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This paper is concerned with the existence, uniqueness, and stability of the solution of some impulsive fractional problem in a
Banach space subjected to a nonlocal condition. Meanwhile, we give a new concept of a solution to impulsive fractional equations
of multiorders. The derived results are based on Banach’s contraction theorem as well as Schaefer’s fixed point theorem.

1. Introduction

It is well known that the theory of fractional calculus deals
with the concepts of differentiation and integration of arbi-
trary orders, real and complex. Actually, the real importance
of fractional derivatives lies in their nonlocal character which
gives rise to a long memory effect and thus to a better insight
into themodelled processes. On the other hand, sincemodels
using classical derivatives are just a special case of those
using fractional derivatives, then most of the investigators
in different areas such as electronics, viscoelasticity, satellite
guidance, medicine, anomalous diffusion, signal processing,
and many other branches of science and technology have
revisited some classical dynamic systems in the framework of
fractional derivatives to get better results; see the references
[1–8]. We point out that most of dynamic systems are
naturally governed by fractional differential equations; for
further applications of fractional derivatives in other areas
and useful backgrounds we refer the reader to the works [1–
5, 7–12].

As far as we are concerned with impulsive fractional
differential equations, we intend to improve and correct in
this paper some existence results established earlier in [4, 13–
18] for impulsive fractional differential equations. There have
been in the last couple of years several concepts of solutions
satisfying some fractional equations subjected to impulsive
conditions, see [13, 14, 18, 19], while the authors of [18] claimed

that their new concept is the more realistic than the existing
ones. Actually, we believe that nobody holds all the truth
about this subject and a lot of dark sides of these approaches
are not yet well elucidated.

Regarding the concept of a solution for impulsive frac-
tional equations introduced by [18] we point out that Lemma
2.6 which has been used by the authors to obtain the equi-
valence between an impulsive fractional problem and an
integral equation is false as we see in the following counterex-
ample.

In the famous book of Nagy and Riesz [20, page 48],
there is an example of monotonic continuous function 𝐹 :
[0, 1] → R which is not constant in any subinterval of [0, 1]
and satisfies 𝐹󸀠 = 0, almost everywhere in [0, 1]. So, in terms
of Caputo’s derivative we would have formally for any 𝛼 ∈
(0, 1)

𝐶
𝐷
𝛼

0
+𝐹 (𝑡) =

1

Γ (1 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
−𝛼
𝐹
󸀠

(𝑠) 𝑑𝑠 = 0, 𝑡 ∈ [0, 1] ,

𝐹 (𝑎) = 𝐹
0
, 0 < 𝑎 < 1, with 𝐹

0
being the value of 𝐹 at 𝑎.

(1)

However, there is no apparent equivalence between this
problem and the fractional integral representation of 𝐹
defined in Lemma 2.6 [18]; otherwise the function𝐹(𝑡)would
be constant and equal to 𝐹

0
throughout the interval [0, 1]



2 International Journal of Differential Equations

which is a contradiction! Moreover, since in the same work
Lemma 2.7 is based on the latter lemma then it is not correct
and may lead to apparent contradiction.

Our main contribution in this paper is the study of
new fractional problems of several orders in a Banach space
subjected to some impulsive conditions of the form
𝐶

𝐷
𝛼
𝑘

𝑡
+

𝑘

𝑢 (𝑡)

= 𝐴 (𝑡, 𝑢) 𝑢 (𝑡) + 𝐹(𝑡, 𝑢 (𝑡) ,

∫

𝑡

𝑎

ℎ (𝑡, 𝑠, 𝑢 (𝜎 (𝑠))) 𝑑𝑠,

∫

𝑡
𝑘+1

𝑎

𝑘 (𝑡, 𝑠, 𝑢 (𝜏 (𝑠))) 𝑑𝑠) ,

𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, . . . , 𝑚,

𝑢 (𝑎) = 𝑢
0
∈ 𝐸,

𝑢 (𝑡
+

𝑘
) = 𝑢 (𝑡

−

𝑘
) + 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , 𝑘 = 1, . . . , 𝑚.

(2)

Let us first give a concrete example of such a problem in R;
namely;

𝐶

𝐷
𝛼

0
+𝑢 (𝑡) = 𝑡

𝑝
− 1, 𝑡 ∈ 𝐽

0
= [0, 1] ,

𝐶

𝐷
𝛽

1
+𝑢 (𝑡) = (𝑡 − 1)

𝑞
, 𝑡 ∈ 𝐽

1
= (1, 𝑇] ,

𝑢 (0) = 1,

𝑢 (1
+
) = 𝑢 (1

−
) + 2,

(3)

where 0 < 𝛼 < 1, 0 < 𝛽 < 1, 𝑇 > 1, and 𝑝, 𝑞 ∈ R+. So, we
look for a piecewise continuous function 𝑢 : [0, 𝑇] → R

satisfying (3). Solving the subproblem

𝐶

𝐷
𝛼

0
+𝑢 (𝑡) = 𝑡

𝑝
− 1, 𝑡 ∈ 𝐽

0
,

𝑢 (0) = 1,

(4)

we obtain

𝑢 (𝑡) = 1 +
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑠
𝑝
𝑑𝑠

−
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑑𝑠

= 1 +
Γ (𝑝 + 1)

Γ (𝛼 + 𝑝 + 1)
𝑡
𝛼+𝑝
−

1

Γ (𝛼 + 1)
𝑡
𝛼
,

(5)

fromwhich we get 𝑢(1) = 1+(Γ(𝑝+1)/Γ(𝛼+𝑝+1))−(1/Γ(𝛼+
1)).

On the other hand, the solution of the subproblem

𝐶

𝐷
𝛽

1
+𝑢 (𝑡) = (𝑡 − 1)

𝑞
, 𝑡 ∈ 𝐽

1
,

𝑢 (1
+
) = 𝑢 (1) + 2 = 3 +

Γ (𝑝 + 1)

Γ (𝛼 + 𝑝 + 1)
−

1

Γ (𝛼 + 1)

(6)

is given by

𝑢 (𝑡) = 𝑢 (1
+
) +

1

Γ (𝛽)
∫

𝑡

1

(𝑡 − 𝑠)
𝛽−1

(𝑠 − 1)
𝑞
𝑑𝑠

= 3 +
Γ (𝑝 + 1)

Γ (𝛼 + 𝑝 + 1)
−

1

Γ (𝛼 + 1)

+
Γ (𝑞 + 1)

Γ (𝛽 + 𝑞 + 1)
(𝑡 − 1)

𝛽+𝑞
.

(7)

Hence, the piecewise continuous function

𝑢 (𝑡) =

{{{{{{{{

{{{{{{{{

{

1 +
Γ (𝑝 + 1)

Γ (𝛼 + 𝑝 + 1)
𝑡
𝛼+𝑝
−

1

Γ (𝛼 + 1)
𝑡
𝛼
, 𝑡 ∈ 𝐽

0
,

3 +
Γ (𝑝 + 1)

Γ (𝛼 + 𝑝 + 1)
−

1

Γ (𝛼 + 1)

+
Γ (𝑞 + 1)

Γ (𝛽 + 𝑞 + 1)
(𝑡 − 1)

𝛽+𝑞
, 𝑡 ∈ 𝐽

1
,

(8)

is a solution to the impulsive fractional problem (3).
A particular problem of (3) is as follows:

𝐶

𝐷
𝛾

0
+𝑢 (𝑡) = 𝑡

𝑝
− 1, 𝑡 ∈ 𝐽

0
,

𝐶

𝐷
𝛾

1
+𝑢 (𝑡) = (𝑡 − 1)

𝑞
, 𝑡 ∈ 𝐽

1
,

𝑢 (0) = 1,

𝑢 (1
+
) = 𝑢 (1

−
) + 2

(9)

corresponding to the case 𝛾 = 𝛼 = 𝛽 whose solution is

𝑢 (𝑡) =

{{{{{{{{

{{{{{{{{

{

1 +
Γ (𝑝 + 1)

Γ (𝛾 + 𝑝 + 1)
𝑡
𝛾+𝑝
−

1

Γ (𝛾 + 1)
𝑡
𝛾
, 𝑡 ∈ 𝐽

0
,

3 +
Γ (𝑝 + 1)

Γ (𝛾 + 𝑝 + 1)
−

1

Γ (𝛾 + 1)

+
Γ (𝑞 + 1)

Γ (𝛾 + 𝑞 + 1)
(𝑡 − 1)

𝛾+𝑞
, 𝑡 ∈ 𝐽

1
.

