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In this paper, the exact solutions of space-time fractional telegraph equations are given in terms of Mittage-Leffler functions via a
combination of Laplace transform and variational iteration method. New techniques are used to overcome the difficulties arising in
identifying the general Lagrange multiplier. As a special case, the obtained solutions reduce to the solutions of standard telegraph

equations of the integer orders.

1. Introduction

Fractional differential equations are widely used in many
branches of sciences. Many phenomena in engineering, phys-
ics, chemistry and other sciences can be described success-
tully using fractional calculus. Nonlinear oscillation of earth-
quake, acoustics, electromagnetism, electrochemistry, diffu-
sion processes and signal processing can be modeled by frac-
tional equations [1-5]. The telegraph equations have a wide
variety of application in physics and engineering. The appli-
cations arise, for example, in the propagation of electrical
signals and optimization of guided communication systems
[6-9]. It is recently shown by Arbab [10] that a quaternionic
momentum eigenvalue produces a telegraph equation. This
equation is found to describe the propagation of a quantum
particle.

The fractional telegraph equations have been investigated
by many authors in recent years. Garg et al. [9] derived
a solution of space-time fractional telegraph function in a
bounded domain by the method of generalized differential
transform and obtained the solution in terms of Mittage-
Leffler functions. Chen et al. [11] obtained the solution
of nonhomogenous time-fractional telegraph equation with
nonhomogenous boundary conditions, namely, Dirichlet,
Neumann, and Robin boundary conditions using the method

of separation of variables. The solutions are given in the form
of the multivariate Mittage-Leftler functions. Ansari [12]
derived a formal solution of the time-fractional telegraph
equation by applying a fractional exponential operator.
Huang [13] considered the time-fractional telegraph equation
for the Cauchy problem and signaling problem. He solved the
problem by the combined Fourier-Laplace transforms. Also,
Huang derived the solution for the bounded problem in a
bounded-space domain by means of Sine-Laplace transforms
methods. Das et al. [14] used a homotopy analysis method in
approximating an analytical solution for the time-fractional
telegraph equation and different particular cases have been
derived. Jiang and Lin [15] obtained the solution in a series
form for the time-fractional telegraph equation with Robin
boundary value conditions using the reproducing kernel the-
orem. Khan et al. [16] used a method based on perturbation
theory and Laplace transformation for solving space-time
fractional telegraph equations. They considered fractional
Taylor series and fractional initial conditions in deriving the
solution. Sevimlican [6] considered a one-dimensional space
fractional telegraph equations by the variation iteration
method; he found the general Lagrange multiplier to be A =
(§—x). But, as mentioned by He [17] the exact identification of
the general Lagrange multiplier is impossible for most prob-
lems and an approximate identification is always followed. He



[17], approximated the Lagrange multiplier (as A = —(§ — x))
for a one-dimensional space-fractional telegraph equations.

Recently, a method that combined the Laplace transform
and variational iteration method (LVIM) has been intro-
duced by many authors in solving various types of problems.
Abassy et al. [18] used a combination of variational iteration
method, Laplace transform, and Pade’ technique in obtaining
solution to nonlinear equations in compact form. Ham-
mouch and Mekkaoui [19] approximated the solutions of a
homogenous Smoluchowski coagulation equation by Laplace
variational iteration method. Arife and Yildirim [20] devel-
oped Laplace variational iteration method (LVIM) for solving
eighth-order equations.

In this paper, the authors extend Laplace variational
iteration method (LVIM) and apply it to space-time one-
dimensional fractional telegraph equations in a half-space
domain (signaling problem). This approach enables us to
overcome the difficulties that arise in finding the general
Lagrange multiplier.

In Section 2, we provide some preliminaries. Section 3
introduces the concept of variational iteration method, while
Section 4 illustrates the construction of Laplace variational
technique. In Section 5 the authors provide numerical exam-
ples. The conclusions are given in Section 6.

