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Based on Lyapunov-Krasovskii functional method and stochastic analysis theory, we obtain some
new delay-dependent criteria ensuring mean square stability of a class of impulsive stochastic
equations. Numerical examples are given to illustrate the effectiveness of the theoretical results.

1. Introduction

It is recognized that the theory of impulsive systems provides a natural framework for the
mathematical modeling of many real world phenomena, and impulsive dynamical systems
have attracted considerable interest in science and engineering during the past decades.
Two classical monographs are Lakshmikantham et al. [1] and Bainov and Simeonov [2].
In general, an impulsive dynamical system can be viewed as a hybrid one comprised of
three components: a continuous-time differential equation, which governs the motion of
the dynamical systems between impulsive or resetting events; a difference equation, which
governs the way the system states are instantaneously changed when a resetting event occurs
and a criterion for determining when the states of the systems are to be reset, see Chen and
Zheng [3]. Stability properties of impulsive systems have been extensively studied in the
literatures. We refer to Li et al. [4, 5], Li et al. [6], Yang [7], Autonio, and Alfonso [8] and the
references therein.

Besides impulsive effects, a practical system is usually affected by external stochastic
perturbations. Stochastic perturbation is also a factor that makes systems unstable. Recently,
stochastic modeling has come to play an important role in many branches of science and
industry. An area of particular interest has been stability analysis of impulsive systems with
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stochastic perturbation. In Yang et al. [9] and Chen et al. [10], the stability properties of
nonlinear impulsive stochastic systems are studied using Lyapunov function methods. In
Mao et al. [11], a linear matrix inequality approach is proposed for stability analysis of linear
uncertain impulsive stochastic systems. However, to the best of our knowledge, there are
only few results about this problem.

This paper is inspired by Yang et al. [9], in which the authors considered the problems
of stability or robust stabilization for impulsive time delay systems. Unfortunately, they need
all the impulsive time sequences to satisfy some strict conditions, that is, the length of the
intervals between two jumping time instants must have upper bound or lower bound. But
in practical systems, it is always impossible or difficult to obtain it. In this article, by using
Lyapunov function methods, together with stochastic analysis, we focus on the mean square
stability of trival solution of a class of nonlinear impulsive stochastic time-delay differential
systems. We obtain some new conditions ensuring mean square stability of trival solution
of the impulsive stochastic differential systems with time-delay. This paper improved some
related results.

2. Preliminaries

Throughout this paper, unless explicitly given, for symmetric matrices A and B, the notion
A ≥ B (A > B,A ≤ B,A < B)meansA−B is positive semidefinite (positive definite, negative
semidefinite, negative definite)matrix. λmax(·) (λmin(·)) represents the maximum (minimum)
eigenvalue of the corresponding matrix, respectively. ‖ · ‖ denotes Euclidean norm for vectors
or the spectral norm of matrices. Moreover, let (Ω,F, {Ft}t≥0, P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions, that is, the filtration contains
all P-null sets and is right continuous. Let PC([−τ, 0],Rn) denote the set of piecewise right
continuous function φ : [−τ, 0] → R

n with the norm defined by ‖φ‖τ = sup−τ≤θ≤0‖φ(θ)‖,
where τ is a known positive constant, PC(δ) = {ϕ | ϕ ∈ PC([−τ, 0],Rn), ‖ϕ‖τ ≤ δ},
PCb

F0
([−τ, 0],Rn) denote the family of all F0-measurable PC([−τ, 0],Rn)-valued stochastic

process ϕ = {ϕ(s) : −τ ≤ s ≤ 0} with sup−τ≤s≤0E{‖ϕ(s)‖2} < ∞, where E{·} represents the
mathematical expectation operator with respect to the probability measure P , PCb

