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I study the geometric notion of a differential system describing surfaces of a constant negative
curvature and describe a family of pseudospherical surfaces for the nonlinear partial differential
equations with constant Gaussian curvature −1.

1. Introduction

In recent decades, a class of transformations having their origin in the work by Bäcklund
in the late nineteenth century has provided a basis for remarkable advances in the study
of nonlinear partial differential equations (NLPDEs) [1]. The importance of Bäcklund
transformations (BTs) and their generalizations is basically twofold. Thus, on one hand,
invariance under a BT may be used to generate an infinite sequence of solutions for certain
NLPDEs by purely algebraic superposition principles. On the other hand, BTs may also be
used to link certain NLPDEs (particularly nonlinear evolution equations (NLEEs)modelling
nonlinear waves) to canonical forms whose properties are well known [2, 3]. Nonlinear wave
phenomena have attracted the attention of physicists for a long time. Investigation of a certain
kind of NLPDEs has made great progress in the last decades. These equations have a wide
range of physical applications and share several remarkable properties [4–6]: (i) the initial
value problem can be solved exactly in terms of linear procedures, the so-called “inverse
scattering method (ISM);” (ii) they have an infinite number of “conservation laws;” (iii) they
have “BTs;” (iv) they describe pseudo-spherical surfaces (pss), and hence one may interpret
the other properties (i)–(iii) from a geometrical point of view; (v) they are completely
integrable [1, 3]. This geometrical interpretation is a natural generalization of a classical
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example given by Chern and Tenenblat [2] who introduced the notion of a differential
equation (DE) for a function that describes a pss, and they obtained a classification for such
equations of type ut = F(u, ux, . . . , uxk) (uxk =k u/xk). These results provide a systematic
procedure to obtain a linear eigenvalue problem associated to any NLPDE of this type [7].

Sasaki [6] gave a geometrical interpretation for inverse scattering problem (ISP),
considered by Ablowitz et al. [4], in terms of pss. Based on this interpretation, one may
consider the following definition.

Let M2 be a two-dimensional differentiable manifold with coordinates (x, t). A DE
for a real function u(x, t) describes a pss if it is a necessary and sufficient condition for the
existence of differentiable functions:

fij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, (1.1)

depending on u and its derivatives such that the one-forms

ω1 = f11dx + f12dt, ω2 = f21dx + f22dt, ω3 = f31dx + f32dt, (1.2)

satisfy the structure equations of a pss, that is,

dw1 = w3 ∧w2, dw2 = w1 ∧w3, dw3 = w1 ∧w2. (1.3)

This structure was considered for the first time by Chern and Tenenblat [2], motivated
by Sasaki’s observation [6] that the equationswhich are the necessary and sufficient condition
for the integrability of a linear problem of Ablowitz, Kaup, Newell, Segur-(AKNS-) type [4,
7–12] do describe pss. Its importance, in the present context, arises from the fact that the
connection between pss and integrability of DEs goes well beyond the AKNS framework,
as will be explained in Section 2. A DE for a real-valued function u(x, t) is kinematically
integrable if it is the integrability condition of a one-parameter family of linear problems
[13–20]:

νx = P
(
η
)
ν, νt = Q

(
η
)
ν, (1.4)

in which P(η) and Q(η) are SL(2, R)-valued functions of x, t, and (u and its derivatives) up
to a finite order. Thus, an equation is kinematically integrable if it is equivalent to the zero
curvature condition:

∂P
(
η
)

∂t
− ∂Q

(
η
)

∂x
+
[
P
(
η
)
, Q
(
η
)]

= 0, (1.5)

where trP(η) = trQ(η) = 0, for each η (spectral parameter or eigenvalue). In addition, a DE
will be said to strictly kinematically integrable if it’s kinematically integrable and diagonal
entries of the matrix P(η) introduced above are η and −η.

The main aim of this paper is to use the geometric properties and differentiable
functions in the construction of BTs for some NLEEs which describe pss.



International Journal of Differential Equations 3

The paper is organized as follows. In Section 2 we summarize the AKNS formulation
of the ISM using the language of exterior differential forms; this language is very useful for
geometry. The correspondence between NLEEs and their families of pss is established in
Section 3. In Section 4 we find the BTs for some NLEEs (Liouville, Burgers, and sinh-Gordon
equations, a third-order evolution equation (TOEE), a modified Korteweg-de Vries (mKdV)
equation, and both families of equations I and II) which describe pss. Finally, we give some
conclusions in Section 5.