(10)

The paper is organized as follows. We present in Section 2
our problem as we establish some equivalence between the
the given problem and a nonlinear integral equation. Next,
we state a piecewise-continuous type of the Ascoli-Arzela
theorem as well as Schaefer’s fixed point theorem in order
to apply them subsequently in our proofs. In Section 3 we
use the Banach contraction theorem to establish an existence
and uniqueness theorem of a quasilinear impulsive fractional
problem in an abstract Banach space. In Section 4 we apply
Schaefer’s fixed point theorem to some semilinear impulsive
fractional problem in a finite dimensional Banach space to
obtain the existence of a piecewise continuous solution; on
the other hand we prove the stability of the obtained solution
with respect to the initial value. Finally, we conclude the paper
by a concrete example illustrating one of our results.

2. Preliminaries

The main purpose of this paper is the investigation of the
existence and uniqueness of solution corresponding to the
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following impulsive fractional integrodifferential equation in
a Banach space (𝐸, ‖ ⋅ ‖)

𝐶

𝐷
𝛼
𝑘

𝑡
+

𝑘

𝑢 (𝑡)

= 𝐴 (𝑡, 𝑢) 𝑢 (𝑡) + 𝐹(𝑡, 𝑢 (𝑡) ,

∫

𝑡

𝑎

ℎ (𝑡, 𝑠, 𝑢 (𝜎 (𝑠))) 𝑑𝑠,

∫

𝑡
𝑘+1

𝑎

𝑘 (𝑡, 𝑠, 𝑢 (𝜏 (𝑠))) 𝑑𝑠) ,

𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, . . . , 𝑚,

𝑢 (𝑎) = 𝑢
0
∈ 𝐸,

𝑢 (𝑡
+

𝑘
) = 𝑢 (𝑡

−

𝑘
) + 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , 𝑘 = 1, . . . , 𝑚,

(11)

where

(i) 𝐽 = [𝑎, 𝑇] with 0 ≤ 𝑎 < 𝑇 < ∞ and 𝐽
0
= [𝑎, 𝑡

1
],

𝐽
𝑘
= (𝑡
𝑘
, 𝑡
𝑘+1
]; 𝑘 = 1, . . . , 𝑚,

(ii) 𝐶𝐷
𝛼
𝑘

𝑡
+

𝑘

is Caputo’s fractional derivative of order 𝛼
𝑘
∈

(0, 1), 𝑘 = 0, . . . , 𝑚,
(iii) 𝐴 : 𝐽 × 𝐸 → B(𝐸) is a continuous operator, where

B(𝐸) is the Banach space of bounded linear operators
on 𝐸 in itself,

(iv) 𝐼
𝑘
: 𝐸 → 𝐸, 𝑡

0
= 𝑎 < 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
< 𝑡
𝑚+1

= 𝑇;
𝑢(𝑡
+

𝑘
) = lim

ℎ→0
+𝑢(𝑡
𝑘
+ 𝜖) and 𝑢(𝑡−

𝑘
) = lim

ℎ→0
−𝑢(𝑡
𝑘
+

𝜖) = 𝑢(𝑡
𝑘
) are, respectively, the right and left limits of

𝑢(𝑡) at the discontinuity point 𝑡 = 𝑡
𝑘
.

We set the following hypotheses:

(j) the functions 𝜎, 𝜏 : 𝐽 → 𝐽 are continuous with 𝑎 ≤
𝜎(𝑡) ≤ 𝑡 and 𝑎 ≤ 𝜏(𝑡) ≤ 𝑡, for every 𝑡 ∈ 𝐽,

(jj) the nonlinear function 𝐹 : 𝐽 × 𝐸 × 𝐸 × 𝐸 → 𝐸 is
continuous, and

ℎ : 𝐷 × 𝐸 󳨀→ 𝐸, 𝐷 = {(𝑡, 𝑠) ∈ R
2
: 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇} ,

𝑘 : 𝐷
0
× 𝐸 󳨀→ 𝐸,

where 𝐷
0
= {(𝑡, 𝑠) ∈ R

2
: 𝑡 ∈ 𝐽, 𝑎 ≤ 𝑠 ≤ 𝑇} ,

(12)

are two continuous functions over 𝐷 × 𝐸 and 𝐷
0
× 𝐸,

respectively.
We will use in the sequel the following notation:

𝐻𝑢 (𝑡) = ∫

𝑡

𝑎

ℎ (𝑡, 𝑠, 𝑢 (𝜎 (𝑠))) 𝑑𝑠,

𝐾
𝑡
𝑘+1

𝑢 (𝑡) = ∫

𝑡
𝑘+1

𝑎

𝑘 (𝑡, 𝑠, 𝑢 (𝜏 (𝑠))) 𝑑𝑠, 𝑘 = 0, 1, . . . , 𝑚,

Φ
𝑡
𝑘+1

(𝑡, 𝑢 (𝑡)) = 𝐹 (𝑡, 𝑢 (𝑡) ,𝐻𝑢 (𝑡) , 𝐾
𝑡
𝑘+1

𝑢 (𝑡)) ,

𝑘 = 0, 1, . . . , 𝑚.

(13)

We recall thatC = C(𝐽; 𝐸) is the Banach space of continuous
functions 𝑢 : 𝐽 → 𝐸 endowed with the norm

‖𝑢‖C = sup
𝑡∈𝐽

‖𝑢 (𝑡)‖ . (14)

Next, we introduce the definition of the fractional derivative
in the sense of Caputo. We have the following.

Definition 1. We define the left-sided fractional Riemann-
Liouville integral of order 𝛼 ∈ (0, 1) of a function𝑓 : [𝑐, 𝑑] →
𝐸 as follows:

𝐽
𝛼

𝑐
+𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

𝑐

(𝑡 − 𝑠)
𝛼−1
𝑓 (𝑠) 𝑑𝑠, 𝑡 > 𝑐. (15)

We define the left-sided fractional derivative of order 𝛼 ∈
(0, 1) of a function 𝑓 : [𝑐, 𝑑] → 𝐸 in the sense of Caputo by

𝐶

𝐷
𝛼

𝑐
+𝑓 (𝑡) =

1

Γ (1 − 𝛼)
∫

𝑡

𝑐

(𝑡 − 𝑠)
−𝛼
𝑓
󸀠

(𝑠) 𝑑𝑠, 𝑡 > 𝑐. (16)

Remark 2. (1) We point out that the previous integrals are
understood in the sense of Bochner.

(2) We assume of course that the function 𝑓 satisfies
the necessary conditions for which those integrals are well
defined.

Next, we consider the linear functional space

PC (𝐽; 𝐸)

= {𝑢 : 𝐽 󳨀→ 𝐸, 𝑢 ∈ C (( 𝑡
𝑘
, 𝑡
𝑘+1
] ; 𝐸) ,

𝑘 = 0, . . . , 𝑚 s.t. 𝑢 (𝑡−
𝑘
) and 𝑢 (𝑡+

𝑘
)

exist with 𝑢 (𝑡−
𝑘
) = 𝑢 (𝑡

𝑘
) , 𝑘 = 1, . . . , 𝑚}

(17)

equipped with the norm

‖𝑢‖PC = sup
𝑡∈𝐽

‖𝑢 (𝑡)‖ . (18)

We obtain a Banach space (PC(𝐽; 𝐸), ‖ ⋅ ‖PC).
Now, we recall the definition of the solution of the

problem (11).

