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We derive some simple sufficient conditions on the amplitude 𝑎(𝑥), the phase 𝜑(𝑥), and the instantaneous frequency 𝜔(𝑥) such
that the so-called chirp function 𝑦(𝑥) = 𝑎(𝑥)𝑆(𝜑(𝑥)) is fractal oscillatory near a point 𝑥 = 𝑥

0
, where 𝜑󸀠(𝑥) = 𝜔(𝑥) and 𝑆 = 𝑆(𝑡)

is a periodic function on R. It means that 𝑦(𝑥) oscillates near 𝑥 = 𝑥
0
, and its graph Γ(𝑦) is a fractal curve in R2 such that its box-

counting dimension equals a prescribed real number 𝑠 ∈ [1, 2) and the 𝑠-dimensional upper and lower Minkowski contents of Γ(𝑦)
are strictly positive and finite. It numerically determines the order of concentration of oscillations of 𝑦(𝑥) near 𝑥 = 𝑥

0
. Next, we

give some applications of the main results to the fractal oscillations of solutions of linear differential equations which are generated
by the chirp functions taken as the fundamental system of all solutions.

1. Introduction

The brilliant heuristic approach of Tricot [1] to the fractal
curves such as the graph of functions 𝑦(𝑥) = 𝑥𝛼 sin𝑥−𝛽 and
𝑦(𝑥) = 𝑥

𝛼 cos𝑥−𝛽 gave the main motivation for studying the
fractal properties near 𝑥 = 0 of graph of oscillatory solutions
of various types of differential equations: linear Euler-type
equation 𝑦󸀠󸀠 + 𝜆𝑥−𝜎𝑦 = 0 (see [2]), general second-order
linear equation 𝑦󸀠󸀠 + 𝑓(𝑥)𝑦 = 0 (see [3]) where 𝑓(𝑥) satisfies
the Hartman-Wintner asymptotic condition near 𝑥 = 0, half-
linear equation (|𝑦󸀠|𝑝−2𝑦󸀠)󸀠+𝑓(𝑥)|𝑦|𝑝−2𝑦 = 0 (see [4]), linear
self-adjoint equation (𝑝(𝑥)𝑦󸀠)󸀠 + 𝑞(𝑥)𝑦 = 0 (see [5]), and 𝑝-
Laplace differential equations in an annular domain (see [6]).

A function𝑦(𝑥) is said to be a chirp function if it possesses
the form 𝑦(𝑥) = 𝑎(𝑥)𝑆(𝜑(𝑥)), where 𝑎(𝑥) and 𝜑(𝑥) denote,
respectively, the amplitude and phase of 𝑦(𝑥), and 𝑆(𝑡) is a
periodic function on R. In all previously mentioned papers
[2–5], authors are dealing with the fractal oscillations of
second-order differential equations and are deriving some
sufficient conditions on the coefficients of considered equa-
tions such that all their solutions 𝑦(𝑥) together with the first
derivative 𝑦󸀠(𝑥) admit asymptotic behaviour near 𝑥 = 0. It

is formally written in the form of a chirp function, that is,
𝑦(𝑥) = 𝑎(𝑥) sin(𝜑(𝑥)) and 𝑦󸀠(𝑥) = 𝑏(𝑥) cos(𝜑(𝑥)) near 𝑥 =
0. According to it, one can say that the asymptotic formula
for solutions of considered equations satisfies the chirp-like
behaviour near 𝑥 = 0 (on the asymptotic formula for solu-
tions near 𝑥 = ∞, see [7, 8]). Then, in the dependence
of a prescribed real number 𝑠 ∈ [1, 2), authors give some
asymptotic conditions on 𝑎(𝑥), 𝑏(𝑥), and 𝜑(𝑥) such that all
solutions 𝑦(𝑥) are fractal oscillatory near 𝑥 = 0 with the
fractal dimension 𝑠.

In this paper, independently of the asymptotic theory of
differential equations, we firstly study the fractal oscillations
of a chirp function; see Theorems 8 and 11. Second, taking
two linearly independent chirp functions 𝑦

1
(𝑥) and 𝑦

2
(𝑥),

we generate some new classes of fractal oscillatory linear
differential equations which are not considered in [2–5] and
have the general solution in the form of 𝑦(𝑥) = 𝑐

1
𝑦
1
(𝑥) +

𝑐
2
𝑦
2
(𝑥); seeTheorems 16 and 17 (on some detailed description

of the solution space of the second-order linear differential
equations and on their constructions, we refer the reader
to [9, 10]). Finally, we suggest that the reader considers the
fractal oscillations near an arbitrary real point 𝑥 = 𝑥

0
instead

of 𝑥 = 0 and studies the fractal oscillations near 𝑥 = 𝑥
0
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from the left side and from both sides; seeTheorem 24. Many
examples are considered to show the originality of obtained
results.

The chirp functions are also appearing in the time-
frequency analysis; see for instance, [11–15] as well as in
several applications of the time-frequency analysis; see for
instance, [16–20].

2. Statement of the Main Results

We study some local asymptotic behaviours of fractal types
for the so-called chirp function as follows:

𝑦 (𝑥) = 𝑎 (𝑥) 𝑆 (𝜑 (𝑥)) , 𝑥 ∈ (0, 𝑡
0
] , (1)

where 𝑡
0
> 0, the amplitude 𝑎 = 𝑎(𝑥) is a nontrivial function

on (0, 𝑡
0
], the phase 𝜑 = 𝜑(𝑥) is singular at 𝑥 = 0 and 𝑆 = 𝑆(𝑡)

is a periodic function on R such as cos(𝑡) and sin(𝑡).
The chirp function (1) is sometimes written in the follow-

ing form in which the so-called instantaneous frequency 𝜔(𝑥)
appears instead of phase 𝜑(𝑥):

𝑦 (𝑥) = 𝑎 (𝑥) 𝑆 (∫

𝑡0

𝑥

𝜔 (𝜉) 𝑑𝜉) , 𝑥 ∈ (0, 𝑡
0
] . (2)

Let for some 𝑡
0
> 0, the functions 𝑎 ∈ 𝐶((0, 𝑡

0
]), 𝜑 ∈

𝐶
2
((0, 𝑡
0
]), and 𝑆 ∈ 𝐶1(R) satisfy the following basic struc-

tural conditions:

𝑎 (𝑥) > 0, 𝑎 (𝑥) is bounded on (0, 𝑡
0
] , (3)

lim
𝑥→+0

𝜑 (𝑥) = ∞, 𝜑 (𝑥) > 0, 𝜑
󸀠
(𝑥) < 0, 𝑥 ∈ (0, 𝑡

0
] ,

(4)

for some 𝜏 > 0, |𝑆 (𝑡 + 𝜏)| = |𝑆 (𝑡)| ∀𝑡 ∈ R,

for some 𝜏
0
∈ R, 𝑆 (𝜏

0
) = 0, 𝑆 (𝑡) ̸= 0

∀𝑡 ∈ (𝜏
0
, 𝜏
0
+ 𝜏) .

(5)

Definition 1. A function 𝑦 ∈ 𝐶((0, 𝑡
0
]) is oscillatory near

𝑥 = 0, if there is a decreasing sequence 𝑥
𝑛
∈ (0, 𝑡

0
] such that

𝑦(𝑥
𝑛
) = 0 for 𝑛 ∈ N, and 𝑥

𝑛
↘ 0 as 𝑛 → ∞; see Figure 1.

It is easy to prove the next proposition.

Proposition 2. Let 𝑎 ∈ 𝐶((0, 𝑡
0
]) satisfy 𝑎(𝑥) > 0 on (0, 𝑡

0
], let

𝜑 ∈ 𝐶((0, 𝑡
0
]) be strictly decreasing on (0, 𝑡

0
], and let 𝑆 ∈ 𝐶(R)

satisfy (5). Then, the following two conditions are equivalent:

(i) the chirp function 𝑦(𝑥) = 𝑎(𝑥)𝑆(𝜑(𝑥)) is bounded and
oscillatory near 𝑥 = 0;

(ii) the amplitude 𝑎(𝑥) is bounded and lim
𝑥→+0

𝜑(𝑥) = ∞.

On the qualitative and oscillatory behaviours of solutions
of differential equations of several types, we refer the reader
to [7, 8].

−0.5

−1
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0.5
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Figure 1: 𝑦 is continuous, bounded, and oscillatory near 𝑥 = 0.