2. The AKNS System for Some NLEEs

The ISM was first devised for the Korteweg-de Vries (KdV) equation [5]. Later, it was
extended by Zakharov and Shabat [21] to a 2 × 2 scattering problem for the nonlinear
Schrödinger equation (NLSE) and subsequently generalized by Ablowitz et al. [4] to include
a variety of NLEEs. The AKNS method consists of the following steps: (i) set up an
appropriate, 2 × 2 linear scattering (eigenvalue) problem in the “space” variable in which
the solution of the NLEE plays the role of the potential; (ii) choose the “time” dependence
of the eigenfunctions in such a way that the eigenvalues remain invariant as the potential
evolves according to the NLEEs; (iii) solve the direct scattering problem at the initial “time”
and determine the “time” dependence of the scattering data; (iv) do the ISP at later “times,”
namely, reconstruct the potential from the scattering data. In this section, we concentrate
on the first step of the AKNS method. As a consequence, each solution of the DE provides
a metric on M2, whose Gaussian curvature is constant, equal to −1. Moreover, the above
definition of a DE is equivalent to saying that the DE for u is the integrability condition for
the problem:

dν = Ων, ν =
(
ν1
ν2

)
, (2.1)

where d denotes exterior differentiation, ν is a vector, and the 2 × 2 matrix Ω(Ωij , i, j = 1, 2)
is traceless:

trΩ = 0 (2.2)

and consists of a one-parameter (η), family of one-forms in the independent variables (x, t),
the dependent variable u and its derivatives. Equation (1.2) has three one-forms ω1, ω2, and
ω3 consisting of independent and dependent variables and their derivatives, such that the
NLPDE is given by

Θ ≡ dΩ −ΩΩ = 0, Ω =
1
2

(
ω2 ω1 −ω3

ω1 +ω3 −ω2

)
, (2.3)

which is, by construction, the original NLPDE to be solved. We illustrate here the following
examples given by AKNS system.
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(a) Liouville’s equation:

uxt = −2eu, (2.4)

Ω =
1
2

⎛

⎜
⎜
⎜
⎝

ηdx − 1
η
eudt uxdx +

1
η
eudt

uxdx − 1
2η

eudt −ηdx +
1
η
eudt

⎞

⎟
⎟
⎟
⎠

. (2.5)

(b) Burgers’ equation:

2ut − 2uux − uxx = 0, (2.6)

Ω =
1
2

⎛

⎜⎜⎜⎜
⎝

ηdx +
ηu

2
dt

(
u + η

)
dx +

(
ηu

2
+
u2

2
+
ux

2

)

dt

(
u − η

)
dx +

(
−ηu
2

+
u2

2
+
ux

2

)

dt −ηdx − ηu

2
dt

⎞

⎟⎟⎟⎟
⎠

. (2.7)

(c) sinh-Gordon equation:

uxt = sinhu, (2.8)

Ω =
1
2

⎛

⎜⎜⎜
⎝

ηdx +
1
η
coshudt uxdx − 1

η
sinhudt

uxdx +
1
η
sinhudt −ηdx − 1

η
coshudt

⎞

⎟⎟⎟
⎠

. (2.9)

(d) A TOEE [22]:

ut =
(
u−1/2
x

)

xx
+ u3/2

x , (2.10)

Ω =
1
2

(
ηdx − η2u−1/2

x dt −ηe−udx + B1dt

ηeudx + C1dt −ηdx + η2u−1/2
x dt

)

, (2.11)

where B1 = η((u−1/2
x )x − u1/2

x + ηu−1/2
x )e−u, C1 = η((u−1/2

x )x + u1/2
x − ηu−1/2

x )eu.

(e) A mKdV equation:

ut = uxxx +
(
a + u2

)
ux, (2.12)
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where a is a constant,

Ω =
1
2

⎛

⎜
⎜
⎜
⎜
⎝

ηdx +

(

η3 +
ηu2

3
+ aη

)

dt −
√

2
3
udx + B2dt

√
2
3
udx + C2dt −ηdx −

(

η3 +
ηu2

3
+ aη

)

dt

⎞

⎟
⎟
⎟
⎟
⎠

, (2.13)

where B2 =
√
2/3(η2u+ηux+u3/3+uxx+au), C2 =

√
2/3(η2u+u3/3−ηux+uxx+au).