Definition 3. A function 𝑢 ∈ PC(𝐽; 𝐸) is said to be a solution
of the problem (11) if 𝐶𝐷

𝛼
𝑘

𝑡
+

𝑘

𝑢(𝑡) exists in 𝐽
𝑘
, for 𝑘 = 0, . . . , 𝑚,

and satisfies

(i) the equation 𝐶𝐷
𝛼
𝑘

𝑡
+

𝑘

𝑢(𝑡) = 𝐴(𝑡, 𝑢)𝑢(𝑡)+Φ
𝑡
𝑘+1

(𝑡, 𝑢(𝑡)) in
𝐽
𝑘
, 𝑘 = 0, . . . , 𝑚,

(ii) the initial condition 𝑢(𝑎) = 𝑢
0
,

(iii) the impulsive conditions 𝑢(𝑡+
𝑘
) = 𝑢(𝑡

−

𝑘
) + 𝐼
𝑘
(𝑢(𝑡
−

𝑘
)),

𝑘 = 1, . . . , 𝑚.
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Lemma 4. A function 𝑢 ∈ PC(𝐽; 𝐸) satisfies the following
nonlinear integral equation

𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑢
0
+

1

Γ (𝛼
0
)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼
0
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
0
)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼
0
−1
Φ
𝑡
1

(𝑠, 𝑢) 𝑑𝑠,

𝑡 ∈ [𝑎, 𝑡
1
] ,

𝑢
0
+

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑢 (𝑡
−

𝑖
))

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+

𝑘

∑

𝑖=1

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
Φ
𝑡
𝑘+1

(𝑠, 𝑢) 𝑑𝑠

+

𝑘

∑

𝑖=1

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

Φ
𝑡
𝑖

(𝑠, 𝑢) 𝑑𝑠,

𝑡 ∈ 𝐽
𝑘
, 𝑘 = 1, . . . , 𝑚,

(19)

if and only if it is a solution to problem (11).

Proof. Since we have 𝑢(𝑡−
𝑘
) = 𝑢(𝑡

𝑘
), then 𝑢(𝑡+

𝑘
) = 𝑢(𝑡

𝑘
) +

𝐼
𝑘
(𝑢(𝑡
−

𝑘
)).

Now, for 𝑡 ∈ 𝐽
0
= [𝑎, 𝑡

1
], the solution of the problem

𝑐

𝐷
𝛼
0

𝑎
+𝑢 (𝑡) = 𝐴 (𝑡, 𝑢) 𝑢 (𝑡) + Φ𝑡

1

(𝑡, 𝑢) , 𝑡 ∈ 𝐽
0
,

𝑢 (𝑎) = 𝑢
0
∈ 𝐸

(20)

is given by

𝑢 (𝑡) = 𝑢
0
+

1

Γ (𝛼
0
)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼
0
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
0
)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼
0
−1
Φ
𝑡
1

(𝑠, 𝑢) 𝑑𝑠, 𝑡 ∈ 𝐽
0
.

(21)

We have for 𝑡 = 𝑡
1
the following relation 𝑢(𝑡

+

1
) = 𝑢(𝑡

1
) +

𝐼
1
(𝑢(𝑡
−

1
)), and so

𝑢 (𝑡
+

1
) =

1

Γ (𝛼
0
)
∫

𝑡
1

𝑎

(𝑡
1
− 𝑠)
𝛼
0
−1

𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
0
)
∫

𝑡
1

𝑎

(𝑡
1
− 𝑠)
𝛼
0
−1

Φ
𝑡
1

(𝑠, 𝑢) 𝑑𝑠

+ 𝑢
0
+ 𝐼
1
(𝑢 (𝑡
−

1
)) .

(22)

Next, for 𝑡 ∈ 𝐽
1
= (𝑡
1
, 𝑡
2
], we have

𝑢 (𝑡) = 𝑢 (𝑡
+

1
) +

1

Γ (𝛼
1
)
∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼
1
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
1
)
∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼
1
−1
Φ
𝑡
2

(𝑠, 𝑢) 𝑑𝑠

= 𝑢
0
+

1

Γ (𝛼
0
)
∫

𝑡
1

𝑎

(𝑡
1
− 𝑠)
𝛼
0
−1

𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
0
)
∫

𝑡
1

𝑎

(𝑡
1
− 𝑠)
𝛼
0
−1

Φ
𝑡
1

(𝑠, 𝑢) 𝑑𝑠

+
1

Γ (𝛼
1
)
∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼
1
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
1
)
∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼
1
−1
Φ
𝑡
2

(𝑠, 𝑢) 𝑑𝑠 + 𝐼
1
(𝑢 (𝑡
−

1
))

(23)

from which we infer that

𝑢 (𝑡
+

2
) = 𝑢
0
+

1

Γ (𝛼
0
)
∫

𝑡
1

𝑎

(𝑡
1
− 𝑠)
𝛼
0
−1

𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
0
)
∫

𝑡
1

𝑎

(𝑡
1
− 𝑠)
𝛼
0
−1

Φ
𝑡
1

(𝑠, 𝑢) 𝑑𝑠

+
1

Γ (𝛼
1
)
∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼
1
−1

𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
1
)
∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼
1
−1

Φ
𝑡
2

(𝑠, 𝑢) 𝑑𝑠

+ 𝐼
1
(𝑢 (𝑡
−

1
)) + 𝐼
2
(𝑢 (𝑡
−

2
)) .

(24)

Arguing as before we obtain for 𝑡 ∈ 𝐽
2

𝑢 (𝑡) = 𝑢 (𝑡
+

2
) +

1

Γ (𝛼
2
)
∫

𝑡

𝑡
2

(𝑡 − 𝑠)
𝛼
2
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
2
)
∫

𝑡

𝑡
2

(𝑡 − 𝑠)
𝛼
2
−1
Φ
𝑡
3

(𝑠, 𝑢) 𝑑𝑠

= 𝑢
0
+

1

Γ (𝛼
0
)
∫

𝑡
1

𝑎

(𝑡
1
− 𝑠)
𝛼
0
−1

𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
0
)
∫

𝑡
1

𝑎

(𝑡
1
− 𝑠)
𝛼
0
−1

Φ
𝑡
1

(𝑠, 𝑢) 𝑑𝑠

+
1

Γ (𝛼
1
)
∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼
1
−1

𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
1
)
∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼
1
−1

Φ
𝑡
2

(𝑠, 𝑢) 𝑑𝑠

+
1

Γ (𝛼
2
)
∫

𝑡

𝑡
2

(𝑡 − 𝑠)
𝛼
2
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠
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+
1

Γ (𝛼
2
)
∫

𝑡

𝑡
2

(𝑡 − 𝑠)
𝛼
2
−1
Φ
𝑡
3

(𝑠, 𝑢) 𝑑𝑠

+ 𝐼
1
(𝑢 (𝑡
−

1
)) + 𝐼
2
(𝑢 (𝑡
−

2
)) .

(25)

Reasoning by induction we get, for any 𝑡 ∈ 𝐽
𝑘
, 𝑘 = 1, . . . , 𝑚,

the general expression

𝑢 (𝑡) = 𝑢
0
+

1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+

𝑘

∑

𝑖=1

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
Φ
𝑡
𝑘+1

(𝑠, 𝑢) 𝑑𝑠

+

𝑘

∑

𝑖=1

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

Φ
𝑡
𝑖

(𝑠, 𝑢) 𝑑𝑠

+

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑢 (𝑡
−

𝑖
)) .

(26)

Conversely, we assume that 𝑢 satisfies (19). If 𝑡 = 𝑎, then
𝑢(𝑎) = 𝑢

0
.