Example 3. The following threemain types of chirp functions
satisfy the conditions (3), (4), and (5):

(i) the so-called (𝛼, 𝛽)-chirps

𝑦
1
(𝑥) = 𝑥

𝛼 cos (𝑥−𝛽) , 𝑦
2
(𝑥) = 𝑥

𝛼 sin (𝑥−𝛽) , (6)

where 𝛼 ≥ 0 and 𝛽 > 0; the first studies on the (𝛼, 𝛽)-
chirps appeared in [1, 13, 14] from different point of
views;

(ii) the so-called logarithmic chirps

𝑦
1
(𝑥) = 𝑥

𝛾 cos (𝜌 log𝑥) , 𝑦
2
(𝑥) = 𝑥

𝛾 sin (𝜌 log𝑥) ,
(7)

where 𝛾 > 0 and 𝜌 ∈ R; this type of chirps appears
in definition of the Lamperti transform (see [11]) and
in the fundamental system of solutions of the famous
Euler equation 𝑦󸀠󸀠 + 𝜆𝑥−2𝑦 = 0 for 𝛾 = 1/2 and 𝜌 =
√𝜆 − 1/4 (see [21]);

(iii) the chirp function of exponential type

𝑦
1
(𝑥) = 𝑥𝑒

−1/(2𝑥) cos (𝑒1/𝑥) ,

𝑦
2
(𝑥) = 𝑥𝑒

−1/(2𝑥) sin (𝑒1/𝑥) .
(8)

Example 4. Let 𝑦
1
(𝑥) = 𝑎(𝑥) cos(𝜑(𝑥)) and 𝑦

2
(𝑥) =

𝑎(𝑥) sin(𝜑(𝑥)), 𝑥 ∈ (0, 𝑡
0
], where the amplitude 𝑎 and phase

𝜑 satisfy (3) and (4), respectively. Then, 𝑦(𝑥) = 𝑐
1
𝑦
1
(𝑥) +

𝑐
2
𝑦
2
(𝑥), 𝑐2
1
+𝑐
2

2
> 0, is also a chirp function which is bounded

and oscillatory near 𝑥 = 0. Indeed, if 𝑐
1
= 0 or 𝑐

2
= 0, then

𝑦(𝑥) = 𝑐
2
𝑦
2
(𝑥) or 𝑦(𝑥) = 𝑐

1
𝑦
1
(𝑥); since 𝑆(𝑡) = cos 𝑡 and

𝑆(𝑡) = sin 𝑡 satisfy (5), both cases 𝑦(𝑥) are chirp functions;
otherwise, we have 𝑦(𝑥) = 𝐴𝑎(𝑥) sin(𝜑(𝑥) + 𝐵), where 𝐴 =
(𝑐
2

1
+ 𝑐
2

2
)
1/2 and 𝐵 = arctan(𝑐

1
/𝑐
2
); obviously, the amplitude

𝐴𝑎(𝑥) and the phase 𝜑(𝑥) + 𝐵 satisfy the required conditions
(3) and (4), respectively.

Next, let

Γ (𝑦) = {(𝑡
1
, 𝑡
2
) ∈ R
2
: 𝑡
1
∈ (0, 𝑡

0
] , 𝑡
2
= 𝑦 (𝑡

1
)}

(9)

denotes the graph of a function 𝑦 ∈ 𝐶((0, 𝑡
0
]). In this paper,

we show that the graph Γ(𝑦) of chirp function (1) is a fractal
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curve in R2 in respect to the Minkowski-Bouligand dimen-
sion dim

𝑀
Γ(𝑦) = 𝑠 (box-counting dimension) and the 𝑠-

dimensional upper and lowerMinkowski contents𝑀∗𝑠(Γ(𝑦))
and𝑀𝑠

∗
(Γ(𝑦)) defined by

dim
𝑀
Γ (𝑦) = lim

𝜀→+0

(2 −

log 󵄨󵄨󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨

log 𝜀
) ,

𝑀
∗𝑠
(Γ (𝑦)) = lim sup

𝜀→+0

(2𝜀)
𝑠−2 󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
,

𝑀
𝑠

∗
(Γ (𝑦)) = lim inf

𝜀→+0

(2𝜀)
𝑠−2 󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
.

(10)

Here, Γ
𝜀
(𝑦) denotes the 𝜀-neighbourhood of graph Γ(𝑦)

defined by

Γ
𝜀
(𝑦) = {(𝑡

1
, 𝑡
2
) ∈ R
2
: 𝑑 ((𝑡

1
, 𝑡
2
) , Γ (𝑦)) ≤ 𝜀} , 𝜀 > 0,

(11)

and 𝑑((𝑡
1
, 𝑡
2
), Γ(𝑦)) denotes the distance from (𝑡

1
, 𝑡
2
) to Γ(𝑦),

and |Γ
𝜀
(𝑦)| denotes the Lebesgue measure of Γ

𝜀
(𝑦). On the

box-counting dimension and the 𝑠-dimensional Minkowski
content, we refer the reader to [22–27].

The main fractal properties considered in the paper are
given in the next definitions.

Definition 5. For a given real number 𝑠 ∈ [1, 2) and a function
𝑦 ∈ 𝐶((0, 𝑡

0
]), which is bounded on (0, 𝑡

0
] and oscillatory

near 𝑥 = 0, it is said that 𝑦(𝑥) is fractal oscillatory near 𝑥 = 0
with the fractal dimension 𝑠, if

dim
𝑀
Γ (𝑦) = 𝑠, 0 < 𝑀

𝑠

∗
(Γ (𝑦)) ≤ 𝑀

∗𝑠
(Γ (𝑦)) < ∞.

(12)

On the contrary, if there is no any 𝑠 ∈ [1, 2) such that Γ(𝑦)
satisfies (12), then 𝑦(𝑥) is not fractal oscillatory near 𝑥 = 0.

Fractal oscillations can be understood also as a refine-
ment of rectifiable and nonrectifiable oscillations. They are
recently studied in [3, 4, 21, 28–30].

Example 6. The chirp functions

𝑦 (𝑥) = 𝑥 cos( 1
𝑥

) , 𝑦 (𝑥) = 𝑥 sin( 1
𝑥

) (13)

are not fractal oscillatory near 𝑥 = 0. In fact,𝑀∗1(Γ(𝑦)) = ∞
and dim

𝑀
Γ(𝑦) = 1 (see [2]). It also implies that𝑀∗𝑠(Γ(𝑦)) =

0 for all 𝑠 ∈ (1, 2) (see [1, 23]), and thus the statement (12) is
not satisfied for any 𝑠 ∈ [1, 2). Hence, 𝑦

1
and 𝑦
2
are not fractal

oscillatory near 𝑥 = 0.

Example 7. Let 𝜌 > 0. It is clear that the chirp functions

𝑦 (𝑥) = √𝑥 cos (𝜌 log𝑥) , 𝑦 (𝑥) = √𝑥 sin (𝜌 log𝑥)
(14)

are oscillatory near 𝑥 = 0. Moreover, the length of Γ(𝑦)
is finite (see [21]), and therefore we observe that 0 <

𝑀
1

∗
(Γ(𝑦)) ≤ 𝑀

∗1
(Γ(𝑦)) < ∞ and dim

𝑀
Γ(𝑦) = 1 (see [22]).

Thus, such chirp functions are fractal oscillatory near 𝑥 = 0
with the fractal dimension 1.

In order to show that the chirp function (1) is fractal
oscillatory near 𝑥 = 0, we need to impose on amplitude 𝑎(𝑥)
the following additional structural condition:

𝑎 ∈ 𝐶
1
((0, 𝑡
0
]) , 𝑎

󸀠
(𝑥) ≥ 0 for 𝑥 ∈ (0, 𝑡

0
] . (15)

Now we are able to state the first main result of the paper.

Theorem 8. Let the functions 𝑎(𝑥), 𝜑(𝑥), and 𝑆(𝑡) satisfy the
structural conditions (3), (4), (5), (15), and

𝜑
󸀠󸀠
(𝑥) > 0 on (0, 𝑡

0
] , lim sup

𝑥→0

(

1

−𝜑
󸀠
(𝑥)

)

󸀠

< ∞. (16)

Let the amplitude 𝑎(𝑥) and the phase 𝜑(𝑥) satisfy the following
asymptotic conditions near 𝑥 = 0:

lim inf
𝑥→0

([−𝜑
󸀠
(𝑥)]

2−𝑠

∫

𝑥

0

𝑎 (𝜉) 𝑑𝜉) > 0, (17)

lim sup
𝑥→0

[𝑥𝑎 (𝑥)]
(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥

𝑎 (𝜉) [−𝜑
󸀠
(𝜉)] 𝑑𝜉 < ∞, (18)

where 𝑠 ∈ (1, 2) is a given real number.Then, the chirp function
(1) is fractal oscillatory near 𝑥 = 0with the fractal dimension 𝑠.