F0
(δ) = {ϕ |

ϕ ∈ PCb
F0
([−τ, 0],Rn), sup−τ≤s≤0E{‖ϕ(s)‖2} ≤ δ, L denote the well-known L-operator given

by the Itô’s formula.
In this paper, we consider a class of Itô impulsive stochastic differential systems with

time delay

dx(t) = f(t, x(t), xt)dt + g(t, x(t), xt)dω(t), t ≥ t0, t /= tk,

x(tk) = Hk

(
x
(
t−k
))
, k = 1, 2, . . . ,

x(t0 + θ) = ϕ(θ), θ ∈ [−τ, 0],
(2.1)

where the initial value ϕ ∈ PCb
F0
(δ), the fixed impulsive time moments tk satisfy 0 ≤ t0 <

t1 < t2 < · · · < tk < · · · (tk → ∞ as k → ∞). x(t) ∈ R
n is the system state, f ∈ C(R × R

n ×
R

n,Rn), g ∈ C(R × R
n × R

n,Rn×m). ω(t) ∈ R
m is an standard Brownian motion defined on
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the complete probability space (Ω,F, {Ft}t≥0, P). Besides, we assume that Hk(0) = 0, (k =
1, 2, . . .), f(t, 0, 0) = 0, g(t, 0, 0) = 0 and

∥
∥Hk

(
x
(
t−k
))∥∥ ≤ γk

∥
∥x
(
t−k
)∥∥, γk ≥ 0, k = 1, 2, . . . . (2.2)

In the following, we will divide three cases to consider the mean square stability of
system (2.1). We denote by Ninf(β) and Nsup(β) the class of impulsive time sequences that
satisfy infk{tk − tk−1} ≥ β and supk{tk − tk−1} ≤ β, respectively.

We need the following lemma and definitions.

Lemma 2.1 (Chaplygin Comparison Theorem, see Shi et al. [12]). Assume that f, F ∈ C(G),
g ⊂ R

2 and

f(t, x) < F(t, x), (t, x) ∈ G. (2.3)

If φ(t) (t ∈ U1) and Φ(t) (t ∈ U2) are the solutions of Cauchy problems

ẋ = f(t, x), (t, x) ∈ G,

x(τ) = ξ,

ẋ = F(t, x), (t, x) ∈ G,

x(τ) = ξ,

(2.4)

respectively, then for t ∈ (τ,∞) ∩U1 ∩U2,

φ(t) < Φ(t) (2.5)

and for t ∈ (−∞, τ) ∩U1 ∩U2,

φ(t) > Φ(t). (2.6)

Definition 2.2. For a given classN of admissible impulsive time sequence, the solution of (2.1)
is called mean squarely stable if for any ε > 0, there exists a scalar δ > 0, such that the initial
function ϕ ∈ PCb

F0
(δ) implies E{‖x(t)‖2} < ε, t ≥ t0 for all admissible time sequence in N.

Definition 2.3 (see Yang et al. [9]). The function V : [t0 − τ,∞) × R
n → R

+ belongs to class
V(1,2) if

(1) the function V (t, x) is continuously differentiable in t and twice continuously
differentiable in x on each of the sets [tk−1, tk) × R

n, (k = 1, 2, . . .) and for all t ≥ t0,
V (t, 0) ≡ 0,

(2) V (t, x) is locally Lipschitaian in x,
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(3) for each k = 1, 2, . . ., there exist finite limits

lim
(t,y)→(t−k ,x)

V
(
t, y
)
= V

(
t−k, x

)
, lim

(t,y)→(t+k ,x)
V
(
t, y
)
= V

(
t+k, x

)
,

V
(
t+k, x

)
= V (tk, x).

(2.7)

3. Main Results

Theorem 3.1. Assume that there exist scalars λ2 > λ1 > 0, λτ > 0, β > 0, λ ≤ 0, ρ > 0 matrix P > 0
and Lyapunov-Krasovskii functional V (t, x(t)) ∈ V(1,2), such that

(C1) λ1‖x(t)‖2 ≤ V (t, x(t)) ≤ λ2‖xt‖2τ ,
(C2) ELV (t, x(t)) ≤ λEV (t, x(t)) + λτEV (t, xt), t ∈ [tk−1, tk), k = 1, 2, . . ., whenever

EV (t, xt) ≤ (μ + ρ)EV (t, x(t)),

(C3) μ = supk∈N
{λ′

k
= (λ2/λ1)γ2k} > 1 and λ + (μ + ρ)λτ ≤ −((ln(μ + ρ))/β),

then the trivial solution of system (2.1) is mean squarely stable over Ninf(τ + β).

