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By using the bifurcation theory of dynamical systems, we study the coupled Higgs field equation
and the existence of new solitary wave solutions, and uncountably infinite many periodic wave
solutions are obtained. Under different parametric conditions, various sufficient conditions to
guarantee the existence of the above solutions are given. All exact explicit parametric represen-
tations of the above waves are determined.

1. Introduction

Recently, by using an algebraicmethod, Hon and Fan [1] studied the following coupledHiggs
field equation:

utt − uxx − αu + β|u|2u − 2uv = 0, vtt + vxx − β
(
|u|2
)
xx

= 0. (1.1)

The Higgs field equation [2] describes a system of conserved scalar nucleons interacting
with neutral scalar mesons. Here, real constant v represents a complex scalar nucleon field
and u(x, t) a real scalar meson field. Equation (1.1) is the coupled nonlinear Klein-Gordon
equation for α < 0, β < 0 and the coupled Higgs field equation for α > 0, β > 0. The
existence of N-soliton solutions for (1.1) has been shown by the Hirota bilinear method
[3].

It is very important to consider the bifurcation behavior for the traveling wave solu-
tions of (1.1). In this paper, we consider (1.1) and its traveling wave solutions in the form of

u(x, t) = φ(ξ)eiη(ξ), v(x, t) = v(ξ), ξ = x − ct. (1.2)
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Substitute (1.2) into (1.1) and for c2 − 1/= 0 reduce system (1.1) to the following system of or-
dinary differential equations:

(
c2 − 1
)
φ′′ −
(
c2 − 1
)
φ
(
η′
)2 − αφ + βφ3 − 2φv = 0,

2φ′η′ + φη′′ = 0,
(
c2 + 1
)
v′′ − β
(
φ2
)′′

= 0,

(1.3)

where “′” is the derivative with respect to ξ. Integrating second equation of (1.3) once and
integrating third equation of (1.3) twice, respectively, we have

η′ =
g2

φ2 , v =
βφ2 + g1
c2 + 1

, (1.4)

where g2 /= 0, g1 are integral constants. Substituting (1.4) into first equation of (1.3), we have

(
c2 − 1
)
φ′′ −
(
c2 − 1
)g2

2

φ3 −
(
α +

2g1
c2 + 1

)
φ +

β
(
c2 − 1
)

c2 + 1
φ3 = 0. (1.5)

Equation (1.5) is equivalent to the two-dimensional systems as follows:

dφ

dξ
= y,

dy

dξ
= a
[
φ3 + bφ + eφ−3

]
(1.6)

with the first integral

y2 = a
(
1
2
φ4 + bφ2 − eφ−2 + h

)
, (1.7)

H
(
φ, y
)
=
y2

a
− 1
2
φ4 − bφ2 + eφ−2 = h, (1.8)

where a = −β/(c2 + 1), b = −(α(c2 + 1) + 2g1)/β(c2 − 1), e = −g2
2(c

2 + 1)/β /= 0, ae > 0.
System (1.6) is a 3-parameter planar dynamical system depending on the parameter

group (a, b, e). For a fixed a, we will investigate the bifurcations of phase portraits of
(1.6) in the phase plane (φ, y) as the parameters b, e are changed. Here we are considering
a physical model where only bounded traveling waves are meaningful. So we only pay
attention to the bounded solutions of (1.6).

Suppose that φ(ξ) is a continuous solution of (1.6) for ξ ∈ (−∞,∞) and limξ→∞φ(ξ) =
a1, limξ→−∞φ(ξ) = a2. Recall that (i) φ(x, t) is called a solitary wave solution if a1 = a2;
(ii) φ(x, t) is called a kink or antikink solution if a1 /=a2. Usually, a solitary wave solution
of (1.6) corresponds to a homoclinic orbit of (1.6); a kink (or antikink) wave solution (1.6)
corresponds to a heteroclinic orbit (or the so-called connecting orbit) of (1.6). Similarly, a
periodic orbit of (1.6) corresponds to a periodically traveling wave solution of (1.6). Thus,
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to investigate all possible bifurcations of solitary waves and periodic waves of (1.6), we
need to find all periodic annuli and homoclinic orbits of (1.6), which depend on the system
parameters. The bifurcation theory of dynamical systems (see [4–11]) plays an important role
in our study.