Remark 9. Let 𝑠 ∈ (1, 2). Assume that (15) and (17) hold.
Then,

lim sup
𝑥→0

(𝑥𝑎 (𝑥) [−𝜑
󸀠
(𝑥)]

2−𝑠

) < ∞ (19)

implies

lim sup
𝑥→0

[

1

−𝜑
󸀠
(𝑥)

]

𝑠−1

∫

𝑡0

𝑥

𝑎 (𝜉) [−𝜑
󸀠
(𝜉)] 𝑑𝜉 < ∞ (20)

and (18). Therefore, condition (18) is better than (19) in
Theorem 8.

The proof of Remark 9 is presented in the Appendix.
Theorem 8 can be rewritten in the term of 𝜔(𝑥) instead of

𝜑(𝑥) as follows.

Corollary 10. Let the functions 𝑎(𝑥),𝜔(𝑥), and 𝑆(𝑡) satisfy the
structural conditions (3), (5), (15), and

𝜔 ∈ 𝐶
1
((0, 𝑡
0
]) , 𝜔 (𝑥) > 0, 𝜔

󸀠
(𝑥) < 0

𝑜𝑛 (0, 𝑡
0
] , 𝜔 ∉ 𝐿

1
((0, 𝑡
0
]) ,

lim sup
𝑥→0

(

1

𝜔 (𝑥)

)

󸀠

< ∞.

(21)

Let the amplitude 𝑎(𝑥) and the instantaneous frequency 𝜔(𝑥)
satisfy the following asymptotic conditions near 𝑥 = 0:

lim inf
𝑥→0

([𝜔 (𝑥)]
2−𝑠
∫

𝑥

0

𝑎 (𝜉) 𝑑𝜉) > 0,

lim sup
𝑥→0

[𝑥𝑎 (𝑥)]
(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥

𝑎 (𝜉) 𝜔 (𝜉) 𝑑𝜉 < ∞,

(22)

where 𝑠 ∈ (1, 2) is a given real number.Then, the chirp function
(2) is fractal oscillatory near 𝑥 = 0with the fractal dimension 𝑠.
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Now, we state analogous result to Theorem 8 in the case
of 𝑠 = 1, which will be proved in Section 3.

Theorem 11. Assume that the function 𝑆(𝑡) satisfies (5), 𝑎 ∈
𝐶([0, 𝑡

0
])∩𝐶
1
((0, 𝑡
0
]),𝜑 ∈ 𝐶2((0, 𝑡

0
]) and lim

𝑥→+0
𝜑(𝑥) = ∞.

If 𝑎󸀠 ∈ 𝐿1((0, 𝑡
0
]), and𝜑󸀠𝑎 ∈ 𝐿1((0, 𝑡

0
]), then the chirp function

(1) is fractal oscillatory near 𝑥 = 0with the fractal dimension 1.

In respect to some existing results on the fractal dimen-
sion of graph of chirp functions, previous theorems are the
most simple and general. It is because in [31, 32] authors
require some extra conditions on the chirp function 𝑦(𝑥)
which are not easy to be satisfied in the application, for
instance, the rapid convex-concave properties of 𝑦(𝑥) as in
[31] and a condition on the curvature of 𝑦(𝑥) as in [32].

According to previous theorems, we can show the fractal
oscillations of the so-called (𝛼, 𝛽)-chirp as well as logarithmic
chirp functions.

Example 12. We consider the (𝛼, 𝛽)-chirp 𝑦(𝑥) = 𝑥𝛼𝑆(𝑥−𝛽),
where 𝑆(𝑡) = cos 𝑡 or 𝑆(𝑡) = sin 𝑡 and 𝛽 > 𝛼 ≥ 0. It is fractal
oscillatory near 𝑥 = 0 with the fractal dimension 𝑠 = 2 −
(1 + 𝛼)/(1 + 𝛽). In fact, it is easy to see that 𝑎(𝑥) = 𝑥𝛼, 𝑆(𝑡),
and 𝜑(𝑥) = 𝑥−𝛽 satisfy (3), (4), (5), (15), and (16). When 𝑠 =
2 − (1 + 𝛼)/(1 + 𝛽), we see that

[−𝜑
󸀠
(𝑥)]

2−𝑠

∫

𝑥

0

𝑎 (𝜉) 𝑑𝜉 =

𝛽
(1+𝛼)/(1+𝛽)

1 + 𝛼

> 0,

[𝑥𝑎 (𝑥)]
(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥

𝑎 (𝜉) [−𝜑
󸀠
(𝜉)] 𝑑𝜉

=

𝛽

𝛽 − 𝛼

(1 − 𝑥
𝛽−𝛼
𝑡
𝛼−𝛽

0
) ≤

𝛽

𝛽 − 𝛼

.

(23)

FromTheorem 8, it follows that 𝑦(𝑥) = 𝑥𝛼𝑆(𝑥−𝛽), 𝛽 > 𝛼 ≥ 0,
is fractal oscillatory near 𝑥 = 0 with the fractal dimension
𝑠 = 2 − (1 + 𝛼)/(1 + 𝛽).

Example 13. We consider the (𝛼, 𝛽)-chirp 𝑦(𝑥) = 𝑥𝛼𝑆(𝑥−𝛽)
again, where 𝑆(𝑡) = cos 𝑡 or 𝑆(𝑡) = sin 𝑡. Now, we assume that
0 < 𝛽 < 𝛼. ApplyingTheorem 8, we easily see that it is fractal
oscillatory near 𝑥 = 0 with the fractal dimension 1.

Example 14. We consider the logarithmic chirp functions

𝑦
1
(𝑥) = 𝑥

𝛾 cos (𝜌 log𝑥) , 𝑦
2
(𝑥) = 𝑥

𝛾 sin (𝜌 log𝑥) ,
(24)

where 𝛾 > 0 and 𝜌 > 0. Put 𝑆(𝑡) = cos(−𝑡) or 𝑆(𝑡) = sin(−𝑡),
𝑎(𝑥) = 𝑥

𝛾, and 𝜑(𝑥) = −𝜌 log𝑥. Then, we easily see that
𝑆(𝑡) satisfies (5) and that 𝑎󸀠(𝑥) = 𝛾𝑥

𝛾−1
∈ 𝐿
1
((0, 𝑡
0
]) and

𝑎(𝑥)𝜑
󸀠
(𝑥) = −𝜌𝑥

𝛾−1
∈ 𝐿
1
((0, 𝑡
0
]). Theorem 11 implies that

𝑦
1
(𝑥) and 𝑦

2
(𝑥) are fractal oscillatory near 𝑥 = 0 with the

fractal dimension 1.

Question 1. Is it possible to applyTheorem 8 on the exponen-
tial chirp given in Example 3(iii)?

Example 15. Let 𝑦
1
(𝑥) = 𝑎(𝑥) cos(𝜑(𝑥)) and 𝑦

2
(𝑥) =

𝑎(𝑥) sin(𝜑(𝑥)), 𝑥 ∈ (0, 𝑡
0
], where the amplitude 𝑎(𝑥) and

the phase 𝜑(𝑥) satisfy all assumptions of Theorem 8 for an
arbitrary given 𝑠 ∈ (1, 2). Then, the chirp function 𝑦(𝑥) =
𝑐
1
𝑦
1
(𝑥) + 𝑐

2
𝑦
2
(𝑥), 𝑐2
1
+ 𝑐
2

2
> 0, is also fractal oscillatory

near 𝑥 = 0 with the fractal dimension 𝑠. Indeed, similarly
as in Example 4, 𝑦(𝑥) can be rewritten in the form 𝑦(𝑥) =

𝑑
1
sin(𝜑(𝑥) + 𝑑

2
), where 𝑑

1
̸= 0 and 𝑑

2
∈ R. It is clear that the

function 𝑆(𝑡) = 𝑑
1
sin(𝑡 + 𝑑

2
) satisfies the required condition

(5) and henceTheorem 8 proves that𝑦(𝑥) is fractal oscillatory
near 𝑥 = 0 with the fractal dimension 𝑠.