(f) A family of equations I [23]:

[
ut −

(
αg(u) + β

)
ux

]
x = −g ′(u), (2.14)

where g(u) is a differentiable function of uwhich satisfies g ′′ + μg = θ, with α, β, μ,
and θ are real constants, such that ξ2 = αη2 + μ,

Ω =
1
2

⎛

⎜⎜⎜⎜⎜⎜
⎝

ηdx +

(
ξ2g − θ

η
+ βη

)

dt −ξuxdx +
(
ξ
(
αg + β

)
ux +

ξ

η
g ′
)
dt

ξuxdx +
(
ξ
(
αg + β

)
ux − ξ

η
g ′
)
dt −ηdx −

(
ξ2g − θ

η
+ βη

)

dt

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (2.15)

(g) A family of equations II [23] similar to the family I, but with some signs changed:

[
ut −

(
αg(u) + β

)
ux

]
x = g ′(u), (2.16)

where g(u) is a differentiable function of uwhich satisfies g ′′ + μg = θ, with α, β, μ,
and θ are real constants, such that ξ2 = αη2 − μ,

Ω =
1
2

⎛

⎜⎜⎜⎜⎜⎜
⎝

ηdx +

(
ξ2g − θ

η
+ βη

)

dt ξuxdx +
(
ξ
(
αg + β

)
ux +

ξ

η
g ′
)
dt

ξuxdx +
(
ξ
(
αg + β

)
ux − ξ

η
g ′
)
dt −ηdx −

(
ξ2g − θ

η
+ βη

)

dt

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.17)

keeping in mind that the parameter η plays the role of the eigenvalue for the
scattering problem in (2.1). Note that the one-form, Ω, is not unique for a given
NLPDE, for the scattering equations (2.1), (2.2), and (2.3) are form invariant under
the “gauge” transformation:

ν −→ ν′ = Aν, Ω −→ Ω′ = dAA−1 +AΩA−1, Θ −→ Θ′ = AΘA−1, (2.18)
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where A is an arbitrary 2 × 2 matrix with determinant unity,

detA = 1. (2.19)

Integrability of (2.1) is,

0 = d2ν = dΩν −Ωdν = (dΩ −ΩΩ)ν, (2.20)

requires the vanishing of the two form

dΩ −ΩΩ = 0. (2.21)

It should be noted that the solution of these equations is of a very special kind. In general,
(2.21) gives three different equations, which cannot be satisfied simultaneously by one-
dependent variable u. It has been pointed out [17, 24] that Ω can be interpreted as a
connection one form for the principle SL(2, R) bundle on R2 and Θ as its curvature two form.
The geometrical explanation of the SL(2, R) is given in [6, 16].

3. The NLEEs Which Describe pss

Whenever the functions are real, Sasaki [6] gave a geometrical interpretation for the problem.
Consider the one-forms defined by

ω1 =
(
r + q

)
dx + (C + B)dt,

ω2 = ηdx + 2Adt,

ω3 =
(
r − q

)
dx + (C − B)dt,

(3.1)

where η = −2iξ.
Let M2 be a two-dimensional differentiable manifold parametrized by coordinates

x, t. We consider a metric on M2 defined by ω1, ω2. The first two equations in (1.3) are the
structure equations which determine the connection form ω3, and the last equation in (1.3),
the Gauss equation, determines that the Gaussian curvature of M2 is −1, that is, M2 is a pss.
Moreover, an EEmust be satisfied for the existence of forms (3.1) satisfying (1.3). This justifies
the definition of a DE which describes a pss that we considered in the introduction.

Wewill restrict ourselves to the case where f21 = η. More precisely, we say that a DE for
u(x, t) describes a pss if it is a necessary and sufficient condition for the existence of functions
fij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, depending on u(x, t) and its derivatives, f21 = η, such that the one-
forms in (1.2), satisfy the structure equations (1.3) of a pss. It follows from this definition that
for each nontrivial solution u of the DE, one gets a metric defined on M2, whose Gaussian
curvature is −1.