2. Preliminaries

Definition 1. The Caputo fractional derivative of order« > 0
of a function f(x), x > 0 is defined by [5, 21]

osz(x)
* —t n—a—1 g(n) t, -1 N
) r(n—a)jo(x Yol (3 dr, n-l<a<ne
ddxnf(x), a=neN,

)

where (D is called the Caputo derivative operator.

Note I. From Definition 1, the following result is obtained:

oD;t’

T+ g
= F(/3 (x+1)

0, n-1l<a<n f<n-1

, n—l<a<n f>n-1, feR

)

Definition 2. The Laplace transform of fractional order deriv-
ative, is defined by [1-3, 21, 22]

Lf@] =Y P 0]
k=0 (3)

n—-l<a<n neN.

Z[(Def (¥)] = 5"
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Definition 3. The Mittag-Leffler function with two parame-
ters is defined by [21, 23, 24]

Eoc,ﬁ (Z)
&) n

z
:Z(:)F(om+ﬁ)’

a, B,z € C, Re(a) >0, Re(p) > 0.

(4)
Note 2. It follows Definition 3 that
(1) E,y, (xz) = cosh (x),
sinh (x)
@) Ep(¥) == (5)

(3) E;(x*)= % [-1 + cosh (x)].

Definition 4. The generalized Mittag-Leftler function is
defined by [23, 24]

Ez)ﬂ (2)

o, B,y €C, Re(a) >0, Re(f) >0
(6)

Z k'l“(koc+/3)

where (y), = p(y + 1),...,(y + k = 1) = T'(y + k)/I(y). For
y=1, Ez)ﬁ(z) reduces to Mittage-Leffler function (4).

3. Variational Iteration Method

He [25] developed the variational iteration method (VIM)
that is widely used to evaluate either exact or approximate
solutions of linear and nonlinear problems [17, 26-28]. The
variational iteration method gives the solution in a rapidly
infinite convergent series. To illustrate the concept of VIM,
we consider the following general nonlinear equation with
prescribed auxiliary conditions:

Lu (x,t) + Nu (x,t) = f (x,t), (7)

where u is the unknown function, L and N are linear and
nonlinear operators, respectively, and f is the source term.
The correction functional for (7) is given as follows:

un+1 (x’ t)

=un(x,t)+LxA[Lun(E,t)+Nu 1) - F(ED]dE,
(8)

where A is a general Lagrange multiplier that can be identified
optimally via the variation theory. The subscript n indicates
the nth approximation and #, is considered as a restricted
variation 01, = 0.
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4. Laplace Variational Iteration Method
(LVIM)

Consider the following general multiterms fractional tele-
graph equation:

*u
ox*

(x,1)

B y
- al%‘ (x,1) +a2271; (6, 8) + agu (x, 1) + f (, t); |
9

where 1 < «, < 2,0 <y < 1,x¢t >0 ul0,t) = h(t),
u,(0,t) = g(t), and a,, a,, a; are constants.

The new approach of the Laplace variational iteration
technique is based on the following steps.

Step 1. Removing the fractional derivative of order « with
respect to x for unknown function u(x, t) by using Laplace
and inverse Laplace transforms.

Step 2. Differentiating the results obtained in Step 1 with
respect to x, then we get the value of the general Lagrange
multiplier, for the correction functional (iterative formula) to
equal one. The concept of the technique is illustrated in the
following context.

By applying Laplace transform with respect to x, on both
sides of (9), we get

s* (s, 1) — s (0,8) — % Pu, (0, 1)

Pu(x,t) g 0"u (x,t)
oth > oty

=Z [al +agu (x,t) + f (x, t)]
Sou(s,t)

1 1 1 1
= ;h(t) + s—zg(t) ta (Zf (x,1)] + S—aff

[ Pu(x,t) 0"u (x,t)
a

oth Byt (x, t):| )

(10)
By taking the inverse Laplace transform to (10), we have

u(x,t)

—h(t) +xg(0) + L [Siagf (x,t)] Lo

B 4
" [%g [ala u(x,t) +a28 u(x,t)
s

508 57 + asu (x, t)] ] .