Proof. For any given ε > 0, choose 0 < δ ≤√λ1/(μ + ρ)λ2ε. We assume that the initial function
ϕ ∈ PCb

F0
(δ) and denote the solution x(t, t0, ϕ) of system (2.1) through (t0, ϕ) by x(t). In the

following, wewill prove that x(t) is mean square stable overNinf(τ+β). For V (t, x(t)) ∈ V(1,2),
by Itô formula, for t /= tk, k = 1, 2, . . ., we have

dV (t, x(t)) = LV (t, x(t))dt + Vx(t, x(t))g(t, x(t))dω(t), (3.1)

where LV (t, x(t)) = Vt(t, x(t)) + Vx(t, x(t))f + (1/2) tr(gTVxxg).
For t ∈ [tk−1, tk), k = 1, 2, . . ., integrate (3.1) from tk−1 to t, we have

V (t, x(t)) = V (tk−1, x(tk−1)) +
∫ t

tk−1
LV (s, x(s))ds +

∫ t

tk−1
Vx(s, x(s))g(s, x(s))dω(s). (3.2)

Taking the mathematical expectation of both sides of the above equation, we obtain

EV (t, x(t)) = EV (tk−1, x(tk−1)) +
∫ t

tk−1
ELV (s, x(s))ds. (3.3)

So for s ∈ [t, t + Δt] with t + Δt ∈ [tk−1, tk) and Δt > 0, if EV (s, xs) ≤ (μ + ρ)EV (s, x(s)), then
we have by (C2)

EV (t + Δt, x(t + Δt)) − EV (t, x(t)) =
∫ t+Δt

t

ELV (s, x(s))ds

≤
∫ t+Δt

t

(λEV (s, x(s)) + λτEV (s, xs))ds.

(3.4)
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In what follows, we first prove that for t ∈ [t0 − τ, t1),

EV (t, x(t)) ≤ λ1ε
2. (3.5)

Obviously, for t ∈ [t0 − τ, t0], by (C1) and xt0 ∈ PCb
F0
(δ), we obtain

EV (t, x(t)) ≤ λ2E
{
‖xt0‖2τ

}
≤ λ2δ

2 ≤ λ1
μ + ρ

ε2 < λ1ε
2. (3.6)

Now it needs only to prove that for t ∈ (t0, t1), (3.5) holds. Otherwise, there exists s ∈ (t0, t1),
such that

EV (s, x(s)) > λ1ε
2. (3.7)

Set

s1 = inf
{
t ∈ (t0, t1) : EV (t, x(t)) > λ1ε

2
}
, (3.8)

then by (3.6), (3.7), and the continuity of EV (t, x(t)) on [t0, t1), we know that s1 ∈ (t0, t1),

EV (s1, x(s1)) = λ1ε
2, (3.9)

and for t ∈ [t0 − τ, s1], (3.5) holds. Set

s2 = sup
{
t ∈ [t0, s1) : EV (t, x(t)) ≤ λ1

μ + ρ
ε2
}
, (3.10)

then by (3.6) and the continuity of EV (t, x(t)), we have s2 ∈ [t0, s1),

EV (s2, x(s2)) =
λ1

μ + ρ
ε2, (3.11)

and for t ∈ [s2, s1],

EV (t, xt) ≤ λ1ε
2 ≤ (μ + ρ

)
EV (t, x(t)), (3.12)

which implies with (3.4) and (C3) that for t ∈ [s2, s1],

D+
EV (t, x(t)) ≤ λEV (t, x(t)) + λτEV (t, xt) ≤

(
λ + λτ

(
μ + ρ

))
EV (t, x(t)) ≤ 0. (3.13)