It has been known, for along time, that the sinh-Gordon (SG) equation describes a pss.
In this paper, we extend the same analysis to include the Liouville, Burgers, sinh-Gordon
equations, a TOEE, a mKdV equation, and both families of equations I and II.
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Example 3.1. Let M2 be a differentiable surface, parametrized by coordinates x, t.

(a) Liouville’s equation.

Consider

ω1 = uxdx,

ω2 = ηdx − eu

η
dt,

ω3 = −e
u

η
dt.

(3.2)

Then M2 is a pss if and only if u satisfies Liouville’s equation (2.4).

(b) Burgers’ equation.

Consider

ω1 = udx +

(
u2

2
+
ux

2

)

dt,

ω2 = ηdx +
ηu

2
dt,

ω3 = −ηdx − ηu

2
dt.

(3.3)

Then M2 is a pss if and only if u satisfies the Burgers’ equation (2.6).

(c) sinh-Gordon equation.

Consider

ω1 = uxdx,

ω2 = ηdx +
coshu

η
dt,

ω3 =
sinhu

η
dt.

(3.4)

Then M2 is a pss if and only if u satisfies the sinh-Gordon equation (2.8).

(d) A TOEE.

Consider

ω1 = η sinhudx +
[
η
(
u−1/2
x

)

x
coshu + η

(
u1/2
x − ηu−1/2

x

)
sinhu

]
dt,

ω2 = ηdx − η2u−1/2
x dt,

ω3 = η coshudx +
[
η
(
u−1/2
x

)

x
sinhu + η

(
u1/2
x − ηu−1/2

x

)
coshu

]
dt.

(3.5)

Then M2 is a pss iff u satisfies a TOEE (2.10).
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(e) A mKdV equation.

Consider

ω1 = −η
√

2
3
uxdt,

ω2 = ηdx +

(

η3 +
ηu2

3
+ aη

)

dt,

ω3 =

√
2
3
udx +

√
2
3

(

η2u +
u3

3
+ uxx + au

)

dt.

(3.6)

Then M2 is a pss iff u satisfies a mKdV equation (2.12).

(f) A family of equations I.

Consider

ω1 = − ξ

η
g ′dt,

ω2 = ηdx +

(
ξ2g − θ

η
+ βη

)

dt,

ω3 = ξuxdx + ξ
(
αg + β

)
uxdt.

(3.7)

Then M2 is a pss if and only if u satisfies the family of equations I (2.14).

(g) A family of equations II.

Consider

ω1 = ξuxdx + ξ
(
αg + β

)
uxdt,

ω2 = ηdx +

(
ξ2g − θ

η
+ βη

)

dt,

ω3 = ξηg ′dt.

(3.8)

Then M2 is a pss if and only if u satisfies the family of equations II (2.16).

4. A Geometric Method Which Provides BTs

In this section, we show how the geometric properties of a pss may be applied to obtain
analytic results for some NLEEs which describe pss.

The classical Bäcklund theorem originated in the study of pss, relating solutions
of the SG equation. Other transformations have been found relating solutions of specific
equations in [15, 17, 24, 25]. Such transformations are called BTs after the classical one. A
BT which relates solutions of the same equation is called a self-Bäcklund transformation
(sBT). An interesting fact which has been observed is that DEs which have sBT also admit
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a superposition formula. The importance of such formulas is due to the following: if u0 is a
solution of the NLEE and u1, u2 are solutions of the same equation obtained by the sBT, then
the superposition formula provides a new solution u′ algebraically. By this procedure one
obtains the soliton solutions of a NLEE. In what follows we show that geometrical properties
of pss provide a systematic method to obtain the BTs for some NLEEs which describe pss.

Proposition 4.1. Given a coframe {ω1, ω2} and corresponding connection one-form ω3 on a smooth
Riemannian surfaces M2, there exists a new coframe {ω′

1, ω
′
2} and new connection one-form ω′

3
satisfying the following:

dω′
1 = 0, dω′

2 = ω′
2ω

′
1, ω′

3 +ω′
2 = 0, (4.1)

if and only if the surfaceM2 is pss. For the sake of clarity, we give a revised proof of [26].