Next, we pay attention to the fractal oscillations of
solutions of linear differential equations generated by the
system of functions as follows:

𝑦 (𝑥) = 𝑐
1
𝑦
1
(𝑥) + 𝑐

2
𝑦
2
(𝑥) , 𝑐

2

1
+ 𝑐
2

2
> 0,

where

𝑦
1 (
𝑥) = 𝑎 (𝑥) cos (𝜑 (𝑥)) , 𝑦2 (𝑥) = 𝑎 (𝑥) sin (𝜑 (𝑥)) ,

𝑥 ∈ (0, 𝑡
0
] .

(25)

It is not difficult to check that (25) is the fundamental system
of all solutions of the following linear differential equation:

𝑦
󸀠󸀠
+ (−2𝑅

𝑎
− 𝑅
𝜑
󸀠) 𝑦
󸀠
+ (−𝑅

󸀠

𝑎
+ 𝑅
2

𝑎
+ 𝑅
𝑎
𝑅
𝜑
󸀠 + (𝜑

󸀠
)

2

) 𝑦 = 0,

𝑥 ∈ (0, 𝑡
0
] ,

(26)

where 𝑅
𝑓
= 𝑅
𝑓
(𝑥) = 𝑓

󸀠
(𝑥)/𝑓(𝑥) for some 𝐶1-function 𝑓 =

𝑓(𝑥).

Theorem 16. Let the functions 𝑎, 𝜑 ∈ 𝐶2((0, 𝑡
0
]) satisfy struc-

tural conditions (3), (4), and (15) as well as the conditions (16),
(17), and (18) in respect to a given real number 𝑠 ∈ (1, 2).
Then, every nontrivial solution 𝑦 ∈ 𝐶2((0, 𝑡

0
]) of (26) is fractal

oscillatory near 𝑥 = 0 with the fractal dimension 𝑠.

With the help ofTheorem 11, we can state analogous result
to Theorem 16 in the case of 𝑠 = 1.

Theorem 17. Assume that 𝑎 ∈ 𝐶([0, 𝑡
0
])∩𝐶
2
((0, 𝑡
0
]), 𝑎(𝑥) ̸= 0

for 𝑥 ∈ (0, 𝑡
0
], 𝜑 ∈ 𝐶

2
((0, 𝑡
0
]), lim

𝑥→+0
𝜑(𝑥) = ∞, 𝑎󸀠 ∈

𝐿
1
((0, 𝑡
0
]), and 𝜑󸀠𝑎 ∈ 𝐿1((0, 𝑡

0
]). Then, every nontrivial solu-

tion 𝑦 ∈ 𝐶2((0, 𝑡
0
]) of (26) is fractal oscillatory near 𝑥 = 0

with the fractal dimension 1.

The previous two theorems will be proved in Section 4.
Assumptions on the coefficients of (26) in general are dif-
ferent to those considered in [2–5].

When 𝑎󸀠/𝑎 = −(1/2)𝜑󸀠󸀠/𝜑󸀠, then (26) becomes the un-
damped equation

𝑦
󸀠󸀠
+ (

1

2

𝑆der (𝜑
󸀠
) + (𝜑

󸀠
)

2

)𝑦 = 0, 𝑥 ∈ (0, 𝑡
0
] , (27)



International Journal of Differential Equations 5

where 𝑆der(𝑓) denotes the Schwarzian derivative of𝑓 defined
by

𝑆der (𝑓) =
𝑓
󸀠󸀠

𝑓

−

3

2

(

𝑓
󸀠

𝑓

)

2

. (28)

Hence, from Theorem 16, we obtain the following conse-
quence.

Corollary 18. Let the functions 𝑎 ∈ 𝐶
2
((0, 𝑡
0
]) and 𝜑 ∈

𝐶
3
((0, 𝑡
0
]) satisfy structural conditions (3), (4), and (15) as

well as the conditions (16), (17), and (18) in respect to a given
real number 𝑠 ∈ (1, 2). Let 𝑎󸀠/𝑎 = −(1/2)𝜑󸀠󸀠/𝜑󸀠. Then, every
nontrivial solution 𝑦 ∈ 𝐶2((0, 𝑡

0
]) of (27) is fractal oscillatory

near 𝑥 = 0 with the fractal dimension 𝑠.

As a consequence of Theorem 16, and Corollary 18 we
derive the following examples for linear differential equations
of second order having all the solutions to be fractal oscilla-
tory near 𝑥 = 0.

Example 19. The so-called damped chirp equation

𝑦
󸀠󸀠
+

𝛽 − 2𝛼 + 1

𝑥

𝑦
󸀠
+ (

𝛽
2

𝑥
2𝛽+2

−

𝛼 (𝛽 − 𝛼)

𝑥
2

)𝑦 = 0,

𝑥 ∈ (0, 𝑡
0
] ,

(29)

is fractal oscillatory near 𝑥 = 0 with the fractal dimension
2 − (1 + 𝛼)/(1 + 𝛽), where 𝛽 > 𝛼 ≥ 0. When 𝑎(𝑥) = 𝑥𝛼 and
𝜑(𝑥) = 𝑥

−𝛽, (26) becomes (29). It is easy to see that (3), (4),
(15), and (16) are satisfied. In the same as in Example 12, we
see that (17) and (18) hold for 𝑠 = 2 − (1 + 𝛼)/(1 + 𝛽). Hence,
Theorem 16 proves that every nontrivial solution of (29) is
fractal oscillatory near 𝑥 = 0 with the fractal dimension 2 −
(1 + 𝛼)/(1 + 𝛽).

Nowwe assume that 0 < 𝛽 < 𝛼.Then,Theorem 17 implies
that (29) is fractal oscillatory near 𝑥 = 0 with the fractal
dimension 1.

Example 20. The following equation

𝑦
󸀠󸀠
+

1 − 2𝛾

𝑥

𝑦
󸀠
+

𝛾
2
+ 𝜌
2

𝑥
2
𝑦 = 0, 𝑥 ∈ (0, 𝑡

0
] , (30)

is fractal oscillatory near 𝑥 = 0 with the fractal dimension
1, where 𝛾 > 0 and 𝜌 > 0. In the case where 𝑎(𝑥) = 𝑥

𝛾

and 𝜑(𝑥) = −𝜌 log𝑥, (26) becomes (30). We see that 𝑎 ∈
𝐶([0, 𝑡

0
]) ∩ 𝐶

2
((0, 𝑡
0
]), 𝜑 ∈ 𝐶2((0, 𝑡

0
]), lim

𝑥→+0
𝜑(𝑥) = ∞,

𝑎
󸀠
∈ 𝐿
1
((0, 𝑡
0
]), and 𝜑󸀠𝑎 ∈ 𝐿1((0, 𝑡

0
]). Therefore Theorem 17

implies that every nontrivial solution of (30) is fractal
oscillatory near 𝑥 = 0 with the fractal dimension 1.

Question 2. What can we say about the application of Theo-
rem 16 on the case of 𝜑(𝑥) given in Example 3(iii)?

At the end of this section, we suggest that the reader
studies some invariant properties of fractal oscillations of the
chirp function (1) in respect to the translation and reflexion.
Analogously to Definitions 1 and 5, one can define the fractal
oscillations near an arbitrary real point 𝑥 = 𝑥

0
as follows.

−0.5

−0.25 −0.2 −0.15 −0.1

−0.1

−0.3

0.5

1

−0.05

Figure 2: 𝑦 is oscillatory near 𝑥 = 0 from the left side.

Definition 21. Let 𝑥
0
∈ R and 𝛿 > 0. A function 𝑦 ∈

𝐶((𝑥
0
, 𝑥
0
+ 𝛿]) is oscillatory near 𝑥 = 𝑥

0
, if there is a

decreasing sequence 𝑏
𝑛
∈ (𝑥
0
, 𝑥
0
+ 𝛿] such that 𝑦(𝑏

𝑛
) = 0,

for 𝑛 ∈ N, and 𝑏
𝑛
↘ 𝑥
0
as 𝑛 → ∞. Moreover, if the graph

Γ(𝑦) satisfies the condition (12) for some 𝑠 ∈ [1, 2), then 𝑦(𝑥)
is said to be fractal oscillatory near 𝑥 = 𝑥

0
with the fractal

dimension 𝑠.

Definition 22. Let 𝑥
0
∈ R and 𝛿 > 0. It is said that a function

𝑦 ∈ 𝐶([𝑥
0
− 𝛿, 𝑥

0
)) is fractal oscillatory near 𝑥 = 0 from

the left side with the fractal dimension 𝑠 ∈ [1, 2), if there is an
increasing sequence 𝑎

𝑛
∈ [𝑥
0
− 𝛿, 𝑥

0
) such that 𝑦(𝑎

𝑛
) = 0 for

𝑛 ∈ N, 𝑎
𝑛
↗ 𝑥
0
as 𝑛 → ∞, and the graph Γ(𝑦) satisfies the

condition (12), see Figure 2.