Now, using the fact that Caputo’s derivative of a constant
is zero, then, for every 𝑡 ∈ 𝐽

𝑘
, 𝑘 = 0, . . . , 𝑚, we get

𝐶

𝐷
𝛼
𝑘

𝑡
+

𝑘

𝑢 (𝑡)

=
𝐶

𝐷
𝛼
𝑘

𝑡
+

𝑘

[
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠]

+
𝐶

𝐷
𝛼
𝑘

𝑡
𝑘

[
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
Φ
𝑡
𝑘+1

(𝑠, 𝑢) 𝑑𝑠]

=
𝐶

𝐷
𝛼
𝑘

𝑡
+

𝑘

(𝐽
𝛼
𝑘

𝑡
+

𝑘

𝐴 (𝑡, 𝑢) 𝑢 (𝑡)) +
𝐶

𝐷
𝛼
𝑘

𝑡
+

𝑘

(𝐽
𝛼
𝑘

𝑡
+

𝑘

Φ
𝑡
𝑘+1

(𝑡, 𝑢)) .

(27)

So
𝐶

𝐷
𝛼
𝑘

𝑡
+

𝑘

𝑢 (𝑡) = 𝐴 (𝑡, 𝑢) 𝑢 (𝑡) + Φ
𝑡
𝑘+1

(𝑡, 𝑢) , (28)

for every 𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, . . . , 𝑚.

Also we can easily show that

𝑢 (𝑡
+

𝑘
) = 𝑢 (𝑡

𝑘
) + 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , 𝑘 = 1, . . . , 𝑚. (29)

We conclude this section by introducing some useful
theorems which will be used in the sequel.

Theorem 5 (PC-type Ascoli-Arzela theorem [21]). Let 𝐸 be
a Banach space andW ⊂ PC(𝐽, 𝐸). If the following conditions
are satisfied

(i) W is a uniformly bounded subset ofPC(𝐽, 𝐸);
(ii) W is equicontinuous in (𝑡

𝑘
, 𝑡
𝑘+1
), 𝑘 = 0, 1, 2, . . . , 𝑚;

(iii) W(𝑡) = {𝑢(𝑡) : 𝑢 ∈W, 𝑡 ∈ 𝐽 \ {𝑡
𝑘
}},W(𝑡+

𝑘
) = {𝑢(𝑡

+

𝑘
) :

𝑢 ∈ W}, and W(𝑡−
𝑘
) ≡ {𝑢(𝑡

−

𝑘
) : 𝑢 ∈ W} are relatively

compact subsets of 𝐸,
thenW is a relatively compact subset ofPC(𝐽, 𝐸).

Theorem 6 (Schaefer’s fixed point theorem). Let 𝐸 be a
Banach space and letT : 𝐸 → 𝐸 be a completely continuous
operator. If the set

𝑋 = {𝑢 ∈ 𝐸 : 𝑢 = 𝜆T𝑢, 𝜆 ∈ (0, 1)} (30)

is bounded, thenT has at least a fixed point.

3. A Quasilinear Impulsive Fractional Problem

We begin our investigation by the following result which
ensures the existence and the uniqueness of the solution of
the following impulsive quasilinear problem:

𝐶

𝐷
𝛼
𝑘

𝑡
+

𝑘

𝑢 (𝑡)

= 𝐴 (𝑡, 𝑢) 𝑢 (𝑡) + Φ
𝑡
𝑘+1

(𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, . . . , 𝑚,

𝑢 (𝑎) = 𝑢
0
∈ 𝐸,

𝑢 (𝑡
+

𝑘
) = 𝑢 (𝑡

𝑘
) + 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , 𝑘 = 1, . . . , 𝑚.

(31)

We assume that 𝐴 : 𝐽 × 𝐸 → B(𝐸) is continuous and there
exists a constant𝑀 > 0 such that

‖𝐴 (𝑡, 𝑢) − 𝐴 (𝑡, V)‖ ≤ 𝑀‖𝑢 − V‖ , ∀𝑡 ∈ 𝐽, ∀𝑢, V ∈ 𝐸. (32)

We set𝑀󸀠 = max
𝑡∈𝐽
‖𝐴(𝑡, 0)‖.

It is not hard to establish the following estimates.

Lemma 7. Let the functions ℎ(𝑡, 𝑠, 𝑢) and 𝑘(𝑡, 𝑠, 𝑢) be contin-
uous with respect to the variables 𝑠 and 𝑡, and there are two
positive constants 𝐶

1
and 𝐶

2
such that

‖ℎ (𝑡, 𝑠, 𝑢) − ℎ (𝑡, 𝑠, V)‖ ≤ 𝐶
1
‖𝑢 − V‖ ,

∀𝑡, 𝑠 ∈ 𝐽, ∀𝑢, V ∈ 𝐸,

‖𝑘 (𝑡, 𝑠, 𝑢) − 𝑘 (𝑡, 𝑠, V)‖ ≤ 𝐶
2
‖𝑢 − V‖ ,

∀𝑡, 𝑠 ∈ 𝐽, ∀𝑢, V ∈ 𝐸.

(33)

Then, there exist two positive constants 𝐶󸀠
1
and 𝐶󸀠

2
so that

‖𝐻𝑢 (𝑡)‖ ≤ (𝑇 − 𝑎) (𝐶
1
‖𝑢‖PC + 𝐶

󸀠

1
) ,

‖𝐻𝑢 (𝑡) − 𝐻V (𝑡)‖ ≤ 𝐶
1
(𝑇 − 𝑎) ‖𝑢 − V‖PC,

(34)

and, for 𝑘 = 0, . . . , 𝑚, one has
󵄩󵄩󵄩󵄩󵄩
𝐾
𝑡
𝑘+1

𝑢 (𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ (𝑇 − 𝑎) (𝐶

2
‖𝑢‖PC + 𝐶

󸀠

2
) ,

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑡
𝑘+1

𝑢 (𝑡) − 𝐾
𝑡
𝑘+1

V (𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶
2
(𝑇 − 𝑎) ‖𝑢 − V‖PC,

(35)

for every 𝑢, V ∈ PC(𝐽, 𝐸) and 𝑡 ∈ 𝐽.
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We assume the following hypotheses:

(H1) 𝛼
0
, . . . , 𝛼

𝑚
∈ (0, 1). We set 𝑇󸀠 = max

0≤𝑖≤𝑚
{(𝑇 − 𝑎)

𝛼
𝑖}

and Γ󸀠 = min
0≤𝑖≤𝑚

{Γ(𝛼
𝑖
+ 1)}.

(H2) There is a positive constant 𝐿
1
such that

󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑘+1

(𝑡, 𝑢) − Φ
𝑡
𝑘+1

(𝑡, V)
󵄩󵄩󵄩󵄩󵄩

≤ {𝐿
1
+ (𝐶
1
+ 𝐶
2
) (𝑇 − 𝑎)} ‖𝑢 − V‖PC,

∀𝑡 ∈ 𝐽, ∀𝑢, V ∈ PC, 𝑘 = 0, . . . , 𝑚.

(36)

We set 𝐿 = 𝐿
1
+ (𝐶
1
+ 𝐶
2
)(𝑇 − 𝑎) and 𝐿

2
=

sup
𝑡∈𝐽
‖𝐹(𝑡, 0, 0, 0)‖.

(H3) There is a positive constant 𝜇 > 0 such that

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑢) − 𝐼𝑘 (V)
󵄩󵄩󵄩󵄩 ≤ 𝜇 ‖𝑢 − V‖ ,

∀𝑢, V ∈ 𝐸, 𝑘 = 1, . . . , 𝑚.
(37)

(H4) The positive real number

𝛾 = 𝑚𝜇 + (𝑚 + 1) (𝐿 + 2𝑟𝑀 +𝑀
󸀠
)
𝑇
󸀠

Γ󸀠
(38)

satisfies 0 < 𝛾 < 1.

