\mathbb{F}_{q}-linear blocking sets in $\mathrm{PG}\left(2, q^{4}\right)$

Giovanna Bonoli Olga Polverino*

Abstract

An \mathbb{F}_{q}-linear blocking set B of $\pi=\mathrm{PG}\left(2, q^{n}\right), q=p^{h}, n>2$, can be obtained as the projection of a canonical subgeometry $\Sigma \simeq \operatorname{PG}(n, q)$ of $\Sigma^{*}=\mathrm{PG}\left(n, q^{n}\right)$ to π from an $(n-3)$-dimensional subspace Λ of Σ^{*}, disjoint from Σ, and in this case we write $B=B_{\Lambda, \Sigma}$. In this paper we prove that two \mathbb{F}_{q}-linear blocking sets, $B_{\Lambda, \Sigma}$ and $B_{\Lambda^{\prime}, \Sigma^{\prime}}$, of exponent h are isomorphic if and only if there exists a collineation φ of Σ^{*} mapping Λ to Λ^{\prime} and Σ to Σ^{\prime}. This result allows us to obtain a classification theorem for \mathbb{F}_{q}-linear blocking sets of the plane $\operatorname{PG}\left(2, q^{4}\right)$.

Keywords : blocking set, canonical subgeometry, linear set
MSC 2000: 05B25, 51E21

1 Introduction

A blocking set B in the projective plane $\operatorname{PG}(2, q), q=p^{h}, p$ prime, is a set of points meeting every line of $\mathrm{PG}(2, q)$. B is called trivial if it contains a line, and it is called minimal if no proper subset of it is a blocking set. We say B is small when its size is less than $\frac{3(q+1)}{2}$ and we call B of Rédei type if there exists a line l such that $|B \backslash l|=q$. The line l is called a Rédei line of B. The exponent of B is the maximal integer $e(0 \leq e \leq h)$ such that $|l \cap B| \equiv 1\left(\bmod p^{e}\right)$ for every line l in $\mathrm{PG}(2, q)$. In [12] T. Szőnyi proves that a small minimal blocking set of $\operatorname{PG}(2, q)$ has positive exponent. All the known examples of small minimal blocking sets belong to a family of blocking sets, called "linear", introduced by G. Lunardon in [6]. Let $\pi=\mathrm{PG}\left(2, q^{n}\right)=\mathrm{PG}\left(V, \mathbb{F}_{q^{n}}\right), q=p^{h}, p$ prime. A blocking set B of π is said to be an \mathbb{F}_{q}-linear blocking set if B is an \mathbb{F}_{q}-linear set of π of rank $n+1$,

[^0]i.e., B is defined by the non-zero vectors of an $(n+1)$-dimensional \mathbb{F}_{q}-vector subspace W of V, and we write $B=B_{W}$. If B_{W} is an \mathbb{F}_{q}-linear blocking set, then each line of π intersects B_{W} in a number of points congruent to 1 modulo q, hence the exponent of an \mathbb{F}_{q}-linear blocking set is at least h. Also, if there exists a line l of π such that $B_{W} \cap l$ has rank n, then B_{W} is of Rédei type (see [9]) and if B_{W} has exactly exponent h, then $\left|B_{W} \cap l\right| \geq q^{n-1}+1$ (see [1], [2]).

In the planes $\mathrm{PG}\left(2, q^{2}\right)$ and $\mathrm{PG}\left(2, q^{3}\right)$, the \mathbb{F}_{q}-linear blocking sets are completely classified: in $\operatorname{PG}\left(2, q^{2}\right)$ they are Baer subplanes and in $\operatorname{PG}\left(2, q^{3}\right)$ they are isomorphic either to the blocking set obtained from the graph of the trace function of $\mathbb{F}_{q^{3}}$ over \mathbb{F}_{q} or to the blocking set obtained from the graph of the function $x \mapsto x^{q}$ (see [10]). In the plane $\mathrm{PG}\left(2, q^{4}\right)$ all the sizes of the \mathbb{F}_{q}-linear blocking sets are known (see [9] and [11]). The next problem is the complete classification of the \mathbb{F}_{q}-linear blocking sets in $\mathrm{PG}\left(2, q^{n}\right)$ with $n \geq 4$.

An \mathbb{F}_{q}-linear blocking set B of $\pi=\mathrm{PG}\left(2, q^{n}\right), n>2$, can also be constructed as the projection of a canonical subgeometry $\Sigma \simeq \mathrm{PG}(n, q)$ of $\Sigma^{*}=\mathrm{PG}\left(n, q^{n}\right)$ to π from an $(n-3)$-dimensional subspace Λ of Σ^{*}, disjoint from Σ and we write $B=B_{\Lambda, \pi, \Sigma}$. Also, if π_{Λ} is the quotient geometry of Σ^{*} on Λ, note that $B_{\Lambda, \pi, \Sigma}$ is isomorphic to the \mathbb{F}_{q}-linear blocking set $B_{\Lambda, \Sigma}$ in π_{Λ} consisting of all ($n-2$)-dimensional subspaces of Σ^{*} containing Λ and with non-empty intersection with Σ. Therefore, in this paper we will use \mathbb{F}_{q}-linear blocking sets $B_{\Lambda, \Sigma}$ in the model π_{Λ} of $\mathrm{PG}\left(2, q^{n}\right)$.

In this paper, we show that two \mathbb{F}_{q}-linear blocking sets, $B_{\Lambda, \Sigma}$ and $B_{\Lambda^{\prime}, \Sigma^{\prime}}$, of exponent h respectively of the planes π_{Λ} and $\pi_{\Lambda^{\prime}}$, constructed in $\Sigma^{*}(n>2)$, are isomorphic if and only if there exists a collineation φ of Σ^{*} mapping Λ to Λ^{\prime} and Σ to Σ^{\prime}. In particular, we get that two \mathbb{F}_{q}-linear blocking sets of $\operatorname{PG}\left(2, q^{4}\right)$, $B_{l, \Sigma}$ and $B_{l^{\prime}, \Sigma}$, which are not Baer subplanes, are isomorphic if and only if there exists a collineation φ of Σ^{*} fixing Σ such that $\varphi(l)=l^{\prime}$.

In Section 4, the above result and the main theorem of [9] leads us to complete classification of all \mathbb{F}_{q}-linear blocking sets in $\mathrm{PG}\left(2, q^{4}\right)$.

In the table at the end of the paper we list, up to isomorphisms, all the \mathbb{F}_{q}-linear blocking sets of $\mathrm{PG}\left(2, q^{4}\right)$. Such a table shows that there are a lot of non-isomorphic families of \mathbb{F}_{q}-linear blocking sets in such a plane. This suggests how difficult it could be to deal with the general case.

We would like to thank the referees for their helpful comments on the original manuscript.