(1)

Now the fractional derivative of order o with respect to x
is removed, and the dependent variable u(x,t) in the left

hand side of (11), became free of derivatives. Next step, we
differentiate (10) with respect to x to get

ou (x,t)
ox

a0 2 [Sorima]] 2

a1 Pu (x,t) 0"u(x,t)
X[SF [S—a.g[al 54 th——y

+a3u(x,t)]” .

The above step has been taken to enable us to construct the
correction functional for (11) to be

(12)

u

n+1
=u, (x,t)
* [ Qu, (& 1) 7 71
+LA{ e —g(t)—a—g[ff [S—afff(x,t)“
o 1 oPu, (&)
— a—g |:$ |:s_‘xg [al—atﬁ
u, (& 1)
otY
+a3un(£,t)]”}d§.

(13)

The general Lagrange multiplier for (13) can be identified
optimally via variation theory to get

L+ Mgy =0, A, =0. (14)
From (14), we obtain

A=-1 (15)

Substituting A = —1 into (13), we get the iterative formula for
n=0,1,2,...,as follows:

Upp = Uy (x’ t)

i r {au,, 1) gt - 9 [g‘l [Si[ng(x,t)”

0 o0& o€
o 1 Pu, (&,1)
— a—g < [s_"‘g |:a1 —atﬁ
"u, (&,1)
otY

+ azu,, (&, t)] ] ] } dé&.

(16)



Start with the initial iteration
uy (x,1) = u(0,1) + xu, (0,t) = h(t) + xg (¢). 17)

The exact solution is given as a limit of the successive
approximations u,(x,t), n = 0,1,2,...; in other words,
u(x,t) =lim, _,  u,(x,1).

5. Numerical Examples

Example 1. Consider the following space-fractional homoge-
nous telegraph equation:

0“u (x,t)
ox*
2
= 9 ua(:;’t) + aug;,t) +u(x,t), xt>0, 1<a<?2,
u(0,t)=e’, u, (0,t) = e’

(18)

Solution 1. Applying the Laplace transform with respect to x
on both sides of (18), we get

_ -1 -2
sS“U(s,t) = s u(0,t) — 5" "u, (0, 1)

3 u(x,t)  ou(xt)
_‘g[ | ot

+u(x, t)] ,
(19)

1 ®u(x,t)  ou(xt)
e [ or ot

The inverse Laplace transform of (19) yields

+u(x,t)].

u(x,t)=e ' +xe’

a1 Pu(x,t)  Ou(x,t)
+< [Saff[ 3 + o +u(x,t)|].
(20)
Differentiating (20) with respect to x, we have
ou (x,t)
ox
4 0 a1l u(x,t) ou(x,t)
=e +ax$ 5“3[ 30 + 35 +u(x,t)|].
(21)
The correction functional for (21) with A = —1 is given by
un+1 (x’ t)
Tou, 60 9
= 1) — ——— - - =<
o= [[[HE0 et 5
1 [0%u,&t) ou, &) (22)
8 [s_“g[ ' o

o] ||
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The initial iteration uy(x, t) = u(0,t) +xu,(0,t) = el rxel;

then, we have

o o+l

u; (x,t) = el txe + r(;c+ 1)e_t + r(j; N 2)e_t,
. . a . X
u, (x,t) =e +xe +I‘((x+1)e +I‘((x+2)e
20 200+1

+ X et + X e
I Qa+1) rQua+2) °

o o+1

e+ * e’ (23)
IF'(x+1) T'(x+2)

us (x,t) = e +xet +

20 200+1

+ e + e
I'Qa+1) I'(2a +2)
3 . oot

+ e + e,
IFGa+1) I'Ga+2)

Then the general term in successive approximation is given

by

_ —tn ko 1 X
U () = € ,;)x [F(koc+1)+1"(k(x+2) Ce)

The solution in a closed form is given by
u (X, t) = nleréo”n ('x’ t) = e_t [Etx,l (xlx) + an,Z ('xa)] N (25)
Letting & = 2, then

u(x,t)y=e" [Ez)1 (xz) +xE,, (xz)]

sinh (x)] . @O
=e .