Next, we state and prove the existence and uniqueness result
for the quasilinear integrodifferential problem (31); we have
the following.

Theorem 8. If the assumptions (H1)–(H4) are satisfied, then
problem (31) has one and only one solution 𝑢 ∈ PC(𝐽, 𝐸).

Proof. Since we are concernedwith the existence and unique-
ness of the solution of (31) then, it is wise to use the Banach
contraction principle in order to establish such results.

Let B
𝑟
= {𝑢 ∈ PC(𝐽, 𝐸) : ‖𝑢‖PC ≤ 𝑟} be the closed

ball of PC(𝐽, 𝐸) centered at 0 with radius 𝑟 satisfying the
following inequality:

𝜑 (𝑟) :=
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 +
(𝑚 + 1) 𝑇

󸀠

Γ󸀠
𝐿
󸀠

+ [
(𝑚 + 1) 𝑇

󸀠

Γ󸀠
(𝑟𝑀 +𝑀

󸀠
+ 𝐿) + 𝑚𝜇] 𝑟 ≤ 𝑟,

(39)

where

𝐿
󸀠
= (𝐶
󸀠

1
+ 𝐶
󸀠

2
) (𝑇 − 𝑎) + 𝐿

2
. (40)

EndowingB
𝑟
with the metric 𝑑(𝑢, V) = ‖𝑢 − V‖PC, for every

𝑢, V ∈ B
𝑟
, we obtain a complete metric space (B

𝑟
, 𝑑). Next,

we define the operator Ψ :B
𝑟
→ B

𝑟
by

Ψ𝑢 (𝑡) = 𝑢
0
+

1

Γ (𝛼
𝑘
)

× ∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

𝐴 (𝑠, 𝑢) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
Φ
𝑡
𝑘+1

(𝑠, 𝑢) 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

Φ
𝑡
𝑖

(𝑠, 𝑢) 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

𝐼
𝑖
(𝑢 (𝑡
−

𝑖
)) , 𝑡 ∈ 𝐽

𝑘
, 𝑘 = 0, . . . , 𝑚.

(41)

It is understood that the sum ∑
𝑎<𝑡
𝑖
<𝑡
is zero if 𝑡 ∈ 𝐽

0
.

First, we prove that if𝑢 ∈ PC(𝐽; 𝐸), thenΨ𝑢 ∈ PC(𝐽; 𝐸).
Indeed, for each 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1
), 𝑢 ∈ C((𝑡

𝑘
, 𝑡
𝑘+1
), 𝐸), and any

sufficiently small 𝛿 > 0, we have

‖Ψ𝑢 (𝑡 + 𝛿) − Ψ𝑢 (𝑡)‖

≤

(𝑀‖𝑢‖PC +𝑀
󸀠
+ 𝐿) ‖𝑢‖PC + 𝐿

󸀠

Γ (𝛼
𝑘
)

× ∫

𝑡

𝑡
𝑘

[(𝑡 − 𝑠)
𝛼
𝑘
−1
− (𝑡 + 𝛿 − 𝑠)

𝛼
𝑘
−1
] 𝑑𝑠

+

(𝑀‖𝑢‖PC +𝑀
󸀠
+ 𝐿) ‖𝑢‖PC + 𝐿

󸀠

Γ (𝛼
𝑘
)

× ∫

𝑡+𝛿

𝑡

(𝑡 + 𝛿 − 𝑠)
𝛼
𝑘
−1
𝑑𝑠.

(42)

Calculating the integrals we find that

‖Ψ𝑢 (𝑡 + 𝛿) − Ψ𝑢 (𝑡)‖ ≤ 3

[(𝑀𝑟 +𝑀
󸀠
+ 𝐿) 𝑟 + 𝐿

󸀠
]

Γ󸀠
𝛿
𝛼
𝑘 . (43)

Thus, the right-hand side tends to zero as 𝛿 → 0. Likewise
one gets lim

𝛿→0
‖Ψ𝑢(𝑡) − Ψ𝑢(𝑡 − 𝛿)‖ = 0; this shows that Ψ𝑢

is continuous at 𝑡. Hence Ψ𝑢 ∈ C((𝑡
𝑘
, 𝑡
𝑘+1
), 𝐸).

Next, for the right endpoint 𝑡 = 𝑡
𝑘+1

we get for any
sufficiently small 𝛿 > 0

󵄩󵄩󵄩󵄩Ψ𝑢 (𝑡𝑘+1) − Ψ𝑢 (𝑡𝑘+1 − 𝛿)
󵄩󵄩󵄩󵄩 ≤ 3

[(𝑀𝑟 +𝑀
󸀠
+ 𝐿) 𝑟 + 𝐿

󸀠
]

Γ󸀠
𝛿
𝛼
𝑘 ,

(44)

which shows that the right-hand side tends to zero as 𝛿 →
0, and accordingly, Ψ𝑢 is continuous at 𝑡

𝑘+1
. Therefore Ψ𝑢 ∈

PC(𝐽, 𝐸).
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To prove thatΨB
𝑟
⊂B
𝑟
we see that, for any 𝑢 ∈B

𝑟
and

𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, . . . , 𝑚, we have

‖Ψ𝑢 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 +

1

Γ (𝛼
𝑘
)

× ∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1

‖𝐴 (𝑠, 𝑢)‖ ⋅ ‖𝑢 (𝑠)‖ 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)

× ∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

‖𝐴 (𝑠, 𝑢)‖ ⋅ ‖𝑢 (𝑠)‖ 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑘+1

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑖

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

󵄩󵄩󵄩󵄩𝐼𝑖 (𝑢 (𝑡
−

𝑖
))
󵄩󵄩󵄩󵄩 .

(45)

Estimating the right-hand side we find

‖Ψ𝑢 (𝑡)‖

≤
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 +
(𝑚 + 1) 𝑇

󸀠

Γ󸀠

× (𝑀‖𝑢‖PC +𝑀
󸀠
) ⋅ ‖𝑢‖PC +

1

Γ (𝛼
𝑘
)

× ∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
[𝐿‖𝑢‖PC + (𝑇 − 𝑎) (𝐶

󸀠

1
+ 𝐶
󸀠

2
) + 𝐿
2
] 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)

× ∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

[𝐿‖𝑢‖PC + (𝑇 − 𝑎) (𝐶
󸀠

1
+ 𝐶
󸀠

2
) + 𝐿
2
] 𝑑𝑠

+ 𝑚𝜇‖𝑢‖PC.

(46)

So

‖Ψ𝑢 (𝑡)‖

≤
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 +
(𝑚 + 1) 𝑇

󸀠

Γ󸀠
𝐿
󸀠

+ [
(𝑚 + 1) 𝑇

󸀠

Γ󸀠
(𝑟𝑀 +𝑀

󸀠
+ 𝐿) + 𝑚𝜇] 𝑟

≤ 𝜑 (𝑟) ≤ 𝑟.

(47)

Therefore, ‖Ψ𝑢‖PC ≤ 𝑟, and consequently ΨB
𝑟
⊂B
𝑟
.

Next, we prove that Ψ is a contraction mapping; indeed,
for any 𝑢, V ∈B

𝑟
and 𝑡 ∈ 𝐽

𝑘
, 𝑘 = 0, . . . , 𝑚, we have

‖Ψ𝑢 (𝑡) − ΨV (𝑡)‖

≤
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1

‖𝐴 (𝑠, 𝑢) 𝑢 (𝑠) − 𝐴 (𝑠, V) V (𝑠)‖ 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)

× ∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

‖𝐴 (𝑠, 𝑢) 𝑢 (𝑠) − 𝐴 (𝑠, V) V (𝑠)‖ 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑘+1

(𝑠, 𝑢) − Φ
𝑡
𝑘+1

(𝑠, V)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)

× ∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑖

(𝑡, 𝑢) − Φ
𝑡
𝑖

(𝑠, V)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

󵄩󵄩󵄩󵄩𝐼𝑖 (𝑢 (𝑡
−

𝑖
)) − 𝐼
𝑖
(V (𝑡−
𝑖
))
󵄩󵄩󵄩󵄩 .