$2 \quad \mathbb{F}_{q}$-linear blocking sets

Let $\pi=\mathrm{PG}\left(2, q^{n}\right)=\mathrm{PG}\left(V, \mathbb{F}_{q^{n}}\right), q=p^{h}, p$ prime. A set of points X of π is said to be \mathbb{F}_{q}-linear if it is defined by the non-zero vectors of an \mathbb{F}_{q}-vector subspace U of V, i.e., $X=X_{U}=\left\{\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}}: \mathbf{u} \in U \backslash\{\mathbf{0}\}\right\}$. If $\operatorname{dim}_{\mathbb{F}_{q}} U=t$, we say that X has rank t. Let $\mathrm{PG}(3 n-1, q)=\mathrm{PG}\left(V, \mathbb{F}_{q}\right)$ and note that each point P of the plane π defines an $(n-1)$-dimensional subspace L_{P} of $\mathrm{PG}(3 n-1, q)$ and that $\mathcal{S}=\left\{L_{P}: P \in \pi\right\}$ is a normal spread of $\mathrm{PG}(3 n-1, q)$ (see e.g. [6]). Also, the incidence structure whose points are the elements of \mathcal{S} and whose lines are the $(2 n-1)$-dimensional subspaces spanned by two elements of \mathcal{S} is isomorphic to π. A t-dimensional \mathbb{F}_{q}-vector subspace U of V defines in $\mathrm{PG}(3 n-1, q)$ a ($t-1$)-dimensional projective subspace $P(U)$ and the linear set X_{U} of π can be seen as the set of points P of π such that $L_{P} \cap P(U) \neq \emptyset$, i.e. $X_{U}=\{P \in \pi$: $\left.L_{P} \cap P(U) \neq \emptyset\right\}$.

If $X=X_{U}$ is an \mathbb{F}_{q}-linear set of π of rank t, we say that a point $P=$ $\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}}, \mathbf{u} \in U$, of X has weight i in X_{U} if $\operatorname{dim}_{\mathbb{F}_{q}}\left(L_{P} \cap P(U)\right)=i-1$, i.e. $\operatorname{dim}_{\mathbb{F}_{q}}\left(\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}} \cap U\right)=i$, and we write $\omega(P)=i$. Let x_{i} denote the number of points of X of weight i. It is straightforward that counting, respectively, the points of X and the points of $P(U)$, we get

$$
\begin{gather*}
|X|=x_{1}+\ldots+x_{t} \tag{1}\\
x_{1}+x_{2}(q+1)+\ldots+x_{t}\left(q^{t-1}+\ldots+q+1\right)=q^{t-1}+\ldots+q+1 \tag{2}
\end{gather*}
$$

Also, if $P=\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}}$ and $Q=\left\langle\mathbf{u}^{\prime}\right\rangle_{\mathbb{F}_{q^{n}}}$ are distinct points of $X, \mathbf{u}, \mathbf{u}^{\prime} \in U$, with $\omega(P)=i$ and $\omega(Q)=j$, we have $\operatorname{dim}_{\mathbb{F}_{q}}\left(\left\langle L_{P} \cap P(U), L_{Q} \cap P(U)\right\rangle\right)=i+j-1$, and this implies

$$
\begin{equation*}
i+j \leq t \tag{3}
\end{equation*}
$$

By (1), (2) and (3) it follows easily:

$$
\begin{gather*}
|X| \equiv 1 \quad(\bmod q) \tag{4}\\
|X| \leq q^{t-1}+\ldots+q+1 \tag{5}\\
|X|=q+1 \Rightarrow \operatorname{rank} X=2 . \tag{6}
\end{gather*}
$$

Note that, if X is an \mathbb{F}_{q}-linear set of π defined by the \mathbb{F}_{q}-vector subspace U, then $X_{U}=X_{\lambda U}$ for any $\lambda \in \mathbb{F}_{q^{n}}^{*}$. Also, there exist \mathbb{F}_{q}-linear sets X of π such that $X=X_{U}=X_{U^{\prime}}$ with $U^{\prime} \neq \lambda U$ for any $\lambda \in \mathbb{F}_{q^{n}}$. In the following lemma we prove that if $X=X_{U}$ is an \mathbb{F}_{q}-linear set of size $q+1$, then the \mathbb{F}_{q}-vector subspaces $\lambda U(\lambda \neq 0)$ are the unique \mathbb{F}_{q}-vector subspaces defining X.

Lemma 2.1. Let X be an \mathbb{F}_{q}-linear set of π of size $q+1$. If $X=X_{U}=X_{U^{\prime}}$ for some \mathbb{F}_{q}-vector subspaces U and U^{\prime} of V, then $U^{\prime}=\lambda U$ with $\lambda \in \mathbb{F}_{q^{n}}^{*}$. In particular, if $U \cap U^{\prime} \neq\{\mathbf{0}\}$ then $U^{\prime}=U$.

Proof. By (6) an \mathbb{F}_{q}-linear set X_{U} of size $q+1$ has rank 2 and hence it is defined by the line $P(U)$ of $\mathrm{PG}(3 n-1, q)$ intersecting $q+1$ elements of the normal spread \mathcal{S}. By [4, Theorem 25.6.1] such elements forms a regulus and any other transversal to this regulus is defined by a subspace λU with $\lambda \in \mathbb{F}_{q^{n}} \backslash \mathbb{F}_{q}$.

Recall that the \mathbb{F}_{q}-linear blocking sets of $\pi=\mathrm{PG}\left(2, q^{n}\right)$ are \mathbb{F}_{q}-linear sets of π of rank $n+1$. Let $B=B_{W}$ be an \mathbb{F}_{q}-linear blocking set of π and suppose that B is non-trivial (i.e., $\langle W\rangle_{\mathbb{F}_{q^{n}}}=V$). Also, suppose that B has exponent h. Then by [13] there exist lines of π intersecting B in $q+1$ points. This property allows us to prove that if B_{W} is an \mathbb{F}_{q}-linear blocking set of exponent h, then the subspaces λW are the unique \mathbb{F}_{q}-vector subspaces defining B. In order to prove this we need the following lemma.

Lemma 2.2. Let $X=X_{U}$ be an \mathbb{F}_{q}-linear set of $\pi=\mathrm{PG}\left(2, q^{n}\right)=\mathrm{PG}\left(V, \mathbb{F}_{q^{n}}\right)$ of rank n, contained in a line l. If there exists a point P of X of weight 1 , then $|X| \geq q^{n-1}+1$. Also, the \mathbb{F}_{q}-vector subspace U is generated by the vectors defining the points of X of weight 1 .

Proof. Let Q be a point of $\pi \backslash l$ and let $Q=\langle\mathbf{v}\rangle_{\mathbb{F}_{q^{n}}}, \mathbf{v} \in V$. Since $\mathbf{v} \notin U$, the \mathbb{F}_{q}-vector subspace $W=\langle U, \mathbf{v}\rangle_{\mathbb{F}_{q}}$ has dimension $n+1$ and defines a non-trivial \mathbb{F}_{q}-linear blocking set B_{W} of π such that $B_{W} \cap l=X_{U}=X$. Hence, B_{W} is a blocking set of Rédei type and l is a Rédei line of B_{W}. Also, the line $P Q$ is a $(q+1)$-secant of B_{W}. This means that B_{W} is a non-trivial \mathbb{F}_{q}-linear blocking set of Rédei type of exponent h. Hence, by [1] (see also [2]), $|X|=\left|B_{W} \cap l\right| \geq$ $q^{n-1}+1$.