The paper is organized as follows. In Section 2, we discuss bifurcations of phase
portraits of (1.6), where explicit parametric conditions will be derived. In Section 3, all explicit
parametric representations of bounded traveling wave solutions are given. Section 4 contains
the concluding remarks.

2. Bifurcations of Phase Portraits of (1.6)

In this section, we study all possible periodic annuluses defined by the vector fields of (1.6)
when the parameters b, e are varied.

Let dξ = φ3dζ. Then, except on the straight lines φ = 0, the system (1.6) has the same
topological phase portraits as the following system:

dφ

dζ
= φ3y,

dy

dζ
= a
[
φ6 + bφ4 + e

]
. (2.1)

Now, the straight lines φ = 0 is an integral invariant straight line of (2.1).
Denote that

f
(
φ
)
= φ6 + bφ4 + e, f ′(φ) = 2φ3

(
3φ2 + 2b

)
. (2.2)

When φ = φ± = ±
√
−2b/3, f ′(φ±) = 0. We have

f
(
φ±
)
=

4b3

27
+ e, (2.3)

which implies the relations in the (b, e)-parameter plane

L : e = −4b
3

27
. (2.4)

Thus, we have the following.

(i) If f(φ±) < 0, f(0) > 0, there exist 4 equilibrium points of (2.1): φ1 < φ2 ≤ 0 < φ3 < φ4.

(ii) If f(φ±) < 0, f(0) < 0, there exist 2 equilibrium points of (2.1): φ1 ≤ 0 < φ2.

(iii) If f(φ±) > 0, f(0) > 0, there exist no equilibrium points of (2.1).

Let M(φe, ye) be the coefficient matrix of the linearized system of (2.1) at an equilib-
rium point (φe, ye). Then, we have

J
(
φe, 0
)
= det
(
M
(
φe, 0
))

= aφ3
ef

′(φe
)
= −2aφ6

e

(
3φ2

e + 2b
)
. (2.5)
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By the theory of planar dynamical systems, we know that for an equilibrium point of a
planar integrable system, if J < 0, then the equilibrium point is a saddle point; if J > 0 and
Trace (M(φe, ye)) = 0, then it is a center point; if J > 0 and (Trace (M(φe, ye))2−4J(φe, ye) > 0
then it is a node; if J = 0 and the index of the equilibrium point is 0, then it is a cusp; otherwise,
it is a high-order equilibrium point.

For the function defined by (1.8), we denote that

hi = H
(
φi, 0
)
= −1

2

(
3bφ2

i − eφ−2
i

)
, i = 1–4. (2.6)

We next use the above statements to consider the bifurcations of the phase portraits of
(2.1). In the (b, e)-parameter plane, the curves L and the straight line e = 0 partition it into 4
regions shown in Figure 1.

We use Figures 2 and 3 to show the bifurcations of the phase portraits of (2.1). Notice
that for a > 0, e < 0, (b, e) ∈ (III)

⋃
(IV ) or for a < 0, e > 0, (b, e) ∈ (I)

⋃
(II), and we have

ae < 0, So that we would not give the phase portrait of (2.1) for these cases.

Case 1 (a > 0). We use Figure 2 to show the bifurcations of the phase portraits of (2.1).

Case 2 (a < 0). We use Figure 3 to show the bifurcations of the phase portraits of (2.1).

3. Exact Explicit Parametric Representations of Traveling Wave
Solutions of (1.6)

In this section, we give all exact explicit parametric representations of solitary wave solutions
and periodic wave solutions. Denote that sn(x, k) is the Jacobian elliptic functions with the
modulus k and

∏
(ϕ, α2, k) is Legendre’s incomplete elliptic integral of the third kind (see

[12]).
(1) Suppose that a > 0, (b, e) ∈ (II). Notice thatH(φ1, 0) = −(1/2)φ4

1−bφ2
1 +eφ

−2
1 = h1,

corresponding to H(φ, y) = h1 defined by (1.8), and we see from (1.6) that the arch curve
connects A(φ1, 0) (see Figure 2(b)). The arch curve has the algebraic equation

y2 = a
(
1
2
φ4 + bφ2 − eφ−2 + h1

)

= a
(
φ2 − ψ3

)2[1
2
+
(
b + ψ3
)
φ−2
]
,

(3.1)

where ψ3 > ψ2 > 0 > ψ1 satisfies the equation

ψ3 + bψ2 + e = 0. (3.2)
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Figure 1: The bifurcation set of (1.6) in (b, e)-parameter plane.
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Figure 2: The phase portraits of (2.1) for a > 0.