Definition 23. Let 𝑥
0
∈ R, and let 𝛿 > 0. It is said that a

function 𝑦 ∈ 𝐶([𝑥
0
−𝛿, 𝑥
0
) ∪ (𝑥
0
, 𝑥
0
+𝛿]) is two-sided fractal

oscillatory near 𝑥 = 0 with the fractal dimension 𝑠 ∈ [1, 2),
if there is an increasing sequence 𝑎

𝑛
∈ [𝑥
0
− 𝛿, 𝑥

0
) and a

decreasing sequence 𝑏
𝑛
∈ (𝑥
0
, 𝑥
0
+ 𝛿] such that 𝑦(𝑎

𝑛
) =

𝑦(𝑏
𝑛
) = 0 for 𝑛 ∈ N, 𝑎

𝑛
↗ 𝑥
0
and 𝑏
𝑛
↘ 𝑥
0
as 𝑛 → ∞,

and the graph Γ(𝑦) satisfies the condition (12); see Figure 3.

With the help ofTheorem 8, we state the following result.

Theorem 24. Let 𝑥
0
∈ R, and let 𝛿 > 0. Let the functions

𝑎, 𝜔 ∈ 𝐶
1
((0, 𝛿]) satisfy structural conditions (3), (4), (5), (15),

and (16) as well as conditions (17) and (18) in respect to a given
real number 𝑠 ∈ (1, 2). Then, one has

(i) the chirp function 𝑦(𝑥) = 𝑎(𝑥 − 𝑥
0
)𝑆(𝜑(𝑥 − 𝑥

0
)), 𝑥 ∈

(𝑥
0
, 𝑥
0
+ 𝛿] is fractal oscillatory near 𝑥 = 𝑥

0
with the

fractal dimension 𝑠;

(ii) the chirp function 𝑦(𝑥) = 𝑎(𝑥
0
− 𝑥)𝑆(𝜑(𝑥

0
− 𝑥)), 𝑥 ∈

[𝑥
0
− 𝛿, 𝑥

0
) is fractal oscillatory near 𝑥 = 𝑥

0
from the

left side with the fractal dimension 𝑠;

(iii) the chirp function 𝑦(𝑥) = 𝑎(|𝑥−𝑥
0
|)𝑆(𝜑(|𝑥−𝑥

0
|)), 𝑥 ∈

[𝑥
0
−𝛿, 𝑥
0
)∪(𝑥
0
, 𝑥
0
+𝛿] is two-sided fractal oscillatory

near 𝑥 = 𝑥
0
with the fractal dimension 𝑠.
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Figure 3: 𝑦 is two-sided oscillatory near 𝑥 = 0.

3. Proof for the Fractal Oscillations of
Chirp Functions

In this section, we give the proofs of the main results dealing
with the fractal oscillations of chirp functions.

By Definition 5, it follows that if for a prescribed real
number 𝑠 ∈ (1, 2) there are two positive constants 𝑐

1
and 𝑐
2

such that

𝑐
1
𝜀
2−𝑠
≤
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤ 𝑐
2
𝜀
2−𝑠
, 𝜀 ∈ (0, 𝜀

0
) , (31)

for some 𝜀
0
> 0, then a function 𝑦 ∈ 𝐶((0, 𝑡

0
]) is fractal

oscillatory near 𝑥 = 0 with the fractal dimension 𝑠. The
following lemma plays the essential role in the proof of (31).

Lemma 25. Let 𝑦 ∈ 𝐶((0, 𝑡
0
]) be a bounded function on

(0, 𝑡
0
], and let 𝑎

𝑛
∈ (0, 𝑡

0
] be a decreasing sequence of con-

secutive zeros of 𝑦(𝑥) such that 𝑎
𝑛
→ 0. Let 𝜀

0
> 0, and let

𝑘 = 𝑘(𝜀) be an index function satisfying
󵄨
󵄨
󵄨
󵄨
𝑎
𝑛
− 𝑎
𝑛+1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀 ∀𝑛 ≥ 𝑘 (𝜀) , 𝜀 ∈ (0, 𝜀

0
) . (32)

Then
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≥ ∑

𝑛≥𝑘(𝜀)

max
𝑥∈[𝑎𝑛+1,𝑎𝑛]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
(𝑎
𝑛
− 𝑎
𝑛+1
)

∀𝜀 ∈ (0, 𝜀
0
) .

(33)

Proof. It is exactly the same as [3, pp. 2350].

Let us remark that for some 𝜀
0
> 0, we say that a function

𝑘 = 𝑘(𝜀) is an index function on (0, 𝜀
0
) if 𝑘 : (0, 𝜀

0
) → N and

lim
𝜀→0

𝑘(𝜀) = ∞.

Lemma 26. Let 𝑦 ∈ 𝐶[𝑎, 𝑏]. Then,

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤ 4𝜋𝜀length (𝑦) + 4𝜋𝜀2, for every 𝜀 > 0. (34)

Proof. Let 𝜀 > 0. Set 𝑥
1
= 𝑎, and set

𝑥
𝑖+1
= max {𝑥 ∈ [𝑥

𝑖
, 𝑏] : 𝑑 ((𝑡, 𝑦 (𝑡)) , (𝑥

𝑖
, 𝑦 (𝑥
𝑖
)))

≤ 𝜀 for 𝑡 ∈ [𝑥
𝑖
, 𝑥] } ,

(35)

for 𝑖 = 1, 2, . . .. Then, there exists 𝑛 ≥ 2 such that 𝑥
𝑛
= 𝑏. Set

𝑁 = max{𝑛 ∈ N : 𝑥
𝑛
< 𝑏}. We see that𝑁 ≥ 1,

𝑎 = 𝑥
1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑖
< 𝑥
𝑖+1
< ⋅ ⋅ ⋅ < 𝑥

𝑁
< 𝑥
𝑁+1

= 𝑏, (36)

and if𝑁 ≥ 2, then

𝑑 ((𝑥
𝑖
, 𝑦 (𝑥
𝑖
)) , (𝑥

𝑖+1
, 𝑦 (𝑥
𝑖+1
))) = 𝜀, 𝑖 = 1, 2, . . . , 𝑁 − 1.

(37)

We will show that

Γ
𝜀
(𝑦) ⊂

𝑁

⋃

𝑖=1

𝐵
2𝜀
(𝑥
𝑖
, 𝑦 (𝑥
𝑖
)) , (38)

where

𝐵
2𝜀
(𝑡
1
, 𝑡
2
) = {(𝜏

1
, 𝜏
2
) ∈ R2 : 𝑑 ((𝑡

1
, 𝑡
2
) , (𝜏
1
, 𝜏
2
)) ≤ 2𝜀} .

(39)

Let (𝜏
1
, 𝜏
2
) ∈ Γ

𝜀
(𝑦). Then there exists 𝜉 ∈ [𝑎, 𝑏] such that

𝑑((𝜏
1
, 𝜏
2
), (𝜉, 𝑦(𝜉))) ≤ 𝜀. Because of the definition of 𝑥

𝑖+1
, we

find that 𝜉 ∈ [𝑥
𝑖
, 𝑥
𝑖+1
] for some 𝑖 ∈ {1, 2, . . . , 𝑁}, so that

𝑑 ((𝜉, 𝑦 (𝜉)) , (𝑥
𝑖
, 𝑦 (𝑥
𝑖
))) ≤ 𝜀. (40)

Hence, it follows that

𝑑 ((𝜏
1
, 𝜏
2
) , (𝑥
𝑖
, 𝑦 (𝑥
𝑖
))) ≤ 𝑑 ((𝜏

1
, 𝜏
2
) , (𝜉, 𝑦 (𝜉)))

+ 𝑑 ((𝜉, 𝑦 (𝜉)) , (𝑥
𝑖
, 𝑦 (𝑥
𝑖
))) ≤ 2𝜀,

(41)

which means that (𝜏
1
, 𝜏
2
) ∈ 𝐵

2𝜀
(𝑥
𝑖
, 𝑦(𝑥
𝑖
)). Therefore, we

obtain (38). By (38), we conclude that

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝐵
2𝜀
(𝑥
𝑖
, 𝑦 (𝑥
𝑖
))
󵄨
󵄨
󵄨
󵄨
= 4𝑁𝜋𝜀

2
. (42)

When𝑁 = 1, from (42), it follows that
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤ 4𝜋𝜀