Now, let χ be the number of points of X of weight greater than 1. By (1) and (2) we get, respectively, $x_{1}+\chi=|X| \geq q^{n-1}+1$ and $x_{1}+(q+1) \chi \leq$ $q^{n-1}+\ldots+q+1$. From these we have $x_{1} \geq q^{n-1}-q^{n-3}-\ldots-q$. Let $P\left(U^{\prime}\right)$ be the subspace of $P(U)$ defined by $U^{\prime}=\left\langle\mathbf{u} \in U: \operatorname{dim}_{\mathbb{F}_{q}}\left(\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}} \cap U\right)=1\right\rangle_{\mathbb{F}_{q}}$. Since $x_{1} \geq q^{n-1}-q^{n-3}-\ldots-q,\left|P\left(U^{\prime}\right)\right| \geq x_{1} \geq q^{n-1}-q^{n-3}-\ldots-q>$ $q^{n-3}+q^{n-4}+\cdots+1$. Hence, $\operatorname{dim}_{\mathbb{F}_{q}} P\left(U^{\prime}\right) \geq n-2$. Suppose $\operatorname{dim}_{\mathbb{F}_{q}} P\left(U^{\prime}\right)=n-2$, i.e. suppose that $P\left(U^{\prime}\right)$ is a hyperplane of $P(U)$ and let $R=\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}} \in X_{U}$, with $\mathbf{u} \in U$. If $\omega(R)=1$ in X_{U}, then $\mathbf{u} \in U^{\prime}$ and hence $R \in X_{U^{\prime}}$. If $\omega(R)>1$ in X_{U}, then $\operatorname{dim}_{\mathbb{F}_{q}}\left(L_{R} \cap P(U)\right) \geq 1$ and this implies $\operatorname{dim}_{\mathbb{F}_{q}}\left(L_{R} \cap P\left(U^{\prime}\right)\right) \geq 0$, i.e., $R \in X_{U^{\prime}}$. Therefore $X_{U}=X_{U^{\prime}}$ and by (5) we get $q^{n-1}+1 \leq\left|X_{U}\right|=\left|X_{U^{\prime}}\right| \leq$ $q^{n-2}+\ldots+q+1$, a contradiction. This means that $\operatorname{dim}_{\mathbb{F}_{q}} P\left(U^{\prime}\right)=n-1$, i.e., $U^{\prime}=U$.

Proposition 2.3. If B_{W} is an \mathbb{F}_{q}-linear blocking set of π of exponent h, then $B_{W}=B_{W^{\prime}}$ if and only if $W^{\prime}=\lambda W$ with $\lambda \in \mathbb{F}_{q^{n}}^{*}$.

Proof. Since B_{W} has exponent h, there exists a $(q+1)$-secant l^{\prime} to B_{W} (see [13]). Let $P \in B_{W} \cap l^{\prime}$, with $P=\left\langle\mathbf{w}_{\mathbf{0}}\right\rangle_{\mathbb{F}_{q^{n}}}, \mathbf{w}_{\mathbf{0}} \in W$ and note that $\omega(P)=1$. Suppose that $B_{W}=B_{W^{\prime}}$. Without loss of generality we may assume that $\mathbf{w}_{\mathbf{0}} \in W \cap W^{\prime}$. It follows from Lemma 2.1 that if $Q=\langle\mathbf{w}\rangle_{\mathbb{F}_{q^{n}}}, \mathbf{w} \in W$, is a point of B_{W} for which $P Q$ is a $(q+1)$-secant, then $\mathbf{w} \in W^{\prime}$. Now, let $\bar{V}=V /\left\langle\mathbf{w}_{\mathbf{0}}\right\rangle_{\mathbb{F}_{q^{n}}}$ and let $\bar{W}=W+\left\langle\mathbf{w}_{\mathbf{0}}\right\rangle_{\mathbb{F}_{q^{n}}} \leq \bar{V}$. Since $\omega(P)=1, \operatorname{dim}_{\mathbb{F}_{q}} \bar{W}=n$ and hence \bar{W} defines in $\operatorname{PG}\left(\bar{V}, \mathbb{F}_{q^{n}}\right) \simeq \operatorname{PG}\left(1, q^{n}\right)$ an \mathbb{F}_{q}-linear set $\bar{X}=\bar{X}_{\bar{W}}$ of rank n. Let $m=\mathrm{PG}\left(V^{\prime}, \mathbb{F}_{q^{n}}\right)$ be a line through P (i.e., $\left.\mathbf{w}_{\mathbf{0}} \in V^{\prime}\right)$, and denote by m / P the point of $\operatorname{PG}\left(\bar{V}, \mathbb{F}_{q^{n}}\right)$ defined by $\bar{V}^{\prime}=V^{\prime}+\left\langle\mathbf{w}_{\mathbf{0}}\right\rangle_{\mathbb{F}_{q^{n}}}$. Note that

$$
\omega(m / P)=\operatorname{dim}_{\mathbb{F}_{q}}\left(\bar{V}^{\prime} \cap \bar{W}\right)=\operatorname{dim}_{\mathbb{F}_{q}}\left(V^{\prime} \cap W\right)-1
$$