By using the first equations of (1.6) and (3.1), we obtain the parametric representation
of (1.6), a smooth solitary wave solution of valley type and a smooth solitary wave solution
of peak type as follows:

φ(ξ) = ±

√√√√−2(b + ψ3
)
+ 2
(
b +

3
2
ψ3

)
tanh2

√
a

(
b +

3
2
ψ3

)
ξ. (3.3)
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Figure 3: The phase portraits of (2.1) for a < 0.

Thus, (1.1) has the following solitary wave solution of valley type and a solitary wave
solution of peak type as follows:

u1 = ±

√√√√−2(b + ψ3
)
+ 2
(
b +

3
2
ψ3

)
tanh2

√
a

(
b +

3
2
ψ3

)
ξeiη1(ξ),

v1 =
−2β
[(
b + ψ3
) − (b + (3/2)ψ3

)
tanh2
√
a
(
b + (3/2)ψ3

)
ξ
]
+ g1

c2 + 1
,

η1 =
g2
ψ3

⎡
⎣ξ +
√

−1
a
(
b + ψ3
) arctan

⎛
⎝
√
−b + (3/2)ψ3

b + ψ3
tanh2
√
a
(
b + ψ3
)
ξ

⎞
⎠
⎤
⎦.

(3.4)

(2) Suppose that a < 0, (b, e) ∈ (III)
⋃
(IV ). Notice that H(φ1, 0) = H(φ2 = −φ1, 0) =

−(1/2)φ4
1 − bφ2

1 + eφ
−2
1 = h1, corresponding to H(φ, y) = h, h ∈ (−∞, h1) defined by (1.8),

and system (1.6) has two families of periodic solutions enclosing the center A+(φ1, 0) and
A−(−φ1, 0), respectively. These orbits determine uncountably infinite many periodic wave
solutions of (1.1) (see Figures 3(a) and 3(b)). These orbits have the algebraic equation

y = ±
√

a

φ2

(
1
2
φ6 + bφ4 − e + hφ2

)
. (3.5)

Integrating them along the periodic orbits, it follows that

∫
φdφ√

−φ6 − 2bφ4 − 2hφ2 + 2e
= ±
√−a

2
ξ. (3.6)
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Substituting φ2 = ψ into (3.6), we have

∫
dψ√(

ψM − ψ)(ψ − ψl
)(
ψ − ψm

) = ±1
2

√−a
2
ξ, (3.7)

where ψM > ψl > 0 > ψm. From (3.7), we have

φ = ±
√√√√ ψl
(
ψM − ψm

) − ψm
(
ψM − ψl

)
sn2(Ω1ξ, k1)

ψl
(
ψM − ψm

)(
1 − (ψM − ψl

)
sn2(Ω1ξ, k1)

) , (3.8)

where Ω1 = (1/4)
√−a(ψM − ψm)/2, k21 = (ψM − ψl)/(ψM − ψm).

Thus, (1.1) has the following uncountably infinite many periodic wave solutions as
follows:

u2 = ±
√√√√ ψl
(
ψM − ψm

) − ψm
(
ψM − ψl

)
sn2(Ω1ξ, k1)

ψl
(
ψM − ψm

)(
1 − (ψM − ψl

)
sn2(Ω1ξ, k1)

)eiη2(ξ),

v2 =
1

c2 + 1

[
β
ψl
(
ψM − ψm

) − ψm
(
ψM − ψl

)
sn2(Ω1ξ, k1)

ψl
(
ψM − ψm

)(
1 − (ψM − ψl

)
sn2(Ω1ξ, k1)

) + g1
]
,

η2 =
g2

α2Ω1

[(
α2 − α21

)∏(
ϕ, α2, k1

)
+ α21ξ
]
,

(3.9)

where α21 = ψM − ψl, α2 = ψm(ψM − ψl)/ψl(ψM − ψm), ϕ = amξ.

4. Conclusion

In this paper, we have considered all traveling wave solutions for the coupled Higgs field
equation (1.1) in its parameter space, by using the method of dynamical systems. We obtain
all parametric representations for solitary wave solutions and uncountably infinite many
periodic wave solutions of (1.1) in different parameter regions of the parameter space.
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