(48)

Taking into account the previous assumptions we get the
following estimate:

‖Ψ𝑢 (𝑡) − ΨV (𝑡)‖

≤ 𝑚𝜇‖𝑢 − V‖PC

+
‖ 𝑢 − V‖PC

Γ (𝛼
𝑘
)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
[𝑀𝑟 +𝑀

󸀠
+𝑀𝑟] 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

‖𝑢 − V‖PC

Γ (𝛼
𝑖−1
)

× ∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

[𝑀𝑟 +𝑀
󸀠
+𝑀𝑟] 𝑑𝑠

+
𝐿‖𝑢 − V‖PC

Γ (𝛼
𝑘
)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

𝐿‖𝑢 − V‖PC

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

𝑑𝑠.

(49)

Thus,
‖Ψ𝑢 (𝑡) − ΨV (𝑡)‖

≤ [𝑚𝜇 + (𝑚 + 1) (𝐿 + 2𝑟𝑀 +𝑀
󸀠
)
𝑇
󸀠

Γ󸀠
] ‖𝑢 − V‖PC

≤ 𝛾‖𝑢 − V‖PC.

(50)

Accordingly, the mapping Ψ has a unique fixed point 𝑢 =
Ψ𝑢 ∈B

𝑟
, which completes the proof.
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4. A Semilinear Impulsive Fractional Problem

In this section we consider a semilinear impulsive fractional
integrodifferential problem subjected to a nonlocal condition
in a finite dimensional normed space (𝐸, ‖ ⋅ ‖). Actually,
the finite dimension requirement is due to some technical
difficulties in order to prove some compactness properties.
The problem is as follows:

𝐶

𝐷
𝛼
𝑘

𝑡
+

𝑘

𝑢 (𝑡)

= 𝐴 (𝑡) 𝑢 (𝑡) + Φ
𝑡
𝑘+1

(𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, . . . , 𝑚,

𝑢 (𝑎) + 𝑔 (𝑢) = 𝑢
0
∈ 𝐸,

𝑢 (𝑡
+

𝑘
) = 𝑢 (𝑡

𝑘
) + 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , 𝑘 = 1, . . . , 𝑚.

(51)

We assume that the mapping 𝐴 : 𝐽 → B(𝐸) is continu-
ous and we put

𝑀
󸀠󸀠
= max
𝑡∈𝐽

‖𝐴 (𝑡)‖ . (52)

We need the following hypothesis:

(H5) there exists a constant 𝐺 > 0 such that the mapping
𝑔 : PC(𝐽, 𝐸) → 𝐸 satisfies

󵄩󵄩󵄩󵄩𝑔 (𝑢) − 𝑔 (V)
󵄩󵄩󵄩󵄩 ≤ 𝐺‖𝑢 − V‖PC, ∀𝑢, V ∈ PC (𝐽, 𝐸) . (53)

Now, we are ready to state and prove the following result.

Theorem 9. If the assumptions (H1)–(H3) and (H5) are
satisfied, then problem (51) has at least one solution 𝑢 ∈

PC(𝐽, 𝐸).

Proof. Let us define the operator𝑄 : PC(𝐽, 𝐸) → PC(𝐽, 𝐸)
by

𝑄𝑢 (𝑡) = 𝑢
0
− 𝑔 (𝑢) +

1

Γ (𝛼
𝑘
)

× ∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
𝐴 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

𝐴 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
Φ
𝑡
𝑘+1

(𝑠, 𝑢) 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

Φ
𝑡
𝑖

(𝑠, 𝑢) 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

𝐼
𝑖
(𝑢 (𝑡
−

𝑖
)) , 𝑡 ∈ 𝐽

𝑘
, 𝑘 = 0, . . . , 𝑚.

(54)

First, we notice that by using the same technique as that in the
proof of theTheorem 8 we can establish that if 𝑢 ∈ PC(𝐽, 𝐸),
then 𝑄𝑢 ∈ PC(𝐽, 𝐸); that is, the operator 𝑄 maps the space
PC(𝐽, 𝐸) into itself.

To prove that 𝑄 has a fixed point we use Schaefer’s fixed
point theorem. We proceed in four steps.

Step 1 (𝑄 is continuous). Let {𝑢
𝑛
}
𝑛≥1

⊂ PC(𝐽, 𝐸) such that
𝑢
𝑛
→ 𝑢 inPC(𝐽, 𝐸); then

󵄩󵄩󵄩󵄩𝑄𝑢𝑛 (𝑡) − 𝑄𝑢 (𝑡)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔 (𝑢𝑛) − 𝑔 (𝑢)

󵄩󵄩󵄩󵄩 +
1

Γ (𝛼
𝑘
)

× ∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1 󵄩󵄩󵄩󵄩𝐴 (𝑠) (𝑢𝑛 (𝑠) − 𝑢 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)

× ∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1 󵄩󵄩󵄩󵄩𝐴 (𝑠) (𝑢𝑛 (𝑠) − 𝑢 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑘+1

(𝑠, 𝑢
𝑛
) − Φ
𝑡
𝑘+1

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)

× ∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑖

(𝑠, 𝑢
𝑛
) − Φ
𝑡
𝑖

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

󵄩󵄩󵄩󵄩𝐼𝑖 (𝑢𝑛 (𝑡
−

𝑖
)) − 𝐼
𝑖
(𝑢 (𝑡
−

𝑖
))
󵄩󵄩󵄩󵄩 ,

𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, . . . , 𝑚.

(55)

Taking into account the assumptions (H2)-(H3) and (H5)
and using Lemma 7 we get

󵄩󵄩󵄩󵄩𝑄𝑢𝑛 (𝑡) − 𝑄𝑢 (𝑡)
󵄩󵄩󵄩󵄩

≤ 𝐺
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩PC
+
𝑀
󸀠󸀠

Γ (𝛼
𝑘
)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩PC

× ∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
𝑑𝑠 +𝑀

󸀠󸀠󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩PC

× ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

𝑑𝑠

+
𝐿

Γ (𝛼
𝑘
)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩PC

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
𝑑𝑠

+ 𝐿
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩PC
∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

𝑑𝑠

+ 𝑚𝜇
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩PC
, 𝑡 ∈ 𝐽

𝑘
, 𝑘 = 0, . . . , 𝑚.

(56)
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Calculating the integrals in the right-hand side we obtain
󵄩󵄩󵄩󵄩𝑄𝑢𝑛 − 𝑄𝑢

󵄩󵄩󵄩󵄩PC

≤ [𝐺 + 𝑚𝜇 +
(𝑚 + 1) 𝑇

󸀠

Γ󸀠
(𝑀
󸀠󸀠
+ 𝐿)]

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩PC

.

(57)

So
󵄩󵄩󵄩󵄩𝑄𝑢𝑛 − 𝑄𝑢

󵄩󵄩󵄩󵄩PC
󳨀→ 0, as 𝑛 󳨀→ ∞, (58)

and accordingly, 𝑄 is continuous.

Step 2. Let 𝜀 > 0 and 𝐵
𝜀
= {𝑢 ∈ PC(𝐽, 𝐸) : ‖𝑢‖PC ≤ 𝜀}.

DefineW = {𝑄𝑢 : 𝑢 ∈ 𝐵
𝜀
}; then for any 𝑢 ∈ 𝐵

𝜀
we have

‖𝑄𝑢 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝑢0 − 𝑔 (𝑢)

󵄩󵄩󵄩󵄩

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1

‖𝐴 (𝑠)‖ ‖𝑢 (𝑠)‖ 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

‖𝐴 (𝑠)‖ ‖𝑢 (𝑠)‖ 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑘+1

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑖

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

󵄩󵄩󵄩󵄩𝐼𝑖 (𝑢 (𝑡
−

𝑖
))
󵄩󵄩󵄩󵄩 , 𝑡 ∈ 𝐽

𝑘
, 𝑘 = 0, . . . , 𝑚.