2
≤ 4𝜋𝜀length (𝑦) + 4𝜋𝜀2. (43)

Now, we assume that𝑁 ≥ 2. We observe that

length (𝑦) =
𝑁

∑

𝑖=1

length (𝑦|
[𝑥𝑖 ,𝑥𝑖+1]

)

≥

𝑁

∑

𝑖=1

𝑑 ((𝑥
𝑖
, 𝑦 (𝑥
𝑖
)) , (𝑥

𝑖+1
, 𝑦 (𝑥
𝑖+1
)))

≥

𝑁−1

∑

𝑖=1

𝑑 ((𝑥
𝑖
, 𝑦 (𝑥
𝑖
)) , (𝑥

𝑖+1
, 𝑦 (𝑥
𝑖+1
)))

= (𝑁 − 1) 𝜀,

(44)

that is,

𝑁𝜀 ≤ length (𝑦) + 𝜀. (45)

Combining (42) with (45), we obtain
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤ 4𝜋𝜀length (𝑦) + 4𝜋𝜀2. (46)
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Lemma 27. Let 𝑦 ∈ 𝐶(0, 𝑡
0
] be bounded on (0, 𝑡

0
], and let

𝜀 > 0. Then, there exists 𝐶 > 0 such that, for every 𝜀 > 0 and
𝑡 ∈ (0, 𝑡

0
],

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤ 𝐶[𝑡 sup

𝑥∈(0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
+ 𝜀length (𝑦|

[𝑡,𝑡0]
) + 𝜀 + 𝜀

2
] .

(47)

Proof. Let 𝜀 > 0, and let 𝑡 ∈ (0, 𝑡
0
]. From the geometry point

of view, it is clear that
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦|
(0,𝑡]
)
󵄨
󵄨
󵄨
󵄨
⊂ 𝑅, (48)

where 𝑅 is a rectangle in R2 defined by

𝑅 = { (𝑡
1
, 𝑡
2
) : 𝑡
1
∈ [−𝜀, 𝑡 + 𝜀] ,

𝑡
2
∈ [−𝜀 − sup

𝑥∈(0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
, 𝜀 + sup
𝑥∈(0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
]} .

(49)

Hence, we have

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦
(0,𝑡]
)
󵄨
󵄨
󵄨
󵄨
≤ (2𝜀 + 𝑡) (2𝜀 + 2 sup

𝑥∈(0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
)

= 4𝜀
2
+ 2(𝑡 + 2 sup

𝑥∈(0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
) 𝜀

+ 2𝑡 sup
𝑥∈(0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜀
2
+ 𝐶
1
𝜀 + 2𝑡 sup

𝑥∈(0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
,

(50)

where 𝐶
1
= 2(𝑡
0
+ 2sup

𝑥∈(0,𝑡0]
|𝑦(𝑥)|). Lemma 26 implies that

󵄨
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦|
[𝑡,𝑡0]
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 4𝜋𝜀length (𝑦|

[𝑡,𝑡0]
) + 4𝜋𝜀

2
. (51)

Consequently, we see that
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦|
(0,𝑡]
)
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦|
[𝑡,𝑡0]
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 4𝜀
2
+ 𝐶
1
𝜀 + 2𝑡 sup

𝑥∈(0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨

+ 4𝜋𝜀length (𝑦|
[𝑡,𝑡0]
) + 4𝜋𝜀

2

≤ 𝐶[𝑡 sup
𝑥∈(0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
+ 𝜀length (𝑦|

[𝑡,𝑡0]
) + 𝜀 + 𝜀

2
] ,

(52)

where 𝐶 = max{𝐶
1
, 4(𝜋 + 1)}.

Lemma 28. Let 𝑦 ∈ 𝐶1(0, 𝑡
0
] be bounded on (0, 𝑡

0
]. Assume

that

∫

𝑡0

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥 = ∞, (53)

lim sup
𝑥→0

[𝑥 sup
𝜉∈(0,𝑥]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝜉)

󵄨
󵄨
󵄨
󵄨
]

(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜉 < ∞, (54)

for some 𝑠 ∈ (1, 2). Then, there exists 𝑐
2
> 0 such that

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤ 𝑐
2
𝜀
2−𝑠
, 𝜀 ∈ (0, 1) . (55)

Proof. Let 𝜀 ∈ (0, 1) and let 𝑠 ∈ (1, 2) be satisfy (54). By (53),
there exists 𝑥

1
∈ (0, 𝑡

0
), which depends on 𝜀 and 𝑠, such that

∫

𝑡0

𝑥1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑡 = 𝜀

1−𝑠
. (56)

Therefore, we have

length (𝑦|
[𝑥1 ,𝑡0]

) = ∫

𝑡0

𝑥1

√1 +
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝑥)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥

≤ ∫

𝑡0

𝑥1

(1 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑥

= 𝑡
0
− 𝑥
1
+ 𝜀
1−𝑠

≤ 𝑡
0
+ 𝜀
1−𝑠
.

(57)

By (54), there exists 𝐶
1
> 0 such that

[𝑥 sup
𝜉∈(0,𝑥]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝜉)

󵄨
󵄨
󵄨
󵄨
]

(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜉 ≤ 𝐶

1
, 𝑥 ∈ (0, 𝑡

0
] ,

(58)

which implies that

[

[

𝑥
1
sup
𝜉∈(0,𝑥1]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝜉)

󵄨
󵄨
󵄨
󵄨
]

]

(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜉 ≤ 𝐶

1
, (59)

that is,

𝑥
1
sup
𝜉∈(0,𝑥1]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝜉)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶
2
𝜀
2−𝑠
, (60)

where 𝐶
2
= 𝐶
(2−𝑠)/(𝑠−1)

1
. From Lemma 27, (57), and (60), it

follows that
󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 [𝐶

2
𝜀
2−𝑠
+ 𝜀 (𝑡
0
+ 𝜀
1−𝑠
) + 𝜀 + 𝜀

2
]

= 𝐶 [(𝐶
2
+ 1) + (𝑡

0
+ 1) 𝜀

𝑠−1
+ 𝜀
𝑠
] 𝜀
2−𝑠

≤ 𝐶 (𝐶
2
+ 𝑡
0
+ 3) 𝜀

2−𝑠
, 𝜀 ∈ (0, 1) .

(61)

In order to showTheorems 8 and 11, we need the following
two geometric lemmas.

Lemma 29 (see [1]). If Γ ⊆ R2 is a simple curve (i.e., its
parameterization is a bijection) and length(Γ) < ∞, then

length (Γ) = lim
𝜀→0

󵄨
󵄨
󵄨
󵄨
Γ
𝜀

󵄨
󵄨
󵄨
󵄨

2𝜀

, (62)

where Γ
𝜀
denotes the 𝜀-neighborhood of the graph Γ.
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Now, we are able to proveTheorem 8.

Proof of Theorem 8. Let 𝑠 ∈ (1, 2), and let 𝑦(𝑥) be a chirp
function given by (1). We note here that it is enough to show
that 𝑦(𝑥) satisfies (31).

At the first, let 𝑥
𝑛
be a sequence defined by 𝑥

𝑛
= 𝜑
−1
(𝜏
0
+

𝑛𝜏) for all sufficiently large 𝑛 ∈ N. From (4), it follows that
𝜑
−1
(𝑡) is decreasing. Hence, 𝑥

𝑛
is decreasing as well as 𝑥

𝑛
→

0 as 𝑛 → ∞ because of lim
𝑥→+0

𝜑(𝑥) = ∞ (see (4)).We note
that 𝑦(𝑥

𝑛
) = 0 and 𝑦(𝑥) ̸= 0 on (𝑥

𝑛+1
, 𝑥
𝑛
) for all sufficiently

large 𝑛 ∈ N. Also, −1/𝜑󸀠(𝑥) is an increasing function because
of (16). The mean value theorem shows that

𝜏

−𝜑
󸀠
(𝑥
𝑛+1
)

≤ 𝑥
𝑛
− 𝑥
𝑛+1
≤

𝜏

−𝜑
󸀠
(𝑥
𝑛
)

. (63)

Now, let 𝜀
0
∈ (0, 1). Let 𝑘(𝜀) be the smallest natural number

satisfying
𝜏

−𝜑
󸀠
(𝑥
𝑘(𝜀)
)

≤ 𝜀 ∀𝜀 ∈ (0, 𝜀
0
) . (64)

Such 𝑘(𝜀) exists for every 𝜀 ∈ (0, 𝜀
0
), since 𝑥

𝑛
→ 0 as 𝑛 →

∞ and lim
𝑥→+0

𝜑
󸀠
(𝑥) = −∞ (this equality is true because

𝜑
󸀠
∉ 𝐿
1
(0, 𝑡
0
) since lim

𝑥→+0
𝜑(𝑥) = ∞). Moreover, since 𝑥

𝑛

is decreasing and −1/𝜑󸀠(𝑥) is increasing, we obtain

−𝜑
󸀠
(𝑥
𝑛
) ≥ 𝜏𝜀

−1
∀𝑛 ≥ 𝑘 (𝜀) . (65)

Combining (63) and (65), it is easy to deduce that such
defined 𝑘(𝜀) satisfies condition (32).