This is a contradiction with (3.9) and (3.11).
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Now, we assume that, for t ∈ [tm−1, tm), m = 1, 2, . . . , k, (3.5) holds. For m = k + 1, we
will show that (3.5) holds. To this end, we first prove that for θ ∈ [−τ, 0],

EV
(
t−k + θ, x

(
t−k + θ

)) ≤ λ1
μ + ρ

ε2. (3.14)

Noticing [tk − τ, tk) ⊂ [tk−1, tk), we assume that there exists some s ∈ [tk − τ, tk], such that

EV
(
s−, x

(
s−
))

>
λ1

μ + ρ
ε2, (3.15)

then there are two cases to be considered.

(i) For all t ∈ [tk−1, s], EV (t−, x(t−)) > (λ1/(μ + ρ))ε2. Hence, for t ∈ [tk−1, s], (3.12) and
(3.13) hold, which follows by (C3), (3.5), and Lemma (2.1),

EV
(
s−, x

(
s−
)) ≤ exp

{(
λ +

(
μ + ρ

)
λτ
)
(s − tk−1)

}
EV (tk−1, x(tk−1))

≤ λ1ε
2 exp

{(
λ +

(
μ + ρ

)
λτ
)
(tk − tk−1 − τ)

}

≤ λ1
μ + ρ

ε2,

(3.16)

this is a contradiction with the assumption.

(ii) There exists some t ∈ [tk−1, s), such that EV (t, x(t)) ≤ (λ1/(μ + ρ))ε2. Set

s1 = sup
{
t ∈ [tk−1, s) : EV (t, x(t)) ≤ λ1

μ + ρ
ε2
}
, (3.17)

then s1 ∈ [tk−1, s),

EV (s1, x(s1)) =
λ1

μ + ρ
ε2 (3.18)

and for t ∈ [s1, s], (3.12) and (3.13) hold, which is a contradiction with (3.15) and
(3.18), that is, (3.14) holds.

By (2.1), (2.2), and (3.14), we have

EV (tk, x(tk)) = EV
(
tk,Hk

(
x
(
t−k
))) ≤ λ2E

{∥∥Hk

(
x
(
t−k
))∥∥2

τ

}
≤ λ2γ

2
kE

{∥∥x
(
t−k
)∥∥2

τ

}

≤ λ2γ
2
k

λ1
sup

−τ≤θ≤0
EV

(
tk + θ, x

(
t−k + θ

)) ≤ λ′k
λ1

μ + ρ
ε2 < λ1ε

2.

(3.19)
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Now we will prove that (3.5) holds for t ∈ [tk, tk+1). Otherwise, there exists some
t ∈ (tk, tk+1), such that (3.7) holds. Let

s1 = inf
{
t ∈ (tk, tk+1) : EV (t, x(t)) > λ1ε

2
}
. (3.20)

Then by (3.14), (3.19), and the continuity of EV (t, x(t)) on [tk, tk+1), we know that s1 ∈
(tk, tk+1) and EV (s1, x(s1)) = λ1ε

2. If there exists t ∈ [tk, s1], such that EV (t, x(t)) ≤ (λ1/μ)ε2,
then let

s2 = sup
{
t ∈ [tk, s1) : EV (t, x(t)) ≤ λ1

μ + ρ
ε2
}
. (3.21)

Otherwise, let s2 = tk. Then for t ∈ [s2, s1], we obtain (3.12) and (3.13), which follows a
contradiction.

By mathematical induction, (3.5) holds for anym = 1, 2, . . ., which implies that system
(2.1) is mean squarely stable.

If substituting condition
(C’1) λ1‖x(t)‖2 ≤ V (t, x(t)) ≤ λ2‖x(t)‖2

for (C1) in Theorem (3.1), then we have the following result.