(59)

Estimating the right-hand side we obtain

‖𝑄𝑢 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 + 𝐺‖𝑢‖PC

+
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩 +
(𝑚 + 1) 𝑇

󸀠

Γ󸀠
𝑀
󸀠󸀠
⋅ ‖𝑢‖PC

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
[𝐿‖𝑢‖PC + 𝐿

󸀠
] 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑘
−1

[𝐿‖𝑢‖PC + 𝐿
󸀠
] 𝑑𝑠

+ 𝑚𝜇‖𝑢‖PC,

(60)

implying that

‖𝑄𝑢‖PC ≤
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

+
(𝑚 + 1) 𝑇

󸀠

Γ󸀠
(𝑀
󸀠󸀠
𝜀 + 𝐿𝜀 + 𝐿

󸀠
) + 𝐺𝜀 + 𝑚𝜇𝜀 := 𝜌.

(61)

HenceW is uniformly bounded.

Step 3 (we prove thatW is equicontinuous). Let 𝑢 ∈ 𝐵
𝜀
; then,

for any 𝑡
𝑘
< 𝜏
1
< 𝜏
2
≤ 𝑡
𝑘+1

, we have

󵄩󵄩󵄩󵄩𝑄𝑢 (𝜏2) − 𝑄𝑢 (𝜏1)
󵄩󵄩󵄩󵄩

≤
1

Γ (𝛼
𝑘
)

× ∫

𝜏
1

𝑡
𝑘

[(𝜏
1
− 𝑠)
𝛼
𝑘
−1

− (𝜏
2
− 𝑠)
𝛼
𝑘
−1

] ‖𝐴 (𝑠)‖ ‖𝑢 (𝑠)‖ 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝜏
2

𝜏
1

(𝜏
2
− 𝑠)
𝛼
𝑘
−1

‖𝐴 (𝑠)‖ ‖𝑢 (𝑠)‖ 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝜏
1

𝑡
𝑘

[(𝜏
1
− 𝑠)
𝛼
𝑘
−1

− (𝜏
2
− 𝑠)
𝛼
𝑘
−1

]
󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑘+1

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝜏
2

𝜏
1

(𝜏
2
− 𝑠)
𝛼
𝑘
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑘+1

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠.

(62)

So

󵄩󵄩󵄩󵄩𝑄𝑢 (𝜏2) − 𝑄𝑢 (𝜏1)
󵄩󵄩󵄩󵄩

≤

(𝑀
󸀠󸀠
+ 𝐿) 𝜀 + 𝐿

󸀠

Γ (𝛼
𝑘
)

∫

𝜏
1

𝑡
𝑘

[(𝜏
1
− 𝑠)
𝛼
𝑘
−1

− (𝜏
2
− 𝑠)
𝛼
𝑘
−1

] 𝑑𝑠

+

(𝑀
󸀠󸀠
+ 𝐿) 𝜀 + 𝐿

󸀠

Γ (𝛼
𝑘
)

∫

𝜏
2

𝜏
1

(𝜏
2
− 𝑠)
𝛼
𝑘
−1

𝑑𝑠

≤ 3

[(𝑀
󸀠󸀠
+ 𝐿) 𝜀 + 𝐿

󸀠
]

Γ󸀠
(𝜏
2
− 𝜏
1
)
𝛼
𝑘

.

(63)

As 𝜏
1
→ 𝜏
2
, the right-hand side of the previous inequality

tends to zero, which means thatW is equicontinuous.
We point out that the closures of the subsets W(𝑡) :=

{𝑄𝑢(𝑡) : 𝑢 ∈ 𝐵
𝜀
, 𝑡 ∈ 𝐽\{𝑡

𝑘
}, 𝑘 = 1, . . . , 𝑚},W(𝑡−

𝑘
) := {𝑄𝑢(𝑡

−

𝑘
) :

𝑢 ∈ 𝐵
𝜀
}, and W(𝑡+

𝑘
) := {𝑄𝑢(𝑡

+

𝑘
) : 𝑢 ∈ 𝐵

𝜀
}, 𝑘 = 1, . . . , 𝑚, are

bounded in 𝐸 (dim𝐸 < ∞); hence they are compact.

As a consequence of the previous steps and the PC-
type Arzela-Ascoli theorem we conclude that𝑄 is completely
continuous.

Step 4. Now, we show that the set

𝑋 = {𝑢 ∈ PC (𝐽, 𝐸) : 𝑢 = 𝜆𝑄𝑢, 𝜆 ∈ (0, 1)} (64)

is bounded.
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Let 𝑢 ∈ 𝑋; then 𝑢 = 𝜆𝑄𝑢, for some 𝜆 ∈ (0, 1). Thus, for
each 𝑡 ∈ 𝐽,

‖𝑢 (𝑡)‖ ≤ 𝜆
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 + 𝜆

󵄩󵄩󵄩󵄩𝑔 (𝑢)
󵄩󵄩󵄩󵄩

+
𝜆

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1

‖𝐴 (𝑠)‖ ⋅ ‖𝑢 (𝑠)‖ 𝑑𝑠

+ 𝜆 ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)

× ∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

‖𝐴 (𝑠)‖ ⋅ ‖𝑢 (𝑠)‖ 𝑑𝑠

+
𝜆

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑘+1

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ 𝜆 ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1 󵄩󵄩󵄩󵄩󵄩
Φ
𝑡
𝑖

(𝑠, 𝑢)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ 𝜆 ∑

𝑎<𝑡
𝑖
<𝑡

󵄩󵄩󵄩󵄩𝐼𝑖 (𝑢 (𝑡
−

𝑖
))
󵄩󵄩󵄩󵄩

≤ 𝜆 [
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩 +
(𝑚 + 1) 𝑇

󸀠

Γ󸀠

× (𝑀
󸀠󸀠
𝜀 + 𝐿𝜀 + 𝐿

󸀠
) + 𝐺𝜀 + 𝑚𝜇𝜀]

< ∞.

(65)

This shows that the set𝑋 is bounded.
We conclude by Schaefer’s fixed point theorem that the

operator 𝑄 has a fixed point 𝑢 ∈ PC(𝐽, 𝐸) such that 𝑄𝑢 = 𝑢,
which means that 𝑢 is a solution to problem (51).

Next, we establish the continuous dependence of the
solution upon the initial value. We have the following.

Proposition 10. Under the hypotheses (H1)–(H3) and (H5)
the solution of problem (51) depends continuously upon its
initial value if

𝐺 + 𝑚𝜇 + (𝑚 + 1) (𝐿 +𝑀
󸀠󸀠
)
𝑇
󸀠

Γ󸀠
< 1. (66)

Proof. Since 𝑢 is a solution to (51), then it satisfies the integral
equation (19). Let V be a solution to problem (51) with initial
value V(𝑎) = V

0
−𝑔(V).Then V(𝑡) satisfies the integral equation

V (𝑡) = V
0
− 𝑔 (V)

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
𝐴 (𝑠) V (𝑠) 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

𝐴 (𝑠) V (𝑠) 𝑑𝑠

+
1

Γ (𝛼
𝑘
)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼
𝑘
−1
Φ
𝑡
𝑘+1

(𝑠, V) 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

1

Γ (𝛼
𝑖−1
)
∫

𝑡
𝑖

𝑡
𝑖−1

(𝑡
𝑖
− 𝑠)
𝛼
𝑖−1
−1

Φ
𝑡
𝑖

(𝑠, V) 𝑑𝑠

+ ∑

𝑎<𝑡
𝑖
<𝑡

𝐼
𝑖
(V (𝑡−
𝑖
)) , 𝑡 ∈ 𝐽

𝑘
, 𝑘 = 0, . . . , 𝑚.