This implies that m is a secant line to B_{W} if and only if $\operatorname{dim}_{\mathbb{F}_{q}}\left(\bar{V}^{\prime} \cap \bar{W}\right) \geq 1$, i.e., if and only if $m / P \in \bar{X}$. Also, by $(\star),(q+1)$-secants of B_{W} through P correspond to points of \bar{X} of weight 1 . In particular, l^{\prime} / P is a point of \bar{X} of weight 1 . Then, by Lemma 2.2, \bar{W} is generated by the vectors defining points of weight 1 of \bar{X}, i.e., there exists an $\mathbb{F}_{q^{-}}$-basis of \bar{W}, namely $\left\{\mathbf{w}_{\mathbf{1}}+\left\langle\mathbf{w}_{\mathbf{0}}\right\rangle_{\mathbb{F}_{q^{n}}}, \ldots, \mathbf{w}_{\mathbf{n}}+\left\langle\mathbf{w}_{\mathbf{0}}\right\rangle_{\mathbb{F}_{q^{n}}}\right\}$, such that $\operatorname{dim}_{\mathbb{F}_{q}}\left(\left\langle\mathbf{w}_{\mathbf{i}}+\left\langle\mathbf{w}_{\mathbf{0}}\right\rangle_{\mathbb{F}_{q^{n}}}\right\rangle_{\mathbb{F}_{q^{n}}} \cap \bar{W}\right)=1$, for any $i=1, \ldots, n$. In particular, if $Q_{i}=\left\langle\mathbf{w}_{\mathbf{i}}\right\rangle_{\mathbb{F}_{q^{n}}}$, from (\star) we have $\operatorname{dim}_{\mathbb{F}_{q}}\left(\left\langle\mathbf{w}_{\mathbf{i}}, \mathbf{w}_{\mathbf{0}}\right\rangle_{\mathbb{F}_{q^{n}}} \cap W\right)=2$, i.e., $P Q_{i}$ is a $(q+1)$-secant of B_{W}. Now, if $\mathbf{w} \in W$, then there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{q}$ such that $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \mathbf{w}_{\mathbf{i}}+\lambda \mathbf{w}_{\mathbf{0}}$ for some $\lambda \in \mathbb{F}_{q^{n}}$ and since $\operatorname{dim}_{\mathbb{F}_{q}}\left(\left\langle\mathbf{w}_{\mathbf{0}}\right\rangle_{\mathbb{F}_{q^{n}}} \cap W\right)=1$, we get $\lambda \in \mathbb{F}_{q}$, i.e., $\left\{\mathbf{w}_{\mathbf{0}}, \mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}$ is an \mathbb{F}_{q}-basis of W. Since $P Q_{i}$ is a $(q+1)$-secant for any point $Q_{i}=\left\langle\mathbf{w}_{\mathbf{i}}\right\rangle_{\mathbb{F}_{q^{n}}},(i=1, \ldots, n)$, we have $\mathbf{w}_{\mathbf{i}} \in W^{\prime}$ for any i, i.e., $W=W^{\prime}$.

Recall that by [8] an \mathbb{F}_{q}-linear blocking set is either a canonical subgeometry or the projection of a canonical subgeometry. So, in the planar case, if $n>2$, each \mathbb{F}_{q}-linear blocking set of $\mathrm{PG}\left(2, q^{n}\right)$ can be constructed in the following way.

Let $\Sigma \simeq \mathrm{PG}(n, q), n \geq 3$, be a canonical subgeometry of $\Sigma^{*}=\mathrm{PG}\left(n, q^{n}\right)=$ $\mathrm{PG}\left(V^{*}, \mathbb{F}_{q^{n}}\right)$ and let $\Sigma=\Sigma_{W}$ where W is an \mathbb{F}_{q}-vector subspace of V^{*} of rank $n+1$ such that $\langle W\rangle_{\mathbb{F}_{q^{n}}}=V^{*}$. Let $\Lambda=\mathrm{PG}\left(U, \mathbb{F}_{q^{n}}\right)$ be an $(n-3)$-dimensional subspace of Σ^{*} disjoint from Σ, and let π be a plane of Σ^{*} disjoint from Λ. The projection of Σ from the axis Λ to the plane π is the map from Σ to π defined by $p_{\Lambda, \pi, \Sigma}(P)=\langle P, \Lambda\rangle \cap \pi$ for each point P of Σ. The set $p_{\Lambda, \pi, \Sigma}(\Sigma)$ is an \mathbb{F}_{q}-linear blocking set of $\pi=\mathrm{PG}\left(2, q^{n}\right)$ ([7], [8]). Since Σ is a canonical subgeometry, there is no hyperplane of Σ^{*} containing Σ and hence the \mathbb{F}_{q}-linear blocking sets obtained by projecting Σ are non-trivial.

Note that, if $\pi_{\Lambda}=\mathrm{PG}\left(V^{*} / U, \mathbb{F}_{q^{n}}\right)=\mathrm{PG}\left(2, q^{n}\right)$ is the plane obtained as quotient geometry of Σ^{*} on Λ, then the set $B_{\Lambda, \Sigma}$ of the $(n-2)$-dimensional
subspaces of Σ^{*} containing Λ and with non-empty intersection with Σ is an \mathbb{F}_{q}-linear blocking set of the plane π_{Λ} isomorphic to $p_{\Lambda, \pi, \Sigma}(\Sigma)=B_{\Lambda, \pi, \Sigma}$, for each plane π disjoint from Λ. Also, since $\Sigma=\Sigma_{W}$ and $\Lambda \cap \Sigma=\emptyset$, then $W \cap U=\{\mathbf{0}\}$ and the blocking set $B_{\Lambda, \Sigma}$ of π_{Λ} is defined by the \mathbb{F}_{q}-vector subspace $\bar{W}=W+U$ of rank $n+1$ of V^{*} / U, i.e., $B_{\Lambda, \Sigma}=B_{\bar{W}}$.

In the following theorem we see that the study of \mathbb{F}_{q}-linear blocking sets of $\mathrm{PG}\left(2, q^{n}\right)$ with exponent h is equivalent to the study of the $(n-3)$-subspaces Λ of $\Sigma^{*}=\mathrm{PG}\left(n, q^{n}\right)$, disjoint from a fixed canonical subgeometry $\Sigma \simeq \mathrm{PG}(n, q)$ of Σ^{*}, with respect to the collineation group of Σ^{*} fixing Σ.

Theorem 2.4. Two $\mathbb{F}_{q^{-}}$linear blocking sets $B_{\Lambda, \Sigma}$ and $B_{\Lambda^{\prime}, \Sigma^{\prime}}$ of exponent h respectively of the planes π_{Λ} and $\pi_{\Lambda^{\prime}}$, constructed in $\Sigma^{*}=\mathrm{PG}\left(n, q^{n}\right)(n>2)$, are isomorphic if, and only if, there exists a collineation φ of Σ^{*} mapping Λ to Λ^{\prime} and Σ to Σ^{\prime}.