By (16), there exists 𝐿 > 0 such that (1/(−𝜑󸀠(𝑥)))󸀠 ≤ 𝐿 for
𝑥 ∈ (0, 𝑡

0
], which means that

−

−𝜑
󸀠󸀠
(𝑥)

−𝜑
󸀠
(𝑥)

≤ −𝐿𝜑
󸀠
(𝑥) , 𝑥 ∈ (0, 𝑡

0
] . (66)

Integrating (66) on [𝜑−1(𝑡 + 2𝜏), 𝜑−1(𝑡)], we have

log
−𝜑
󸀠
(𝜑
−1
(𝑡 + 2𝜏))

−𝜑
󸀠
(𝜑
−1
(𝑡))

≤ 2𝐿𝜏, 𝑡 ∈ [𝜑 (𝑡
0
) ,∞) , (67)

that is,

−𝜑
󸀠
(𝜑
−1
(𝑡)) ≥ −𝑒

−2𝐿𝜏
𝜑
󸀠
(𝜑
−1
(𝑡 + 𝜏)) , 𝑡 ∈ [𝜑 (𝑡

0
) ,∞) .

(68)

By the definition of 𝑘(𝜀) and (64), we see that
𝜏

−𝜑
󸀠
(𝑥
𝑘(𝜀)−1

)

> 𝜀. (69)

Hence, from (68), it follows that

𝜏𝜀
−1
> −𝜑
󸀠
(𝑥
𝑘(𝜀)−1

)

= −𝜑
󸀠
(𝜑
−1
(𝜏
0
+ (𝑘 (𝜀) − 1) 𝜏))

≥ −𝑒
−2𝐿𝜏

𝜑
󸀠
(𝜑
−1
(𝜏
0
+ (𝑘 (𝜀) − 1) 𝜏 + 2𝜏))

= −𝑒
−2𝐿𝜏

𝜑
󸀠
(𝜑
−1
(𝜏
0
+ (𝑘 (𝜀) + 1) 𝜏))

= −𝑒
−2𝐿𝜏

𝜑
󸀠
(𝑥
𝑘(𝜀)+1

) ,

(70)

which implies that

−𝜑
󸀠
(𝑥
𝑘(𝜀)+1

) ≤ 𝑀𝜀
−1
, 𝜀 > 0, (71)

where𝑀 = 𝜏𝑒
2𝐿𝜏.

Next, it is clear that the assumption (5) ensures a real
number𝑀

0
> 0 such that

𝑀
0
= max
𝑡∈R

|𝑆 (𝑡)| = max
𝑡∈[0,𝜏]

|𝑆 (𝑡)| . (72)

Hence, from (15), we have

max
𝑥∈[𝑥𝑛+1 ,𝑥𝑛]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
= max
𝑥∈[𝑥𝑛+1,𝑥𝑛]

(𝑎 (𝑥)
󵄨
󵄨
󵄨
󵄨
𝑆 (𝜑 (𝑥))

󵄨
󵄨
󵄨
󵄨
)

≥ 𝑎 (𝑥
𝑛+1
) max
𝑥∈[𝑥𝑛+1,𝑥𝑛]

󵄨
󵄨
󵄨
󵄨
𝑆 (𝜑 (𝑥))

󵄨
󵄨
󵄨
󵄨

= 𝑀
0
𝑎 (𝑥
𝑛+1
) .

(73)

Now, from (63) and (73), it follows that

max
𝑥∈[𝑥𝑛+1 ,𝑥𝑛]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
(𝑥
𝑛
− 𝑥
𝑛+1
) ≥ 𝑀

0
𝑎 (𝑥
𝑛+1
) (𝑥
𝑛
− 𝑥
𝑛+1
)

≥ 𝜏𝑀
0

𝑎 (𝑥
𝑛+1
)

−𝜑
󸀠
(𝑥
𝑛+1
)

= 𝜏𝑀
0

𝑎 (𝜑
−1
(𝜏
0
+(𝑛+1) 𝜏))

−𝜑
󸀠
(𝜑
−1
(𝜏
0
+(𝑛+1) 𝜏))

.

(74)

Since 𝜑−1(𝑡) is decreasing as well as −1/𝜑󸀠(𝑥) is increasing
and 𝑎(𝑥) is nondecreasing and positive, we conclude that the
function

𝑎 (𝜑
−1
(𝑡))

−𝜑
󸀠
(𝜑
−1
(𝑡))

is nonincreasing. (75)

Hence, we observe that

∑

𝑛≥𝑘(𝜀)

max
𝑥∈[𝑥𝑛+1,𝑥𝑛]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
(𝑥
𝑛
− 𝑥
𝑛+1
)

≥ 𝜏𝑀
0
∑

𝑛≥𝑘(𝜀)

𝑎 (𝜑
−1
(𝜏
0
+ (𝑛 + 1) 𝜏))

−𝜑
󸀠
(𝜑
−1
(𝜏
0
+ (𝑛 + 1) 𝜏))

≥ 𝜏𝑀
0
∫

∞

𝑘(𝜀)

𝑎 (𝜑
−1
(𝜏
0
+ (𝑡 + 1) 𝜏))

−𝜑
󸀠
(𝜑
−1
(𝜏
0
+ (𝑡 + 1) 𝜏))

𝑑𝑡

= 𝑀
0
∫

𝜑
−1
(𝜏0+(𝑘(𝜀)+1)𝜏)

0

𝑎 (𝜉) 𝑑𝜉

= 𝑀
0
∫

𝑥𝑘(𝜀)+1

0

𝑎 (𝜉) 𝑑𝜉.

(76)

Next, from assumption (17), we get some𝑀
1
> 0 such that

∫

𝑥

0

𝑎 (𝜉) 𝑑𝜉 ≥ 𝑀1
[−𝜑
󸀠
(𝑥)]

−(2−𝑠)

, 𝑥 ∈ (0, 𝑡
0
] . (77)
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Now, from (76), (77), and (71), we obtain

∑

𝑛≥𝑘(𝜀)

max
𝑥∈[𝑥𝑛+1,𝑥𝑛]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
(𝑥
𝑛
− 𝑥
𝑛+1
)

≥ 𝑀
0
𝑀
1
[−𝜑
󸀠
(𝑥
𝑘(𝜀)+1

)]

−(2−𝑠)

≥ 𝑀
0
𝑀
1
(𝑀𝜀
−1
)

−(2−𝑠)

= 𝑀
0
𝑀
1
𝑀
−(2−𝑠)

𝜀
2−𝑠
.

(78)

Thus, using Lemma 25, we have

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≥ 𝑐
1
𝜀
2−𝑠
, 𝜀 ∈ (0, 𝜀

0
) , (79)

for some 𝑐
1
> 0.

Next we prove that 𝑦(𝑥) satisfies (53). Assume to the
contrary that

∫

𝑡0

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥 < ∞. (80)

Then, we have

length (𝑦) = ∫
𝑡0

0

√1 +
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝑥)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥

≤ ∫

𝑡0

0

(1 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑥 < ∞.

(81)

From Lemma 29, it follows that

length (𝑦) = lim
𝜀→+0

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨

2𝜀

. (82)

On the other hand, by (79), we see that

lim
𝜀→+0

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨

2𝜀

= ∞. (83)

This is a contaradiction, and hence 𝑦(𝑥) satisfies (53).
Finally, we show that 𝑦(𝑥) also satisfies inequality (54).

Because of (5), we obtain a constant 𝑐 > 0 such that

max
𝑡∈R

|𝑆 (𝑡)| = max
𝑡∈[0,𝜏]

|𝑆 (𝑡)| ≤ 𝑐,

max
𝑡∈R

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
= max
𝑡∈[0,𝜏]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑐.