(67)

Estimating the difference between solutions 𝑢(𝑡) and V(𝑡) to
(19) and (67), respectively, we get

‖𝑢 (𝑡) − V (𝑡)‖ ≤ 󵄩󵄩󵄩󵄩𝑢0 − V0
󵄩󵄩󵄩󵄩 + 𝐺‖𝑢 − V‖PC

+
𝑀
󸀠󸀠
(𝑚 + 1) 𝑇

󸀠

Γ󸀠
‖𝑢 − V‖PC

+
𝐿 (𝑚 + 1) 𝑇

󸀠

Γ󸀠
‖𝑢 − V‖PC

+ 𝑚𝜇‖𝑢 − V‖PC, 𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, . . . , 𝑚.

(68)

Taking the supremum over the interval 𝐽 we find that

‖𝑢 − V‖PC ≤
1

𝜌

󵄩󵄩󵄩󵄩𝑢0 − V0
󵄩󵄩󵄩󵄩 , (69)

where

𝜌 = 1 − 𝐺 − 𝑚𝜇 − (𝑚 + 1) (𝐿 +𝑀
󸀠󸀠
)
𝑇
󸀠

Γ󸀠
, (70)

which proves that the mapping 𝑢
0
󳨃→ 𝑢 is continuous from

𝐸 → PC(𝐽, 𝐸).

5. Example

Consider the following impulsive fractional integrodifferen-
tial problem

𝐷
1/2

0
+ 𝑢 (𝑡)

=
𝑡

24
𝑢 (𝑡) cos 𝑢 (𝑡) + |𝑢 (𝑡)|

(|𝑢 (𝑡)| + 2) (𝑡
2 + 12)

+ ∫

𝑡

0

𝑒
−|𝑢(𝑠)|/6

(𝑡 + 2)
2
𝑑𝑠 + ∫

1/2

0

sin (𝑢 (𝑠) /4)
𝑒𝑡 + 6

𝑑𝑠, 𝑡 ∈ 𝐽
0
,
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𝐷
3/4

(1/2)
+𝑢 (𝑡)

=
𝑡

24
𝑢 (𝑡) cos 𝑢 (𝑡) + |𝑢 (𝑡)|

(|𝑢 (𝑡)| + 2) (𝑡
2 + 12)

+ ∫

𝑡

0

𝑒
−|𝑢(𝑠)|/6

(𝑡 + 2)
2
𝑑𝑠 + ∫

1

0

sin (𝑢 (𝑠) /4)
𝑒𝑡 + 6

𝑑𝑠, 𝑡 ∈ 𝐽
1
,

𝑢 (0) = 1,

𝑢 (
1

2

+

) = 𝑢(
1

2

−

) +

󵄨󵄨󵄨󵄨𝑢 ((1/2)
−
)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢 ((1/2)
−
)
󵄨󵄨󵄨󵄨 + 6

.

(71)

We set 𝐽
0
= [0, 1/2], 𝐽

1
= (1/2, 1], and 𝐽 = [0, 1]. We take

𝐸 = R, 𝑎 = 𝑡
0
= 0, 𝑡
1
= 1/2, 𝑇 = 1, 𝛼

0
= 1/2, 𝛼

1
= 3/4, and

B
𝑟
= {𝑢 ∈ PC(𝐽, 𝐸), ‖𝑢‖PC ≤ 𝑟}. Define

𝐴 (𝑡, 𝑢) =
𝑡

24
(cos 𝑢) 𝐼,

𝐻𝑢 (𝑡) = ∫

𝑡

0

𝑒
−|𝑢(𝑠)|/6

(𝑡 + 2)
2
𝑑𝑠,

𝐾
𝑡
𝑘+1

𝑢 (𝑡) = ∫

𝑡
𝑘+1

0

sin (𝑢 (𝑠) /4)
𝑒𝑡 + 6

𝑑𝑠, 𝑘 = 0, 1,

Φ
𝑡
𝑘+1

(𝑡, 𝑢 (𝑡)) =
|𝑢 (𝑡)|

(|𝑢 (𝑡)| + 2) (𝑡
2 + 12)

+ ∫

𝑡

0

𝑒
−|𝑢(𝑠)|/6

(𝑡 + 2)
2
𝑑𝑠

+ ∫

𝑡
𝑘+1

0

sin (𝑢 (𝑠) /4)
𝑒𝑡 + 6

𝑑𝑠, 𝑘 = 0, 1,

𝐼
1
𝑢(
1

2

−

) =

󵄨󵄨󵄨󵄨𝑢 ((1/2)
−
)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢 ((1/2)
−
)
󵄨󵄨󵄨󵄨 + 6

.

(72)

For any 𝑢, V ∈B
𝑟
and 𝑡 ∈ 𝐽, we have

|𝐻𝑢 (𝑡) − 𝐻V (𝑡)| ≤
1

24
‖𝑢 − V‖PC. (73)

Hence 𝐶
1
= 1/24. Likewise, one has, for 𝑘 = 0, 1,

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑡
𝑘+1

𝑢 (𝑡) − 𝐾
𝑡
𝑘+1

V (𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
1

24
‖𝑢 − V‖PC; (74)

then 𝐶
2
= 1/24.

By (H1), we have

𝑇
󸀠
= max {(𝑇 − 𝑎)𝛼0 , (𝑇 − 𝑎)𝛼1} = 1,

Γ
󸀠
= min {Γ (𝛼

0
+ 1) , Γ (𝛼

1
+ 1)}

= min {Γ (3
2
) , Γ (

7

4
)} = Γ (

3

2
) =

√𝜋

2
.

(75)

On the other hand, using (H2) we obtain
󵄨󵄨󵄨󵄨󵄨
Φ
𝑡
𝑘+1

(𝑡, 𝑢) − Φ
𝑡
𝑘+1

(𝑡, V)
󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

|𝑢 (𝑡)|

(|𝑢 (𝑡)| + 2) (𝑡
2 + 12)

−
|V (𝑡)|

(|V (𝑡)| + 2) (𝑡2 + 12)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ |𝐻𝑢 (𝑡) − 𝐻V (𝑡)| +
󵄨󵄨󵄨󵄨󵄨
𝐾
𝑡
𝑘+1

𝑢 (𝑡) − 𝐾
𝑡
𝑘+1

V (𝑡)
󵄨󵄨󵄨󵄨󵄨

≤
3

24
‖𝑢 − V‖PC.

(76)

Thus

𝐿
1
=
1

24
, 𝐿 =

3

24
. (77)

Assumption (H3) gives

󵄨󵄨󵄨󵄨𝐼1 (𝑢) − 𝐼1 (V)
󵄨󵄨󵄨󵄨 ≤
1

6
‖𝑢 − V‖PC, (78)

so 𝜇 = 1/6.
Due to the definition of 𝐴(𝑡, 𝑢) we have𝑀 = 𝑀

󸀠
= 1/24.

Let us now find a threshold for the value of 𝑟 for which
condition (H4) is satisfied. We should have

0 < 𝛾 =
1

6
+
2

3√𝜋
+
𝑟

3√𝜋
< 1, (79)

so 𝑟 is any positive number such that 𝑟 < (5√𝜋 − 4)/2 =
2.4311. We conclude by Theorem 8 that problem (71) has a
unique solution 𝑢 ∈ PC([0, 1],R) such that ‖𝑢‖PC ≤ 𝑟.

6. Concluding Remarks

In this work we have first noticed that most of the pub-
lished papers dealing with impulsive differential equations
of fractional orders are not mathematically correct, so we
have proved through a concrete counterexample that the
concept of solution proposed recently by some authors is
not realistic. On the other hand, we introduced a new
class of impulsive fractional problems with several fractional
orders and we established an equivalence with some integral
equation.Moreover, we derived two existence results by using
two different fixed point theorems as we proved the stability
of the solution of the given problemwith respect to the initial
value. Finally, we illustrated our first theoremof existence and
uniqueness by a concrete example in R.
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