Proof. Let $B_{\Lambda, \Sigma}$ and $B_{\Lambda^{\prime}, \Sigma^{\prime}}$ be two \mathbb{F}_{q}-linear blocking sets, respectively, of π_{Λ} and $\pi_{\Lambda^{\prime}}$ constructed in Σ^{*} and suppose that there exists a collineation φ of Σ^{*} which maps Λ to Λ^{\prime} and Σ to Σ^{\prime}. Then φ induces, in a natural way, a collineation $\bar{\varphi}$ between π_{Λ} and $\pi_{\Lambda^{\prime}}$ which maps $B_{\Lambda, \Sigma}$ in $B_{\Lambda^{\prime}, \Sigma^{\prime}}$, i.e., $B_{\Lambda, \Sigma}$ and $B_{\Lambda^{\prime}, \Sigma^{\prime}}$ are isomorphic. Now, suppose that $B_{\Lambda, \Sigma}$ is isomorphic to $B_{\Lambda^{\prime}, \Sigma^{\prime}}$. Then there exists a collineation χ of Σ^{*} such that $\chi(\Lambda)=\Lambda^{\prime}$ and $\chi\left(B_{\Lambda, \Sigma}\right)=B_{\Lambda^{\prime}, \Sigma^{\prime}}$. Since $\chi\left(B_{\Lambda, \Sigma}\right)=B_{\Lambda^{\prime}, \chi(\Sigma)}=B_{\Lambda^{\prime}, \Sigma^{\prime}}$, if there exists a collineation Φ of Σ^{*} such that $\Phi\left(\Lambda^{\prime}\right)=\Lambda^{\prime}$, and $\Phi(\chi(\Sigma))=\Sigma^{\prime}$, then $\varphi(\Lambda)=\Lambda^{\prime}$ and $\varphi(\Sigma)=\Sigma^{\prime}$ where $\varphi=\Phi \circ \chi$, and the proof is complete. Hence, to prove the statement it suffices to show that if $B_{\Lambda, \Sigma}=B_{\Lambda, \Sigma^{\prime}}$, then there exists a collineation Φ of Σ^{*} such that $\Phi(\Lambda)=\Lambda$ and $\Phi(\Sigma)=\Sigma^{\prime}$. Let $\Sigma=\Sigma_{W}, \Sigma^{\prime}=\Sigma^{\prime}{ }_{W}$, where W and W^{\prime} are \mathbb{F}_{q}-vector subspaces of V^{*} of dimension $n+1$ spanning the whole space and let $W=\left\langle\mathbf{w}_{\mathbf{0}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\rangle_{\mathbb{F}_{q}}$. Since $B_{\Lambda, \Sigma}=B_{\Lambda, \Sigma^{\prime}}$, we have $B_{\bar{W}}=B_{\bar{W}^{\prime}}$, and hence by Proposition 2.3 there exists $\lambda \in \mathbb{F}_{q^{n}}^{*}$ such that $\bar{W}^{\prime}=\lambda \bar{W}$, i.e., $W^{\prime}+U=$ $\lambda(W+U)$ (where $\Lambda=\operatorname{PG}\left(U, \mathbb{F}_{q^{n}}\right)$). This means that for each $i=0, \ldots, n$ we can write $\lambda \mathbf{w}_{\mathbf{i}}=\mathbf{w}_{\mathbf{i}}^{\prime}+\mathbf{u}_{\mathbf{i}}$ for some vectors $\mathbf{w}_{\mathbf{i}}^{\prime} \in W^{\prime}$ and $\mathbf{u}_{\mathbf{i}} \in U$. The vectors $\mathbf{w}_{\mathbf{i}}^{\prime}$ are independent over \mathbb{F}_{q} : indeed, if $\sum_{i=0}^{n} \alpha_{i} \mathbf{w}_{\mathbf{i}}^{\prime}=\mathbf{0}$ for $\alpha_{i} \in \mathbb{F}_{q}$, then $\sum \alpha_{i} \mathbf{w}_{\mathbf{i}}=\lambda^{-1}\left(\sum_{i=0}^{n} \alpha_{i} \mathbf{u}_{\mathbf{i}}\right)$ and, since $W \cap U=\{\mathbf{0}\}$, we get $\alpha_{i}=0, i=0, \ldots, n$. This means that $W^{\prime}=\left\langle\mathbf{w}_{\mathbf{0}}^{\prime}, \ldots, \mathbf{w}_{\mathbf{n}}^{\prime}\right\rangle_{\mathbb{F}_{q}}$ and since $\left\langle W^{\prime}\right\rangle_{\mathbb{F}_{q^{n}}}=V^{*}$, the vectors $\mathbf{w}_{\mathbf{0}}^{\prime}, \ldots, \mathbf{w}_{\mathbf{n}}^{\prime}$ are also independent over $\mathbb{F}_{q^{n}}$. Let f be the linear automorphism of V^{*} such that $f\left(\mathbf{w}_{\mathbf{i}}\right)=\mathbf{w}_{\mathbf{i}}^{\prime}$ for $i=0, \ldots, n$ and let Φ be the linear collineation of Σ^{*} induced by f. If $P \in \Lambda$, then $P=\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}}$ with $\mathbf{u} \in U$ and we can write $\mathbf{u}=\sum_{i=0}^{n} a_{i} \mathbf{w}_{\mathbf{i}}$, for some $a_{i} \in \mathbb{F}_{q^{n}}$. We have $\Phi(P)=\langle f(\mathbf{u})\rangle_{\mathbb{F}_{q^{n}}}$ and $f(\mathbf{u})=$ $\sum_{i=0}^{n} a_{i} f\left(\mathbf{w}_{\mathbf{i}}\right)=\sum_{i=0}^{n} a_{i} \mathbf{w}_{\mathbf{i}}^{\prime}=\sum a_{i}\left(\lambda \mathbf{w}_{\mathbf{i}}-\mathbf{u}_{\mathbf{i}}\right)=\lambda \mathbf{u}-\sum a_{i} \mathbf{u}_{\mathbf{i}} \in U$. Therefore, the collineation Φ fixes Λ and maps Σ to Σ^{\prime}. This proves the theorem.

3 Canonical subgeometries and their collineation group

In this section we study some properties of the automorphism group of canonical subgeometries that will be useful in what follows.

A canonical subgeometry $\Sigma \simeq \operatorname{PG}(r, q)$ of $\Sigma^{*}=\mathrm{PG}\left(V, \mathbb{F}_{q^{n}}\right)=\mathrm{PG}\left(r, q^{n}\right)$ is an \mathbb{F}_{q}-linear set of Σ^{*} defined by the non-zero vectors of an $(r+1)$-dimensional \mathbb{F}_{q}-vector subspace U of V such that $\langle U\rangle=V$.

Let $\Sigma \simeq \mathrm{PG}(r, q)$ be a canonical subgeometry of $\Sigma^{*}=\mathrm{PG}\left(r, q^{n}\right)$ and denote by $\operatorname{Aut}(\Sigma)$ the collineation group of Σ^{*} fixing Σ. Recall that two canonical subgeometries of Σ^{*} on the same field are isomorphic; in particular any canonical subgeometry $\Sigma \simeq \mathrm{PG}(r, q)$ is isomorphic to the canonical subgeome$\operatorname{try} \bar{\Sigma}=\left\{\left(a_{0}, \ldots, a_{r}\right): a_{i} \in \mathbb{F}_{q}\right\}$. Since $\bar{\Sigma}=\operatorname{Fix}(\tau)$ where τ is the semilinear collineation $\tau:\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(x_{0}^{q}, \ldots, x_{n}^{q}\right)$, if $\Sigma \simeq \mathrm{PG}(r, q)$ is a canonical subgeometry of Σ^{*}, there exists a semilinear collineation σ of Σ^{*} of order n such that $\Sigma=\operatorname{Fix}(\sigma)$. By these remarks, we easily get the properties:
(3.1) $\operatorname{Aut}(\Sigma) \simeq \operatorname{Aut}(\bar{\Sigma})=G \cdot A$, where G is a normal subgroup of $\operatorname{Aut}(\bar{\Sigma})$, $G \cap A=\{1\}, G \simeq \operatorname{PGL}(r+1, q)$ and $A \simeq \operatorname{Aut}\left(\mathbb{F}_{q^{n}}\right)$, i.e., $\operatorname{Aut}(\Sigma) \simeq$ $\operatorname{PGL}(r+1, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{n}}\right)(\ltimes$ stands for semidirect product). In particular, the linear part $\operatorname{LAut}(\Sigma)$ of $\operatorname{Aut}(\Sigma)$ is isomorphic to $\operatorname{PGL}(r+1, q)$.
(3.2) LAut (Σ) acts transitively on the subspaces of Σ of the same dimension.
(3.3) $\operatorname{Aut}(\Sigma) \leq \operatorname{Aut}\left(\Sigma^{\prime}\right)$, for any canonical subgeometry Σ^{\prime} of Σ^{*} containing Σ.
(3.4) $\operatorname{Aut}(\Sigma)=\left\{\varphi \in \mathrm{P} \Gamma \mathrm{L}\left(r+1, q^{n}\right) \mid \varphi \sigma=\sigma \varphi\right\}$.