Theorem 3.2. Assume that there exist scalars λ2 > λ1 > 0, λτ > 0, λ ≤ 0, ρ > 0, matrix P > 0 and
Lyapunov-Krasovskii functional V (t, x(t)) ∈ V(1,2), such that conditions (C’1), (C2), and (C3) hold,
then the trivial solution of system (2.1) is mean square stable over Ninf(β).

Proof. The proof is similar to Theorem (3.1), so we omit it. The proof is complete.

Remark 3.3. Comparing the results in Theorems (3.1) and (3.2), we find the influence of the
time delay on the mean square stability of system (2.1).

Remark 3.4. When μ > 1, the impulses which may be destabilizing, so we require the impulses
should not happen so frequently.

When μ = 1, we have the following results.

Theorem 3.5. Assume that there exist scalars λ2 > λ1 > 0, λτ > 0, λ ≤ 0, matrix P > 0 and
Lyapunov-Krasovskii functional V (t, x(t)) ∈ V(1,2), such that condition (C1) and

(C’2) ELV (t, x(t)) ≤ λEV (t, x(t)) + λτEV (t, xt), t ∈ [tk−1, tk), k = 1, 2, . . . whenever
EV (t, xt) ≤ EV (t, xt),

(C’3) μ = supk∈N
{λ′k = (λ2/λ1)γ2k} = 1, λ + λτ ≤ 0

hold, then the trivial solution of system (2.1) is mean squarely stable over any impulsive sequences.

Proof. For any given ε > 0, choose 0 < δ ≤
√
λ1/λ2ε. We assume that the initial function

ϕ ∈ PCb
F0
(δ). In what follows, we first prove that for t ≥ t0, (3.5) holds.

Obviously, for t ∈ [t0 − τ, t0], by (C1) and xt0 ∈ PCb
F0
(δ), we obtain

EV (t, x(t)) ≤ λ2E
{
‖xt0‖2τ

}
≤ λ2δ

2 ≤ λ1ε
2. (3.22)
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Now we should prove that (3.5) holds. Otherwise, there exists s ∈ (t0, t1), such that (3.7)
holds. By (3.22) and the continuity of EV (t, x(t)) on [t0, t1), we know there exist t ∈ [t0, t1)
and small scalar ρ > 0, such that

EV
(
t, x
(
t
))

= λ1ε
2 (3.23)

and for every t1, t2 ∈ [t, t + ρ], t1 < t2,

EV
(
t1, x

(
t1
))

< EV
(
t2, x

(
t2
))

. (3.24)

Let s = inf{t ∈ [t0, t1) : EV (t, x(t)) = λ1ε
2,EV (u, x(u)) > λ1ε

2, u ∈ (t, t + ρ1] ⊂ [t0, t1),
EV (t1, x(t1)) < EV (t2, x(t2)), for every t1, t2 ∈ [t, t + ρ1], t1 < t2}, where ρ1 > 0 is some
scalar. Then [s, s + ρ1] ⊂ [t0, t1) and for t ∈ [s, s + ρ1],

EV (t, xt) ≤ EV (t, x(t)), (3.25)

which implies with (C’2) and (C’3) that for t ∈ [s, s + ρ1],

D+
EV (t, x(t)) ≤ λEV (t, x(t)) + λτEV (t, xt) ≤ (λ + λτ)EV (t, x(t)) ≤ 0. (3.26)

This is a contradiction with the fact EV (s+ρ1, x(s+ρ1)) > EV (s, x(s)), that is, for t ∈ [t0−τ, t1),
(3.5) holds.

Now, we assume that, for t ∈ [tm−1, tm), m = 1, 2, . . . , k, (3.5) holds. For m = k + 1, we
will show that (3.5) holds. To this end, we first prove that

EV (tk, x(tk)) ≤ λ1ε
2. (3.27)

In fact, by (2.1), (2.2), (C1), and (C’3)

EV (tk, x(tk)) = EV
(
tk,Hk

(
x
(
t−k
))) ≤ λ2E

{∥∥Hk

(
x
(
t−k
))∥∥2

τ

}

≤ λ2γ
2
kE

{∥∥x
(
t−k
)∥∥2

τ

}
≤ λ2γ

2
k

λ1
EV

(
tk, x

(
t−k
))

≤ λ1ε
2.