Proof. Assume that the orthonormal dual to the coframes {ω1, ω2} and {ω′
1, ω

′
2} possesses the

same orientation. The one-forms ωi and ω′
i (i = 1, 2, 3) are connected by means of [27–31]:

ω′
1 = ω1 cosφ −ω2 sinφ, ω′

2 = ω1 sinφ +ω2 cosφ, ω′
3 = ω3 − dφ. (4.2)

It follows that ω′
1, ω

′
2, ω

′
3 satisfying (4.1) exist if and only if the Pfaffian system,

ω3 − dφ +ω1 sinφ +ω2 cosφ = 0, (4.3)

on the space of coordinates (x, t, φ) is completely integrable for φ(x, t), and this happens if
and only ifM2 is pss.

Geometrically, (4.1) and (4.3) determine geodesic coordinates on M2. Now, if ut =
F(u, ux, . . . , uxk) describes pss with associated one-forms ωi = fi1dx + fi2dt, (4.1) and (4.3)
imply that the Pfaffian system,

ω3 − dφ +ω1 sinφ +ω2 cosφ = 0, (4.4)

is completely integrable for φ(x, t)whenever u(x, t) is a local solution of ut = F(u, ux, . . . , uxk)
[2, 32].

Proposition 4.2. Let ut = F(u, ux, . . . , uxk) be a NLEE which describe a pss with associated one-
forms (1.2). Then, for each solution u(x, t) of ut = F(u, ux, . . . , uxk), the system of equations for
φ(x, t),

φx − f31 + f11 sinφ + η cosφ = 0, φt − f32 + f12 sinφ + f22 cosφ = 0, (4.5)

is completely integrable. Moreover, for each solution of u(x, t) of ut = F(u, ux, . . . , uxk) and cor-
responding solution φ,

(
f11 cosφ − η sinφ

)
dx +

(
f12 cosφ − f22 sinφ

)
dt (4.6)

is a closed one-form [2].
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Eliminating φ(x, t) from (4.5), by using the substitution

cosφ =
2Γ

1 + Γ2
, (4.7)

where

Γ =
ν1
ν2

, (4.8)

then (4.5) is reduced to the Riccati equations:

∂Γ
∂x

= ηΓ +
1
2
f11
(
1 − Γ2

)
− 1
2
f31
(
1 + Γ2

)
, (4.9)

∂Γ
∂t

= f22Γ +
1
2
f12
(
1 − Γ2

)
− 1
2
f32
(
1 + Γ2

)
. (4.10)

The procedure in the following is that one constructs a transformation Γ′ satisfying the same
equation as (4.10)with a potential u′(x)where

u′(x) = u(x) + f
(
Γ, η
)
. (4.11)

Thus, eliminating Γ in (4.9), (4.10) and (4.11), we have a BT to a desired NLEE. We consider
the following examples [33].

(a) BT for Liouville’s equation.

For (2.4) we consider the functions defined by

f11 = ux, f12 = 0,

f21 = η, f22 = −e
u

η
,

f31 = 0, f32 = −e
u

η
,

(4.12)

for any solution u(x, t) of (2.4), the above functions satisfy (2.21). Then (4.9)
becomes

∂Γ
∂x

= ηΓ +
ux

2

(
1 − Γ2

)
. (4.13)

If we choose Γ′ and u′ as

Γ′ =
1
Γ
,

u′ = −u − 2 ln
1 − Γ
1 + Γ

,

(4.14)
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then Γ′ and u′ satisfy (4.13). If we eliminate Γ in (4.13) and (4.10) with (4.14), we
get the BT:

(
u′ − u

)
x = 2η sinh

1
2
(
u′ + u

)
,

(
u′ + u

)
t =

2
η
e1/2(u−u

′). (4.15)

Equation (4.15) is the BT for Liouville’s equation (2.4) with f11, f22, and f32 given
in (4.12).

(b) BT for Burgers’ equation.

For any solution u(x, t) of the Burgers’ equation (2.6), the functions

f11 = u, f12 =

(
u2

2
+
ux

2

)

,

f21 = η, f22 =
ηu

2
,

f31 = −η, f32 = −ηu
2
.