Proposition 3.1. Let $\Sigma \simeq \operatorname{PG}(r, q)(r \geq 1)$ be a canonical subgeometry of $\Sigma^{*}=$ $\mathrm{PG}\left(r, q^{r+1}\right)$ and denote by σ a semilinear collineation of order $r+1$ of Σ^{*} such that $\Sigma=\operatorname{Fix}(\sigma)$. Then for each hyperplane H of Σ, the stabilizer $\operatorname{LAut}(\Sigma)_{H}$ acts transitively on the points $P \in \Sigma^{*}$ for which $\left\langle P, P^{\sigma}, \ldots, P^{\sigma^{r}}\right\rangle=\Sigma^{*}$.

Proof. Without loss of generality, we can fix $\Sigma=\left\{\left(a_{0}, \ldots, a_{r}\right): a_{i} \in \mathbb{F}_{q}\right\}$ and hence $\sigma:\left(x_{0}, \ldots, x_{r}\right) \mapsto\left(x_{0}^{q}, \ldots, x_{r}^{q}\right)$. Since $\operatorname{LAut}(\Sigma) \simeq \operatorname{PGL}(r+1, q)$ acts transitively on the hyperplanes of Σ, we can assume that the hyperplane H has equation $x_{0}=0$. Note that if $P=\left(a_{0}, \ldots, a_{r}\right)$ is a point of Σ^{*} for which $\left\langle P, P^{\sigma}, \ldots, P^{\sigma^{r}}\right\rangle=\Sigma^{*}$, then a_{0}, \ldots, a_{r} are independent elements of $\mathbb{F}_{q^{r+1}}$ over \mathbb{F}_{q} (see [5, Lemma 3.51]) . Now, let $P_{1}=\left(a_{0}, a_{1}, \ldots, a_{r}\right)$ and $P_{2}=$ $\left(b_{0}, b_{1}, \ldots, b_{r}\right)$ be two distinct points of Σ^{*} for which $\left\langle P_{k}, P_{k}^{\sigma}, \ldots, P_{k}^{\sigma^{r}}\right\rangle=\Sigma^{*}$ $(k=1,2)$ and let $M=\left(m_{i j}\right), i, j \in\{0,1, \ldots, r\}$, be the $((r+1) \times(r+1))$ matrix on \mathbb{F}_{q} whose coefficients $m_{i j}$ are such that $b_{i}=\sum_{j=0}^{r} m_{i j} a_{j}$. Since $\left\{a_{0}, a_{1}, \ldots, a_{r}\right\},\left\{b_{0}, b_{1}, \ldots, b_{r}\right\}$ are two \mathbb{F}_{q}-basis of $\mathbb{F}_{q^{r+1}}$, $\operatorname{det} M \neq 0$ and hence
M induces a linear collineation φ of Σ^{*} such that $\varphi \in \operatorname{LAut}(\Sigma)_{H}$ and $\varphi\left(P_{1}\right)=$ P_{2}.

Corollary 3.2. Let $l \simeq \operatorname{PG}(1, q)$ be a subline of $l^{*}=\mathrm{PG}\left(1, q^{4}\right)$ and let l^{\prime} be the unique subline over $\mathbb{F}_{q^{2}}$ such that $l \subseteq l^{\prime} \subseteq l^{*}$. Then for each point $Q \in l$, the stabilizer $\operatorname{LAut}(l)_{Q}$ acts transitively on the points of $l^{\prime} \backslash l$.

Proof. It follows from Proposition 3.1 with $\Sigma^{*}=l^{\prime}$ and $r=1$.
Proposition 3.3. Let $\pi \simeq \mathrm{PG}(2, q)$ be a subplane of $\pi^{*}=\mathrm{PG}\left(2, q^{4}\right)$ and let π^{\prime} be the unique subplane over $\mathbb{F}_{q^{2}}$ such that $\pi \subseteq \pi^{\prime} \subseteq \pi^{*}$.
(i) For each point $R \in \pi$, the stabilizer $\operatorname{LAut}(\pi)_{R}$ acts transitively on the lines l^{\prime} of π^{\prime} such that $l^{\prime} \cap \pi=\{R\}$.
(ii) Let l^{\prime} be a line of π^{*} containing a subline of π^{\prime} and intersecting π in a point Q. Then LAut $(\pi)_{l^{\prime}}$ acts transitively on the points of $l^{\prime} \backslash \pi^{\prime}$.
(iii) LAut (π) acts transitively on the points $P \in \pi^{*}$ for which $\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=$ π^{*}, where σ is a semilinear collineation of order 4 such that $\pi=\operatorname{Fix}(\sigma)$. Consequently, if Q is a point of π, then $\operatorname{LAut}(\pi)_{Q}$ acts transitively on the points $P \in \pi^{*}$ for which $\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=\pi^{*}$ and $\{Q\}=\left\langle P, P^{\sigma^{2}}\right\rangle \cap$ $\left\langle P^{\sigma}, P^{\sigma^{3}}\right\rangle$.