(3.28)

Secondly, we assume that there exists s ∈ (tk, tk+1), such that (3.7) holds. By (3.27) and
the continuity of EV (t, x(t)) on [tk, tk+1), we know that there exist t ∈ [tk, tk+1), ρ2 > 0 such
that for every t1, t2 ∈ [t, t + ρ2], t < t2, (3.23) and (3.24) hold.

Let s = inf{t ∈ [tk, tk+1) : EV (t, x(t)) = λ1ε
2,EV (u, x(u)) > λ1ε

2, u ∈ (t, t + ρ2] ⊂
[tk, tk+1),EV (t1, x(t1)) < EV (t2, x(t2)), for every t1, t2 ∈ [t, t + ρ2], t1 < t2}, where ρ2 > 0 is
some scalar.

Then for t ∈ [s, s + ρ2], (3.25) and (3.26) hold. This is a contraction, that is, (3.5) holds
for t ∈ [tk, tk+1). By mathematical induction, (3.5) holds for any m = 1, 2, . . ., which implies
that system (2.1) is mean squarely stable.
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Remark 3.6. When μ = 1, both the continuous dynamics and discrete dynamics are stable
under the conditions in Theorem (3.5), so the impulse system can be mean squarely stable
regardless of how often or how seldom impulses occur.

When μ < 1, we have the following results.

Theorem 3.7. Assume that there exist scalars λ2 > λ1 > 0, λτ > 0, λ ≤ 0, matrix P > 0, and
Lyapunov-Krasovskii functional V (t, x(t)) ∈ V(1,2), such that (C1), (C2), and

(C”3) μ = supk∈N
{λ′k = (λ2/λ1)γ2k} < 1

hold, then

(i) if 0 < μλ + λτ ≤ −λτ lnμ, system (2.1) is mean squarely stable over impulsive time
sequencesNsup(−μ lnμ/(μλ + λτ));

(ii) if μλ + λτ ≤ 0, system (2.1) is mean squarely stable over any impulsive time sequences.

Proof. We prove (i) and omit the proof of (ii).
Because μ < 1 and 0 < μλ + λτ ≤ −λτ lnμ, then there exist a sufficiently small ρ0 > 0,

such that

μ + ρ0 < 1, λ
(
μ + ρ0

)
+ λτ > 0,

− lnμ
λ + μ−1λτ

≤ − ln
(
μ + ρ0

)

λ +
(
μ + ρ0

)−1
λτ

.
(3.29)

For any given ε > 0, choose 0 < δ ≤ √
((μ + ρ0)λ1)/λ2ε. We assume the initial function

ϕ ∈ PCb
F0
(δ). For t ∈ [t0 − τ, t0], by (C1), (3.29), and xt0 ∈ PCb

F0
(δ), we obtain

EV (t, x(t)) ≤ λ2E
{
‖xt0‖2τ

}
≤ λ2δ

2 ≤ λ1
(
μ + ρ0

)
ε2 < λ1ε

2. (3.30)

Now we will prove that (3.5) holds. Otherwise, there exists s ∈ (t0, t1), such that (3.7)
holds. Set

t∗ = inf
{
t ∈ (t0, t1) : EV (t, x(t)) ≥ λ1ε

2
}
, (3.31)

then by (3.7), (3.30), and the continuity of EV (t, x(t)) on [t0, t1), we know that t∗ ∈ (t0, t1),
EV (t∗, x(t∗)) = λ1ε

2. Set

t = sup
{
t ∈ [t0, t∗) : EV (t, x(t)) ≤ λ1

(
μ + ρ0

)
ε2
}
, (3.32)

then by (3.30) and the continuity of EV (t, x(t)), we have t ∈ [t0, t∗), EV (t, x(t)) = λ1(μ + ρ0)ε2

and for t ∈ [t, t∗],

EV (t, xt) ≤ λ1ε
2 ≤ 1

ρ0 + μ
EV (t, x(t)). (3.33)
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Conditions (C2) and (C”3) imply that for t ∈ [t, t∗],