=e! [cosh (x) +x

The solution is the same as that obtained by Wazwaz [26]. The
solution surface of this example is graphically presented in
Figure 1 for various fractional orders of .

Example 2. Consider the following space-time fractional non-
homogenous telegraph equation:

0u(x,t) o%u (x,1) . 0"u (x,t)

ox* or? oty
+u(x,t)—x2—t+1, (27)

I<a<2, 0<y<l, x,t20,

u(0,t)=t, u,(0,t)=0.
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F1GURE 1: The surface plot of u(x, t) solution of Example 1: (a) & = 1.25, (b) « = 1.5, (¢) « = 1.75, and (d) o = 2.

Solution 2. Taking Laplace transform with respectto x to (27),  Differentiation of (29) with respect to x yields
we get

ou (x,t
s*U (s, 1) = s (0,£) — **u, (0, 1) ua(z )
B O’u(x,t)  0u(x,t) 2t 1 3 2 wtl t a 1 .
_3[ o T e THED|TGTty T Ter2” T T
(s, t) o[ a1 _[0%u(et) 0u(xt)
— | < | =& Jt .
1 2 t 1 +ax[ [s"‘ [ ar o u (o)
v S (30)
1 [2u(xt)  0u(xt) . . . .
+ S—“ff 0z T T o Y (1) ] - The correction functional for (30) with A = —1 is given by
28
( ) Uty
The inverse Laplace transform of (28) is given b
p 8 Y o J'x [aun &1 N 2 get
u(x,t) ") o0& I'(a+2)
=t- 2 ot e ! x* t 1
T'(a+3) T(a+1) T(a+1) gt g
1 [Qulet)  0"u(xb) fo- T
—1 > >
v [s_"‘g[ ar o “”’"””' 9 [ [ 1 [P
(29) ok 5@ ot?



. u, (1)
oty

st ]|

uy (x,t) =u(0,t) + xu, (0,t) =t,

u (x,t) =t - 2x"" + X [ i ]
F(a+3) T(a+1) r2-v)
u, (x,t) =t — 2% + X [1+ £ ]
F(a+3) T(x+1) r2-y)
Dx 22 2 1y
_r(2a+3)+r(za+1)[ +r(z—y)]’
) =t 25+ . X [ £y ]
F(@+3) T(x+1) r2-vy)
92042 £y
TTQa+3) F(2(x+l)[ "T- y)]
o2 1oy
TTGa+3) F(3oc+1)[ Ti- y)]

x)*

u, (x,t) =t —2x Zf(koc+3)

Ay n (xzx)k
" [H r(z—y)]k_lr(kocﬂ)'

u(x,t) = nlLrIgoun (x,1)

_ 2 £ 2 (M
S _[”r(z—y)]_zx,;,r(kms)
P (xa)k
" “r(z—y)_;r(kml)

=t+x° [1-2E,; (xV)]
oy N
+ 1+m- [E(x,l(x )—1]

(€))
For ¢ =2 and y = 1, then

u(xt)=t+x> -2- 2x2E2)3 (xz) +2E,, (xz) =t+x"
(32)

The solution surface of this example is graphically pre-
sented in Figure 2 for fixed y and various fractional orders of
a.
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Example 3. Consider the following space-time fractional
nonhomogenous telegraph equation:

ulx,t) Pu(xt) ulxt) 2 2
e - ok + 57 +u(x,t)—x"—t" -2t
l<a, B<2, -<y<l, xt20,
u(©0,6) =t u,(0,£)=0, 2<f+y<3

(33)

Solution 3. Taking Laplace transform with respect to x to
(33), we get

_ -1 -2
s“U(s,t) = s u(0,t) — 5" "u, (0,1)

Fux,t) 0u(xt) .
oth oty

u(x, t)]

]

(34)

u (x, t)]

B Fulx,t) ulxt)
s +s"‘g[ af o

The inverse Laplace transform of (34) is given by

2tx*
I'(x+1)

2xtx+2 thtx
CT(a+3) T(a+l)

u(x,t) = t*

Pu(x,1) . 0"u (x,t)
otk oty

+ P Lag[ +u(x,t)”.