Proof. The set \mathcal{F}_{R} of lines of π^{*} through R form a dual $\mathrm{PG}\left(1, q^{4}\right)$, and applying Corollary 3.2 to \mathcal{F}_{R} we get (i).
Now, let $\pi=\left\{\left(x_{0}, x_{1}, x_{2}\right): x_{i} \in \mathbb{F}_{q}\right\}$ and recall that $\operatorname{LAut}(\pi) \simeq \operatorname{PGL}(3, q)$. Since $\operatorname{PGL}(3, q)$ acts transitively on the points of π, we can fix $Q=(0,0,1)$ and, by (i), we can also fix $l^{\prime}=\left\{\left(x_{0}, \xi x_{0}, x_{2}\right): x_{0}, x_{2} \in \mathbb{F}_{q^{4}}\right\}$ where $\xi \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. Let P_{1} and P_{2} be two points of $l^{\prime} \backslash \pi^{\prime}$. We can write $P_{1}=(1, \xi, \eta)$ and $P_{2}=\left(1, \xi, \eta^{\prime}\right)$ where $\eta, \eta^{\prime} \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$. It is easy to see that $\left\{1, \xi, \eta^{\prime}, \xi \eta^{\prime}\right\}$ is an \mathbb{F}_{q}-basis of $\mathbb{F}_{q^{4}}$, and hence we can write $\eta=a_{1}+a_{2} \xi+a_{3} \eta^{\prime}+a_{4} \xi \eta^{\prime}$ with $a_{i} \in \mathbb{F}_{q}, i=1, \ldots, 4$. In particular, since $\eta \notin \mathbb{F}_{q^{2}},\left(a_{3}, a_{4}\right) \neq(0,0)$. Thus, the linear collineation $\varphi \in \operatorname{PGL}(3, q)_{l^{\prime}}$ defined by $\varphi\left(x_{0}, x_{1}, x_{2}\right)=\left(a_{3} x_{0}+a_{4} x_{1}, c a_{4} x_{0}+\left(a_{3}+d a_{4}\right) x_{1},-a_{1} x_{0}-a_{2} x_{1}+x_{2}\right)$, where $\xi^{2}=c+d \xi$ with $c, d \in \mathbb{F}_{q}$, maps P_{1} to P_{2}. This proves (ii). Finally, if P is a point of π^{*} for which $\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=\pi^{*}$, then $P P^{\sigma^{2}}$ is a line of π^{*} containing a subline of π^{\prime} and intersecting π in a point, so combining (3.2), (i) and (ii), we get (iii).

Proposition 3.4. Let $\Gamma \simeq \mathrm{PG}(3, q)$ be a canonical subgeometry of $\Gamma^{*}=\mathrm{PG}\left(3, q^{4}\right)$ and let Γ^{\prime} be the 3-dimensional canonical subgeometry over $\mathbb{F}_{q^{2}}$ such that $\Gamma \subseteq \Gamma^{\prime} \subseteq$ Γ^{*}. Also, let σ be a semilinear collineation of order 4 of Γ^{*} such that $\Gamma=\operatorname{Fix}(\sigma)$. Then the following properties hold.
(i) LAut(Γ) acts transitively on the points $P \in \Gamma^{*}$ for which $\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=$ Γ^{*}.
(ii) LAut (Γ) acts transitively on the lines l of Γ^{*} containing a subline in Γ^{\prime} and disjoint from Γ.
(iii) Let l be a line of Γ^{*} containing a subline of Γ^{\prime} and disjoint from Γ. $\operatorname{LAut}(\Gamma)_{l}$ acts transitively on the points of $l \backslash \Gamma^{\prime}$.
(iv) Let Q be a point of Γ. The stabilizer $\operatorname{LAut}(\Gamma)_{Q}$ acts transitively on the points $P \in \Gamma^{*}$ for which $\operatorname{dim}\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=2$ and $Q \notin\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle$. Consequently, if R is a point of Γ different from $Q,\left(\operatorname{LAut}(\Gamma)_{Q}\right)_{R}$ acts transitively on the points $P \in \Gamma^{*}$ for which $\operatorname{dim}\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=2,\left\langle P, P^{\sigma^{2}}\right\rangle \cap$ $\left\langle P^{\sigma}, P^{\sigma^{3}}\right\rangle=\{R\}$ and $Q \notin\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle$.
(v) Let l and m be two disjoint lines of Γ^{*} containing a subline of Γ. Then $\left(\operatorname{LAut}(\Sigma)_{l}\right)_{m}$ acts transitively on the points of l belonging to $\Gamma^{\prime} \backslash \Gamma$.

Proof. From Proposition 3.1 with $\Sigma^{*}=\Gamma^{*}$ and with $r=3$, we get (i). Now, let l be a line of Γ^{*} containing a subline of Γ^{\prime} (i.e., $l=l^{\sigma^{2}}$) disjoint from Γ (i.e., $l \cap l^{\sigma}=\emptyset$). Then $l=\left\langle P, P^{\sigma^{2}}\right\rangle$ and $\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=\Gamma^{*}$ for any point $P \in l \backslash \Gamma^{\prime}$. This means that applying (i), we easily get (ii) and (iii).
Now, in order to prove Case (iv) suppose $Q=(0,0,0,1)$. Since LAut $(\Gamma)_{Q}$ acts transitively on the planes of Γ, not containing Q, we may assume that the point P for which $\operatorname{dim}\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=2$ belongs to the plane π^{*} of Γ^{*} with equation $x_{3}=0$. Now, noting that $\left(\operatorname{LAut}(\Gamma)_{Q}\right)_{\pi^{*}} \simeq \operatorname{LAut}(\pi)$, (where $\pi=\pi^{*} \cap \Sigma$), we can apply Case (iii) of Proposition 3.3 to the plane π^{*} and so we get (iv).
Finally, since $\operatorname{LAut}(\Gamma) \simeq \operatorname{PGL}(4, q)$, we may assume $l=\left\{\left(x_{0}, x_{1}, 0,0\right): x_{0}, x_{1} \in\right.$ $\left.\mathbb{F}_{q^{4}}\right\}$ and $m=\left\{\left(0,0, x_{2}, x_{3}\right): x_{2}, x_{3} \in \mathbb{F}_{q^{4}}\right\}$. Let $(1, \eta, 0,0)$ and $\left(1, \eta^{\prime}, 0,0\right)$ be two points of l belonging to $\Gamma^{\prime} \backslash \Gamma$, i.e., $\eta, \eta^{\prime} \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. We can write $\eta^{\prime}=b_{0}+b_{1} \eta$ with $b_{0}, b_{1} \in \mathbb{F}_{q}$. Then, the linear collineation $\varphi \in\left(\operatorname{LAut}(\Sigma)_{l}\right)_{m}$ defined by $\varphi\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(x_{0}, b_{0} x_{0}+b_{1} x_{1}, x_{2}, x_{3}\right)$ maps $(1, \eta, 0,0)$ to $\left(1, \eta^{\prime}, 0,0\right)$. This concludes the proof.

