)
∫1

0

[
G(s, s) +

G1(s, s)
(2 − σ)Γ(2 − σ)

]

× a(s)f1
(
u(s),c Dσ

0+u(s)
)
ds,

(4.13)

with the help of (4.10) we deduce

min
t∈(τ,1)

(
u(t) +c Dσ

0+u(t)
) ≥ τ2

2
‖u‖. (4.14)

The proof is complete.

Define the quantities A0 and A∞ by

A0 = lim
(|u|+|v|)→ 0

f1(u, v)
|u| + |v| , A∞ = lim

(|u|+|v|)→∞
f1(u, v)
|u| + |v| . (4.15)

The case A0 = 0 and A∞ = ∞ is called superlinear case and the case A0 = ∞ and A∞ = 0 is
called sublinear case.

The main result of this section is as follows.

Theorem 4.4. Under the assumption of Lemma 4.3, the fractional boundary value problem (P1) has
at least one positive solution in the both cases superlinear as well as sublinear.

To prove Theorem 4.4 we apply the well-known Guo-Krasnosel’skii fixed point
theorem on cone.

Theorem 4.5 (see [18]). Let E be a Banach space, and let K ⊂ E, be a cone. Assume Ω1 and Ω2 are
open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let

A : K ∩
(
Ω2 \Ω1

)
−→ K (4.16)

be a completely continuous operator such that

(i) ||Au|| ≤ ||u||, u ∈ K ∩ ∂Ω1, and ||Au|| ≥ ||u||, u ∈ K ∩ ∂Ω2, or

(ii) ||Au|| ≥ ||u||, u ∈ K ∩ ∂Ω1, and ||Au|| ≤ ||u||, u ∈ K ∩ ∂Ω2.

ThenA has a fixed point in K ∩ (Ω2 \Ω1).
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Proof. To prove Theorem 4.4 we define the cone K by

K =

{

u ∈ E+, min
t∈(τ,1)

(
u(t) +c Dσ

0+u(t)
) ≥ τ2

2
‖u‖

}

. (4.17)

It is easy to check that K is a nonempty closed and convex subset of E, hence it is a cone.
Using Lemma 4.3 we see that TK ⊂ K. From the prove of Theorem 3.4, we know that T is
completely continuous in E.

Let us prove the superlinear case. First, since A0 = 0, for any ε > 0, there exists R1 > 0,
such that

f1(u, v) ≤ ε(|u| + |v|) (4.18)

for 0 < |u| + |v| ≤ R1. Letting Ω1 = {u ∈ E, ‖u‖ < R1}, for any u ∈ K ∩ ∂Ω1, it yields

Tu(t) =
1

Γ
(
q − 2

)
∫1

0
G(t, s)a(s)f1

(
u(s),c Dσ

0+u(s)
)
ds

≤ 2ε‖u‖
τΓ
(
q − 2

)
∫1

0
G(s, s)a(s)ds.

(4.19)

Moreover, we have

cDσ
0+Tu(t) =

1
Γ
(
q − 2

)
Γ(2 − σ)

∫ t

0

∫1

0
(t − s)−σ+1G1(s, r)

× a(r)f1
(
u(r),c Dσ

0+u(r)
)
dsdr

≤ 1
τ(2 − σ)Γ(q − 2

)
Γ(2 − σ)

∫1

0
G1(r, r)a(r)

(|u(r)| + ∣∣cDσ
0+u(r)

∣∣)dr

≤ ε‖u‖
τ(2 − σ)Γ(q − 2

)
Γ(2 − σ)

∫1

0
G1(s, s)a(s)ds.

(4.20)

From (4.19) and (4.20) we conclude

‖Tu‖ ≤ 2ε‖u‖
τΓ
(
q − 2

)
∫1

0

[
G(s, s) +

G1(s, s)
(2 − σ)Γ(2 − σ)

]
a(s)ds. (4.21)

In view of hypothesis (H2), one can choose ε such that

ε ≤ τΓ
(
q − 2

)

2
∫1
0 [G(s, s) + (G1(s, s)/(2 − σ)Γ(2 − σ))]a(s)ds

. (4.22)
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The inequalities (4.21) and (4.22) imply that ||Tu|| ≤ ||u||, for all u ∈ K ∩ ∂Ω1. Second, in view
of A∞ = ∞, then for any M > 0, there exists R2 > 0, such that f1(u, v) ≥ M(|u| + |v|) for
|u| + |v| ≥ R2. Let R = max{2R1, (2R2/τ

2)} and denote by Ω2 the open set {u ∈ E/||u|| < R}. If
u ∈ K ∩ ∂Ω2 then

min
t∈(τ,1)

(
u(t) +c Dσ

0+u(t)
) ≥ τ2

2
‖u‖ =

τ2

2
R ≥ R2. (4.23)

Using the left-hand side of (4.1) and Lemma 4.3, we obtain

Tu(t) ≥ τM

Γ
(
q − 2

)
∫1

0
G(s, s)a(s)

(|u(s)| + ∣∣cDσ
0+u(s)