(84)

By (15), we find that

sup
𝑡∈(0,𝑥]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
= sup
𝑡∈(0,𝑥]

|𝑎 (𝑡)|
󵄨
󵄨
󵄨
󵄨
𝑆 (𝜑 (𝑡))

󵄨
󵄨
󵄨
󵄨
≤ 𝑐𝑎 (𝑥) . (85)

Hence, from (1) and (15), it follows that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑐 (𝑎

󸀠
(𝑥) + 𝑎 (𝑥) [−𝜑

󸀠
(𝑥)]) , (86)

and therefore

∫

𝑡0

𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜉 ≤ 𝑐𝑎 (𝑡

0
) + 𝑐 ∫

𝑡0

𝑥

𝑎 (𝜉) [−𝜑
󸀠
(𝜉)] 𝑑𝜉. (87)

Using (85) and (87), we see that

[𝑥 sup
𝜉∈(0,𝑥]

󵄨
󵄨
󵄨
󵄨
𝑦 (𝜉)

󵄨
󵄨
󵄨
󵄨
]

(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜉

≤ 𝑐𝑎 (𝑡
0
) [𝑐𝑥𝑎 (𝑥)]

(𝑠−1)/(2−𝑠)

+ 𝑐[𝑐𝑥𝑎 (𝑥)]
(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥

𝑎 (𝜉) [−𝜑
󸀠
(𝜉)] 𝑑𝜉

≤ 𝑐𝑎 (𝑡
0
) [𝑐𝑡
0
𝑎 (𝑡
0
)]
(𝑠−1)/(2−𝑠)

+ 𝑐
1/(2−𝑠)

[𝑥𝑎 (𝑥)]
(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥

𝑎 (𝜉) [−𝜑
󸀠
(𝜉)] 𝑑𝜉.

(88)

By (18) we conclude that (54) holds.
By Lemma 28, there exists 𝑐

2
> 0 such that

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨
≤ 𝑐
2
𝜀
2−𝑠
, 𝜀 ∈ (0, 𝜀

0
) . (89)

Thus, we have proved that the chirp function𝑦(𝑥) given by (1)
satisfies the desired inequality (31). This completes the proof
of Theorem 8.

Proof of Theorem 11. Let 𝑦(𝑥) be the chirp function (1). It is
easy to see that 𝑦(𝑥) is oscillatory near 𝑥 = 0. By (5), there
exists𝑀 > 0 such that

|𝑆 (𝑡)| ≤ 𝑀,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀, 𝑡 ∈ R. (90)

Hence, we observe that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
󸀠
(𝑥) 𝑆 (𝜑 (𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎 (𝑥) 𝑆 (𝜑 (𝑥)) 𝜑

󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎 (𝑥) 𝜑

󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
,

(91)

for 𝑥 ∈ (0, 𝑡
0
]. From (81), it follows that length(𝑦) < ∞.

Lemma 29 shows that

length (𝑦) = lim
𝜀→0

󵄨
󵄨
󵄨
󵄨
Γ
𝜀
(𝑦)
󵄨
󵄨
󵄨
󵄨

2𝜀

, (92)

which implies that 𝜀length(Γ) ≤ |Γ
𝜀
(𝑦)| ≤ 4𝜀length(Γ), 𝜀 ∈

(0, 𝜀
0
), for some 𝜀

0
> 0. Therefore, 𝑦(𝑥) is fractal oscillatory

near 𝑥 = 0 with the fractal dimension 1.

4. Proof for the Fractal Oscillations of (26)
In this section, we give the proofs for the fractal oscillations of
the linear second-order differential equation (26) considered
as an application of the main results on the fractal oscillation
of chirp functions.

Before we present the proofs of Theorems 16 and 17, we
make the following observation. Since

𝑦
1
(𝑥) = 𝑎 (𝑥) cos (𝜑 (𝑥)) , 𝑦

2
(𝑥) = 𝑎 (𝑥) sin (𝜑 (𝑥))

(93)

are solutions of (26), we see that 𝑦(𝑥) = 𝑐
1
𝑦
1
(𝑥) + 𝑐

2
𝑦
2
(𝑥)

is a fundamental system of all solutions of (26). Assume that
𝑐
2

1
+ 𝑐
2

2
> 0, and set 𝑆(𝑡) = 𝑐

1
sin 𝑡 + 𝑐

2
cos 𝑡. Then, 𝑆(𝑡) clearly

satisfies (5).
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Proof of Theorem 16. Applying Theorem 8 on 𝑦(𝑥) =

𝑐
1
𝑦
1
(𝑥) + 𝑐

2
𝑦
2
(𝑥), we conclude that 𝑦(𝑥) is fractal oscillatory

with the fractal dimension 𝑠.

Proof of Theorem 17. Theorem 11 implies that 𝑦(𝑥) =

𝑐
1
𝑦
1
(𝑥) + 𝑐

2
𝑦
2
(𝑥) is fractal oscillatory near 𝑥 = 0 with the

fractal dimension 1.

Appendix

Proof of Remark 9. By (17), there exists 𝑐
1
> 0 such that

𝑐
1
≤ [−𝜑

󸀠
(𝑥)]

2−𝑠

∫

𝑥

0

𝑎 (𝜉) 𝑑𝜉, 𝑥 ∈ (0, 𝑡
0
] . (A.1)

From (15), it follows that

𝑐
1
≤ [−𝜑

󸀠
(𝑥)]

2−𝑠

𝑎 (𝑥) ∫

𝑥

0

𝑑𝜉 = 𝑥𝑎 (𝑥) [−𝜑
󸀠
(𝑥)]

2−𝑠

,

𝑥 ∈ (0, 𝑡
0
] ,

(A.2)

which implies that
1

−𝜑
󸀠
(𝑥)

≤ 𝑐
−1/(2−𝑠)

1
𝑥
1/(2−𝑠)

[𝑎 (𝑥)]
1/(2−𝑠)

, 𝑥 ∈ (0, 𝑡
0
] . (A.3)

By (19), there exists 𝑐
2
> 0 such that

𝑥𝑎 (𝑥) [−𝜑
󸀠
(𝑥)]

2−𝑠

≤ 𝑐
2
, 𝑥 ∈ (0, 𝑡

0
] , (A.4)

and hence

−𝜑
󸀠
(𝑥) ≤ 𝑐

1/(2−𝑠)

2
𝑥
−1/(2−𝑠)

[𝑎 (𝑥)]
−1/(2−𝑠)

, 𝑥 ∈ (0, 𝑡
0
] .

(A.5)
Therefore, we see that

[

1

−𝜑
󸀠
(𝑥)

]

𝑠−1

∫

𝑡0

𝑥

𝑎 (𝜉) [−𝜑
󸀠
(𝜉)] 𝑑𝜉

≤ 𝑐
−(𝑠−1)/(2−𝑠)

1
𝑥
(𝑠−1)/(2−𝑠)

[𝑎 (𝑥)]
(𝑠−1)/(2−𝑠)

𝑐
1/(2−𝑠)

2

× ∫

𝑡0

𝑥

𝜉
−1/(2−𝑠)

[𝑎 (𝜉)]
−(𝑠−1)/(2−𝑠)

𝑑𝜉

≤ 𝑐
3
𝑥
(𝑠−1)/(2−𝑠)

[𝑎 (𝑥)]
(𝑠−1)/(2−𝑠)

[𝑎 (𝑥)]
−(𝑠−1)/(2−𝑠)

× ∫

𝑡0

𝑥

𝜉
−1/(2−𝑠)

𝑑𝜉

= 𝑐
3

2 − 𝑠

𝑠 − 1

(1 − 𝑥
(𝑠−1)/(2−𝑠)

𝑡
−(𝑠−1)/(2−𝑠)

0
)

≤ 𝑐
3

2 − 𝑠

𝑠 − 1

, 𝑥 ∈ (0, 𝑡
0
] ,

(A.6)

so that (20) holds. We conclude that

[𝑥𝑎 (𝑥)]
(𝑠−1)/(2−𝑠)

∫

𝑡0

𝑥

𝑎 (𝜉) [−𝜑
󸀠
(𝜉)] 𝑑𝜉

= (𝑥𝑎 (𝑥) [−𝜑
󸀠
(𝑥)]

2−𝑠

)

(𝑠−1)/(2−𝑠)

× ([

1

−𝜑
󸀠
(𝑥)

]

𝑠−1

∫

𝑡0

𝑥

𝑎 (𝜉) [−𝜑
󸀠
(𝜉)] 𝑑𝜉) .

(A.7)

By (19) and (20), we conclude that (18) is satisfied. The proof
of Remark 9 is complete.
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[16] M. Képesi and L. Weruaga, “Adaptive chirp-based time-
frequency analysis of speech signals,” Speech Communication,
vol. 48, no. 5, pp. 474–492, 2006.
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