(4.16)

The above functions fij satisfy (2.21). Then (4.9) becomes [27]

∂Γ
∂x

=
η

2

(
1 + 2Γ + Γ2

)
+
u

2

(
1 − Γ2

)
. (4.17)

If we choose Γ′ and u′ as

Γ′ =
1
Γ
,

u′ = −u + 4
∂

∂x
tanh−1Γ,

(4.18)

then Γ′ and u′ satisfy (4.17). If we eliminate Γ in (4.17) and (4.10) with (4.18), we
get the BT:

(
w′ −w

)
x =

η

2

[
1 + sinh 2

(
w′ +w

)
+ 2sinh2(w′ +w

)]
,

(
w′ +w

)
t = 4w2

x + 4wxx + 2ηwxe
2(w+w′),

(4.19)

where we put u′ = 4w′
x and u = 4wx. Equation (4.19) is the BT for the Burgers’

equation (2.6)with f11, f22, and f32 given in (4.16).
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(c) BT for sinh-Gordon equation.

For (2.8) we consider the following functions of u(x, t) defined by [28]

f11 = ux, f12 = 0,

f21 = η, f22 =
coshu

η
,

f31 = 0, f32 =
sinhu

η
,

(4.20)

for any solution u(x, t) of (2.8), the above functions fij satisfy (2.21). Then (4.9)
becomes [29]

∂Γ
∂x

= ηΓ +
ux

2

(
1 − Γ2

)
. (4.21)

If we choose Γ′ and u′ as

Γ′ =
1
Γ
,

u′ = −u + 4 tanh−1Γ,

(4.22)

then Γ′ and u′ satisfy (4.21). If we eliminate Γ in (4.21) and (4.10) with (4.22), we
get the BT:

(
u′ − u

)
x = 2η sinh

(u′ + u)
2

,

(
u′ + u

)
t =

−2
η

[
sinhu cosh

(u′ + u)
2

− coshu sinh
(u′ + u)

2

]
.

(4.23)

Equation (4.23) is the BT for the sinh-Gordon equation (2.8) with f11, f22, and f32
given in (4.20).

(d) BT for a TOEE.

For (2.10) we consider the functions defined by

f11 = η sinhu, f12 =
[
η
(
u−1/2
x

)

x
coshu + η

(
u1/2
x − ηu−1/2

x

)
sinhu

]
,

f21 = η, f22 = −η2u−1/2
x ,

f31 = η coshu, f32 =
[
η
(
u−1/2
x

)

x
sinhu + η

(
u1/2
x − ηu−1/2

x

)
coshu

]
.

(4.24)
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The above functions fij satisfy (2.21). Then (4.9) becomes [30]

∂Γ
∂x

= ηΓ − −η
2
e−u − η

2
euΓ2. (4.25)

If we choose Γ′ and u′ as

Γ′ = Γ,

u′ = −u − 2 ln Γ,
(4.26)

then Γ′ and u′ satisfy (4.25). If we eliminate Γ in (4.25) and (4.10) with (4.26), we
get the BT:

(
u′ + u

)
x = −2η + 2η cosh

(u′ − u)
2

,

(
u′ + u

)
t = 2η2u−1/2

x − 2η
(
u−1/2
x

)

x
sinh

(u′ − u)
2

+ 2η
[
u1/2
x − ηu−1/2

x

]
cosh

(u′ − u)
2

.

(4.27)

Equation (4.27) is the BT for a TOEE (2.10) with f11, f22, and f32 given in (4.24).

(e) BT for a mKdV equation.

For (2.12) we consider the following functions of u(x, t) defined by

f11 = 0, f12 = −η
√

2
3
ux,

f21 = η, f22 =

(

η3 +
ηu2

3
+ aη

)

,

f31 =

√
2
3
u, f32 =

√
2
3

(

η2u +
u3

3
+ uxx + au

)

,

(4.28)

for any solution u(x, t) of (2.12), the above functions fij satisfy (2.21). Then (4.9)
becomes [31]

∂Γ
∂x

= ηΓ −
√

1
6
u
(
1 + Γ2

)
. (4.29)
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If we choose Γ′ and u′ as

Γ′ =
1
Γ
,

u′ = u + 2
√
6
∂

∂x
tan−1Γ,

(4.30)

then Γ′ and u′ satisfy (4.29). If we eliminate Γ in (4.29) and (4.10) with (4.30), we
get the BT:

(
w′ +w

)
x =

η

2
sin 2

(
w′ −w

)
,

(
w′ −w

)
t = −

(
2wxxx + 16w3

x + 2η2wx +
aη√
6

)

+
1
2

(
η3 + 8ηw2

x + aη
)
sin 2

(
w′ −w

) − 2ηwxx cos 2
(
w′ −w

)
,

(4.31)

where we put u′ = 2
√
6w′

x and u = 2
√
6wx. Equation (4.31) is the BT for an mKdV

equation (2.12) with f11, f22, and f32 given in (4.28).