(35)

Differentiation of (35) with respect to x yields

ou (x,t)
0x
- 2xo¢+1 t2xa 1 th(x—l
T'(a+ 2) T (x) I'(x)
0 1 Fulx,t) u(xt)
+ax [3 [5“3[ 548 + 57 +u(x,1) .

(36)
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() (d)

FIGURE 2: The surface plot of u(x, t) solution of Example 2 for fixed y = 0.5: (a) & = 1.25, (b) « = 1.5, (¢) &« = 1.75, and (d) & = 2.

o+2
The correction functional for (36) with A = -1 is given by U, (x,t) = t* — >
T'(a+3)
Uy i N x(x |: 2t2_'8 . 2t2—y
X a+1 a—1 a—1 -
. _I ou, (&) 287 8T 28 T(+1) [T(3-8) T(3-y)
"o o IFa+2) T(a) I'(x)
2x20<+2 x2(x

ol _[1 oPu, (E,1) _r(z(x+3)+r(2¢x+1)

e [T
2-2y 1-y

ayun (f, t) X |: 2 - 2
S r3-2y) r2-vy)
26%7F 26577
+un(5)t)]:|j|]d5) + + _Zt]’
rG-p TB-v)
uy (x,t) = u(0,t) + xu, (0,t) = t2, us (x,1)
2x:x+2 2x¢x+2
)=t - =t -
u (61) T(a+3) T (a+3)

L 2% 7P N 27 t] Lo 277P . 277 t]
Fa+1)[T(3-B) T(3-y) ’ F(@+1) |[T(3-B) T(3-y)
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FIGURE 3: The surface plot of u(x, t) solution of Example 3 for fixed # = 1.25and y = 0.75: (a) « = 1.25, (b) & = 1.5, (¢) &« = 1.75, and (d)
o =2.

202 52 u, (x,t)

T TQa+3) TQa+1)

Lo ()
2

2422 241V =ti-2x Z F(k(x +3)

r(3-2y) T(2-y) b S t ()
2t%7F 26577 +[F(3—ﬁ)+F(3—y) ]Z’F(koc+1)

+ + -2t

TG-p TG-1) o
25%2 X [ r3-2y) r(2-y) ]

- +
T(Ba+3) T'(Ba+l) xiw

4> 4"y & Tka+1)’
r3-2y) r(2-y

= 4

u(x,t)
21%7F 227 = i
+ + -2t], nll»r%ou” (1)
[G-p IG-7) e
2t 2t
=t +x* - + -2t

r3-p) r@G-y)
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—2x? i O

= T (ka+3)

277 26277 (x%)*
[r(3—/3)+r(3— Zr(k(x+l)
[ 2427 2t ]

rd-2y) r2-y)

XZ(k—l)( @)

>2
That+D = 7

k=2

=t +x° [1 - 2E0¢,3 (x“)]

207°F 26277 ~
[F(3—l3)+r(3—w ”][ () 1]
[ i ]

r(3-2y) r(2-y

X [1+ B2, () - 2B, (x%)].
(37)

Fora = B =2 and y = 1, we get the standard equation with
the solution

ut) =t +x" -2- 2x2E2)3 (xz) +2E,, (xz) +0
(38)
=’ +x°.

The solution surface of this example is graphically pre-
sented in Figure 3 for fixed y and f and various fractional
orders of a.

6. Conclusion

In this paper, a combined form of Laplace transform and
variational iteration method is presented to handle space-
time fractional telegraph equations in a half-space domain.
The space and time derivatives are considered in the Caputo
sense. Certain techniques are used to overcome the com-
plexity of identifying the general Lagrange multiplier. The
solutions are obtained in series form that rapidly converges
in a closed exact formula with simply computable terms. The
calculations are simple and straightforward. The method was
tested on three examples on different situations. The tech-
nique is powerful, reliable, and efficient. This technique can
be extended to solve various linear and nonlinear fractional
problems in applied science.
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