∣
∣)ds

≥ τ3M||u||
2Γ
(
q − 2

)
∫1

0
G(s, s)a(s)ds.

(4.24)

Moreover, we get with the help of (4.12)

cDσ
0+Tu(t) ≥

τ4−σM||u||
2(2 − σ)Γ(q − 2

)
Γ(2 − σ)

∫1

0
G1(s, s)a(s)ds. (4.25)

In view of (4.26) and (4.24) we can write

Tu(t) +c Dσ
0+Tu(t) ≥

τ3M||u||
2Γ
(
q − 2

)
∫1

0

[

G(s, s) +
τ1−σG1(s, s)

(2 − σ)Γ(2 − σ)

]

a(s)ds

≥ τ3M||u||
2Γ
(
q − 2

)
∫1

0

[
G(s, s) +

G1(s, s)
(2 − σ)Γ(2 − σ)

]
a(s)ds.

(4.26)

Let us chooseM such that

M ≥ 2Γ
(
q − 2

)

τ3
∫1
0 [G(s, s) + (G1(s, s)/(2 − σ)Γ(2 − σ))]a(s)ds

, (4.27)

then we get Tu(t) +c Dσ
0+Tu(t) ≥ ||u||. Hence,

||Tu|| ≥ ||u||, ∀u ∈ K ∩ ∂Ω2. (4.28)

The first part of Theorem 4.5 implies that T has a fixed point in K ∩ (Ω2 \Ω1) such that R2 ≤
||u|| ≤ R. To prove the sublinear case we apply similar techniques. The proof is complete.

In order to illustrate our results, we give the following examples.
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Example 4.6. The fractional boundary value problem

cD5/2
0+ u =

(
t − 1
10

)3

u + t2D5/4
0+ u + ln t, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) =
−1
2
u′′(1)

(4.29)

has a unique solution in E.

Proof. In this case we have f(t, x, y) = ((t − 1)/10)3x+ t2y+ ln t, 2 < q = 5/2 < 3, σ = (5/4) < 2,
α = −1/2 and

∣∣f(t, x, x) − f(t, y, y)∣∣ ≤
(
1 − t
10

)3

|x − x| + t2∣∣y − y∣∣, (4.30)

then g(t) = ((1 − t)/10)3 and h(t) = t2. Some calculus give

∥∥∥I
q−1
0+ g

∥∥∥
L1

= 0.17846 × 10−3, I
q−1
0+ g(1) = 0.48001 × 10−3,

I
q−2
0+ g(1) = 016120 × 10−3, Cg = 7.3907 × 10−4, Ag = 1.0406 × 10−3,

∥∥∥I
q−1
0+ h

∥∥∥
L1

= 0.038210, I
q−1
0+ h(1) = 0.17194,

I
q−2
0+ h(1) = 0.6018, Ch = 0.49747, Ah = 0.42448,

Cg + Ch = 0.49821 < 1,

Ag +Ah = 0.42552 < (2 − σ)Γ(2 − σ) = 0.91906.

(4.31)

Thus Theorem 3.2 implies that fractional boundary value problem (4.29) has a unique in E.

Example 4.7. The fractional boundary value problem

c
D

7/3
0+ u = (1 − t)2

⎛

⎜⎜
⎝

u4

100(1 + u2)
+
ln
(
1 +

(
cD6/5

0+ u
)2)

+ 1

9

⎞

⎟⎟
⎠ = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) =
3
2
u′′(1)

(4.32)

has at least one nontrivial solution in E.
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Proof. We apply Theorem 3.4 to prove that the fractional boundary value problem (4.32) has
at least one nontrivial solution. We have q = 7/3, σ = 6/5, α = 3/2, and

∣
∣f(t, x, x)

∣
∣ =

(1 − t)2x4

100(1 + x2)
+ (1 − t)2

ln
(
1 + x2

)

9
+ (1 − t)2

≤ |x|2
100

(1 − t)2 + (1 − t)2
ln
(
1 + x2

)

9
+ (1 − t)2

≤ k(t)ψ(|x|) + h(t)φ(|x|) + g(t),

(4.33)

where k(t) = h(t) = g(t) = (1 − t)2, ψ(x) = (x/10)2, φ(x) = ln(1 + x2)/9, f(t, 0, 0)/= 0. Let us
find r such that (3.22) holds, for this we have

∥∥∥I
q−1
0+ g

∥∥∥
L1

= 0.19382, I
q−2
0+ g(1) = 0.15998, I

q−1
0+ g(1) = 0.33595,

Cg = C1 = 0.76974, Ag = C2 = 0.91187.
(4.34)

We see that (3.22) is equivalent to 1.2664(((r2)/100) + (ln(1+ r2)/9) + 1)− r which is negative
for r = 6.
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