(f) BT for the family of equations I.

For any solution u of the family of equations I (2.14), the functions

f11 = 0, f12 = − ξ

η
g ′,

f21 = η, f22 =

(
ξ2g − θ

η
+ βη

)

,

f31 = ξux, f32 = ξ
(
αg + β

)
ux.

(4.32)

The above functions fij satisfy (2.21). Then (4.9) becomes [34]

∂Γ
∂x

= ηΓ − ξ

2
ux

(
1 + Γ2

)
. (4.33)

If we choose Γ′ and u′ as

Γ′ =
1
Γ
,

u′ = u +
4
ξ
tan−1Γ,

(4.34)
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then Γ′ and u′ satisfy (4.33). If we eliminate Γ in (4.33) and (4.10) with (4.34), we
get the BT:

(
u′ + u

)
x =

2η
ξ

sin ξ
(u′ − u)

2
,

(
u′ − u

)
t =

2
ξ

(
ξ2g − θ

η
+ βη

)

sin ξ
(u′ − u)

2
− 2
(
αg + β

)
ux

+
2
η
g ′ cos ξ

(u′ − u)
2

.

(4.35)

Equation (4.35) is the BT for the family of equations I (2.14) with f11, f22, and f32
given in (4.32).

(g) BT for the family of equations II.

For (2.16) we consider the functions of u(x, t) defined by

f11 = ξux, f12 = ξ
(
αg + β

)
ux,

f21 = η, f22 =

(
ξ2g − θ

η
+ βη

)

,

f31 = 0, f32 =
ξ

η
g ′,

(4.36)

for any solution u(x, t) of (2.16), the above functions fij satisfy (2.21). Then (4.9)
becomes

∂Γ
∂x

= ηΓ +
ξ

2
ux

(
1 − Γ2

)
. (4.37)

If we choose Γ′ and u′ as

Γ′ =
1
Γ
,

u′ = −u +
4
ξ
tanh−1Γ,

(4.38)
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then Γ′ and u′ satisfy (4.37). If we eliminate Γ in (4.37) and (4.10) with (4.38), we
get the BT:

(
u′ − u

)
x =

2η
ξ

sinh ξ
(u′ + u)

2
,

(
u′ + u

)
t =

2
ξ

(
ξ2g − θ

η
+ βη

)

sinh ξ
(u′ + u)

2
+ 2
(
αg + β

)
ux

− 2
η
g ′ cosh ξ

(u′ + u)
2

.

(4.39)

Equation (4.39) is the BT for the family of equations II (2.16) with f11, f22, and f32
given in (4.36).

We have previously discussed the relationships among the geometrical properties and
the BT. There, we restrict our discussion to the NLEEs which can be reduced to the Liouville’s
form of the geometrical properties such as the Burgers, the sinh-Gordon equations, a TOEE,
a mKdV, and the two family of equations I and II.

5. Conclusions

We may hope to find some relationships among various soliton equations which describe
pss. The latter yields directly the curvature condition (Gaussian curvature equal to −1,
corresponding to pseudo-spherical surfaces). This geometrical method is considered for
several NLPDEs which describe pss: Liouville, Burgers, sinh-Gordon equations, a TOEE, a
mKdV, and the two families of equations I and II. We show how the geometric properties
of a pss may be applied to obtain analytic results for some NLEEs which describe pss.
This geometrical method allows some further generalization of the work on Bäcklund
transformations given by Wadati et al. [3]. The Bäcklund transformations for all seven
NLPDEs mentioned above are derived in this way.
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[15] K. Konno andM.Wadati, “Simple derivation of Bäcklund transformation from Riccati form of inverse
method,” Progress of Theoretical Physics, vol. 53, no. 6, pp. 1652–1656, 1975.

[16] M. Marvan, “Scalar second-order evolution equations possessing an irreducible sl2-valued zero-
curvature representation,” Journal of Physics A, vol. 35, no. 44, pp. 9431–9439, 2002.
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