D+
EV (t, x(t)) ≤ λEV (t, x(t)) + λτEV (t, xt) ≤

(
λ +

λτ
μ + ρ0

)
EV (t, x(t)). (3.34)

By Lemma (2.1), (3.29), (3.26), and t1 − t0 ≤ (− lnμ/(λ + (λτ/μ))), we have

EV (t∗, x(t∗)) ≤ exp
{(

λ +
λτ

μ + ρ0

)(
t∗ − t

)}
EV

(
t, x
(
t
))

< exp

{(
λ +

λτ
μ + ρ0

)
(t1 − t0)

}
(
μ + ρ0

)
λ1ε

2

≤ λ1ε
2,

(3.35)

this is a contradiction with the fact EV (t∗, x(t∗)) = λ1ε
2.

Now, we assume that, for t ∈ [tm−1, tm), m = 1, 2, . . . , k, (3.5) holds. For m = k + 1, we
will show that (3.5) holds. To this end, we first prove that

EV (tk, x(tk)) ≤
(
μ + ρ0

)
λ1ε

2. (3.36)

In fact, by (2.1), (2.2), (C1), and (C”3)

EV (tk, x(tk)) = EV
(
tk,Hk

(
x
(
t−k
))) ≤ λ2E

{∥∥Hk

(
x
(
t−k
))∥∥2

τ

}

≤ λ2γ
2
kE

{∥∥x
(
t−k
)∥∥2

τ

}
≤ λ2γ

2
k

λ1
EV

(
tk, x

(
t−k
))

≤ (μ + ρ0
)
λ1ε

2.

(3.37)

Secondly, we assume that there exists s ∈ (tk, tk+1), such that (3.7) holds. Set

t∗ = inf
{
t ∈ (tk, tk+1) : EV (t, x(t)) ≥ λ1ε

2
}
,

t = sup
{
t ∈ [tk, t∗) : EV (t, x(t)) ≤ λ1

(
μ + ρ0

)
ε2
}
,

(3.38)

then by (3.37) and the continuity of EV (t, x(t)) on [tk, tk+1), we have t∗ ∈ (tk, tk+1), t ∈ [tk, t∗)
and EV (t∗, x(t∗)) = λ1ε

2, EV (t, x(t)) = (μ + ρ0)λ1ε2.
On the other hand, for t ∈ [t, t∗], (3.33) and (3.34) hold, which lead to a contradiction,

that is, (3.5) holds for t ∈ [tk, tk+1). By mathematical induction, (3.5) holds for anym = 1, 2, . . .,
which implies that system (2.1) is mean squarely stable.
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4. Application and Numerical Example

As an application, we consider the stochastic impulsive Hopfield neural network with delays
in Yang et al. [9] as follows:

dx(t) =
[−Cx(t) +Af(x(t)) + Bg(xt)

]
dt + σ(t, x(t), xt)dω(t), t ≥ t0, t /= tk,

x(tk) = Hk

(
x
(
t−k
))
, k = 1, 2, . . . ,

x(t0 + θ) = ϕ(θ), s ∈ [−τ, 0],
(4.1)

where the initial value ϕ(s) ∈ PCb
F0
(δ), x(t) = (x1(t), x2(t), . . . , xn(t))

T ∈ R
n is the

state vector, C = diag(c1, c2, . . . , cn), ci > 0 is the neuron-charging time constant,
A = (aij)n×n are, respectively, the connection weight matrix, the discretely delayed
connection weight matrix. f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))

T ∈ R
n and g(xt) =

(g1(x1t), g2(x2t), . . . , gn(xnt))Rn, where fi(xi(t)) and gi(xit) denote, respectively, the measures
of response or activation to its incoming potentials of the unit i at time t and time t − τi. We
also assume that Hk(0) = 0, (k = 1, 2, . . .), f(0) = 0, g(0) = 0, and σ(t, 0, 0) = 0, then system
(4.1) admits an equilibrium solution x(t) ≡ 0. Moreover, we assume that H(·) satisfies (2.2),
and f(·), g(·), σ(·) satisfy

∥∥f(x(t))
∥∥ ≤ ‖Fx(t)‖, ∥∥g(xt)

∥∥ ≤ ‖Gxt‖, (4.2)

tr
[
σT (t, x(t), xt)σ(t, x(t), xt)

]
≤ ‖Kx(t)‖2 + ‖Kτxt‖2, (4.3)

where F, G, K, and Kτ are known constant matrices with appropriate dimensions.

Corollary 4.1. Assume that there exist positive scalars ε1, ε2, β, symmetric matrix P > 0 and μ =
supk∈N

{λ′k = (λmax(P)/λmin(P))γ2k}. Then the following results hold:

(i) if μ > 1, λ+μλτ < − lnμ/β, then system (4.1) is mean squarely stable over impulsive time
sequenceNinf(τ + β);

(ii) if μ = 1, λ + λτ ≤ 0, then system (4.1) is mean squarely stable over any impulsive time
sequence;

(iii) if μ < 1 and 0 < μλ + λτ ≤ −λτ lnμ, then system (4.1) is mean squarely stable over
impulsive time sequence Nsup(−μ lnμ/(μλ + λτ));

(iv) if μ < 1, μλ + λτ ≤ 0, then system (4.1) is mean squarely stable over any impulsive time
sequence, where

λ = λmax

(
−2C + ε1AATP + ε2BB

TP + P−1
(
ε−11 FTF + λmax(P)KTK

))
,

λτ = λmax

(
P−1

(
ε−12 GTG + λmax(P)KT

τ Kτ

))
.

(4.4)



12 International Journal of Differential Equations

Remark 4.2. Obviously, for this application, we extended and improved the according results
in Yang et al. [9].

By Corollary (4.1), we consider the numerical example in Yang et al. [9].

[
dx1(t)

dx2(t)

]

=

⎧
⎪⎪⎨

⎪⎪⎩

[−10.5 0

0 −12.2

][
x1(t)

x2(t)

]

+

[
1.2 −0.2
0.6 2.4

][
sinx1(t)

arctanx2(t)

]

+

[
1.6 0.3

−0.5 1.8

]

×

⎡

⎢
⎢
⎣

sinx1

(
t − 1

2

)

arctanx2

(
t − 1

2

)

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
dt +

⎡

⎢
⎢
⎣

2x1(t) x2

(
t − 1

3

)

x1

(
t − 1

2

)
−x2(t)

⎤

⎥
⎥
⎦

[
dω1(t)

dω2(t)

]

, t ≥ t0, t /= tk,

[
x1(tk)

x2(tk)

]

= e−0.1k
[
0.5 −0.15
0.12 0.6

][
x1
(
t−k
)

x2
(
t−k
)

]

, k = 1, 2, . . . ,

(4.5)

where t0 = 0.
Similar to the result, we can verify that the point (0, 0)T is an equilibrium point and

can obtain by calculation that

P =

(
0.56 0

0 0.68

)

, KTK =

(
4 0

0 1

)

, (4.6)

and εi = 1 (i = 1, 2), λmax(P) = 0.68, λmin(P) = 0.56, γk = 0.620 exp(−0.1k), KT
τ Kτ = I, F = G =

I, μ = 0.4668 < 1, λ = −12.0443, λτ = 3, and, hence, we have μλ + λτ = −2.6223, which implies
by (iv) in Corollary (4.1) that the above system is mean squarely stable over any impulsive
time sequence.

5. Conclusion

In this paper, mean square stability of a class of impulsive stochastic differential equations
with time delay has been considered. By Lyapunov-Krasovakii function and stochastic
analysis, we obtain some new criteria ensuring mean square stability of the system (2.1).
Some related results in Chen and Zheng [3] and Yang et al. [9] have been improved.
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