$4 \quad \mathbb{F}_{q}$-linear blocking sets in $\mathrm{PG}\left(2, q^{4}\right)$

In [9], by using the geometric construction of linear blocking sets as projections of canonical subgeometries, P. Polito and O. Polverino determine all the sizes of the \mathbb{F}_{q}-linear blocking sets of the plane $\mathrm{PG}\left(2, q^{4}\right)$. Their main result and Theorem 2.4 leads us to the problem of classifying all \mathbb{F}_{q}-linear blocking sets in $\operatorname{PG}\left(2, q^{4}\right)$. From now on we suppose that $\Sigma \simeq \operatorname{PG}(4, q)\left(q=p^{h}, p\right.$ prime $)$ is
the canonical subgeometry of $\Sigma^{*}=\mathrm{PG}\left(4, q^{4}\right)$ such that $\Sigma=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)\right.$: $\left.x_{i} \in \mathbb{F}_{q}\right\}$ and hence $\Sigma=\operatorname{Fix}(\sigma)$, where $\sigma:\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{0}^{q}, x_{1}^{q}, x_{2}^{q}, x_{3}^{q}, x_{4}^{q}\right)$. The semilinear collineation σ has order 4 and the set of fixed points of σ^{2} is the canonical subgeometry $\Sigma^{\prime}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right): x_{i} \in \mathbb{F}_{q^{2}}\right\}$ of Σ^{*}. A subspace S of Σ^{*} of dimension k intersects Σ (respectively Σ^{\prime}) in a subspace of Σ (respectively of Σ^{\prime}) of dimension $\bar{k} \leq k$; also $\bar{k}=k$ if and only if $S^{\sigma}=S$ (respectively $S^{\sigma^{2}}=S$) (see e.g. [7]). All \mathbb{F}_{q}-linear blocking sets of $\mathrm{PG}\left(2, q^{4}\right)$ can be obtained as blocking sets of type $B_{l, \Sigma}$ where l is a line of Σ^{*} disjoint from Σ.

As pointed out in [9], the proof of the main result splits into the following cases:
(A) $l=l^{\sigma^{2}} \Leftrightarrow l$ intersects Σ^{\prime} in a line;
(B) $l \cap l^{\sigma^{2}}$ is a point $P \Leftrightarrow l$ intersects Σ^{\prime} in a point P;
(C) $l \cap l^{\sigma^{2}}=\emptyset \Leftrightarrow l$ is disjoint from Σ^{\prime}.

As proved in [9], in Case (A) we get \mathbb{F}_{q}-linear blocking sets which are Baer subplanes of $\mathrm{PG}\left(2, q^{4}\right)$. Hence, it remains to investigate \mathbb{F}_{q}-linear blocking sets in Cases (B) and (C). In such cases, since there always exist ($q+1$)-secants (see [9]), the blocking sets are of exponent h and hence we can apply Theorem 2.4, namely two \mathbb{F}_{q}-linear blocking sets of $\mathrm{PG}\left(2, q^{4}\right), B_{l, \Sigma}$ and $B_{l^{\prime}, \Sigma}$, which are not Baer subplanes, are isomorphic if and only if there exists $\varphi \in \operatorname{Aut}(\Sigma)$ such that $\varphi(l)=l^{\prime}$. In particular, a blocking set of type (B) is not isomorphic to a blocking set of type (C).

In the sequel, it is useful to recall that $B_{l, \Sigma}$ is of Rédei type if and only if $\operatorname{dim}\left\langle l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}\right\rangle \leq 3$ and, if $B_{l, \Sigma}$ is not a Baer subplane, then it has a unique Rédei line if and only if $\operatorname{dim}\left\langle l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}\right\rangle=3$. Also, if B is not of type (B_{1}), then $\left|B_{l, \Sigma}\right|=q^{4}+q^{3}+q^{2}+q+1-q x$ where x is the number of lines of Σ projected from l to a point of $B_{l, \Sigma}$, i.e., x is the number of lines m of Σ^{*} such that $m \cap l \neq \emptyset$ and $m^{\sigma}=m$ (see [9]).

4.1 Blocking sets in Case (B)

Let l be a line of Σ^{*} such that $l \cap l^{\sigma^{2}}=\{T\}$. The authors of [9] determine four classes of blocking sets in this case. The different classes correspond to different geometric configurations of the lines $l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}$, invariant under the action of $\operatorname{Aut}(\Sigma)$. Hence, by Theorem 2.4 the blocking sets of type (B) belonging to different classes are not isomorphic.

4.1.1 Blocking sets in case (B_{1})

$\left(\mathbf{B}_{1}\right) \quad l \cap l^{\sigma} \neq \emptyset$.
In this case, by [9] $B_{l, \Sigma}$ is equivalent to the blocking set obtained from the graph of the trace function of $\mathbb{F}_{q^{4}}$ over \mathbb{F}_{q}.

4.1.2 Blocking sets in case (B_{2})

$\left(\mathbf{B}_{2}\right) l \cap l^{\sigma}=\emptyset$ and $\operatorname{dim}\left\langle l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}\right\rangle=3$.
In this case $B_{l, \Sigma}$ is of Rédei type with a unique Rédei line. Moreover, $m=$ $\left\langle T, T^{\sigma}\right\rangle$ and $m^{\prime}=\left\langle l, l^{\sigma^{2}}\right\rangle \cap\left\langle l^{\sigma}, l^{\sigma^{3}}\right\rangle$ are the only lines of Σ^{*} fixed by σ and concurrent with l.
(\mathbf{B}_{21}) If $m=m^{\prime}$, then exactly one line of Σ is projected from l to a point of $B_{l, \Sigma}$, and hence $\left|B_{l, \Sigma}\right|=q^{4}+q^{3}+q^{2}+1$.

By Property (3.2) of Section 3 and by Corollary 3.2 we may assume that $m=$ $\left\{\left(x_{0}, x_{1}, 0,0,0\right): x_{0}, x_{1} \in \mathbb{F}_{q^{4}}\right\}$ and $T=(1, \xi, 0,0,0)$, for some fixed element $\xi \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. Let \mathcal{L} be the set of lines l^{\prime} of Σ^{*} through T such that $l^{\prime} \cap l^{\prime \sigma^{2}}=T$, $l^{\prime} \cap l^{\prime \sigma}=\emptyset, \operatorname{dim}\left\langle l^{\prime}, l^{\prime \sigma}, l^{\prime \sigma^{2}}, l^{\prime \sigma^{3}}\right\rangle=3$ and $\left\langle T, T^{\sigma}\right\rangle=\left\langle l^{\prime}, l^{\prime \sigma^{2}}\right\rangle \cap\left\langle l^{\prime \sigma}, l^{\prime \sigma^{3}}\right\rangle$.

Proposition 4.1. The group $\operatorname{Aut}(\Sigma)_{T}$ acts transitively on \mathcal{L}.
Proof. Recall that $\operatorname{LAut}(\Sigma) \simeq \operatorname{PGL}(5, q)$. So, we can easily prove that an element of $\operatorname{LAut}(\Sigma)_{T}$ is defined by a matrix of the form

$$
\begin{equation*}
\left(\right) \tag{7}
\end{equation*}
$$

where $a_{i j} \in \mathbb{F}_{q}, A=\left(a_{i j}\right)(i, j=2,3,4)$ is an invertible (3×3)-matrix on \mathbb{F}_{q}, $\left(a_{01}, a_{11}\right) \neq(0,0)$, and $\xi^{2}=c+d \xi$ with $c, d \in \mathbb{F}_{q}$. Note that, since $m=m^{\prime}$ is the unique line of Σ through T, if $\varphi \in \operatorname{Aut}(\Sigma)_{T}$, then $\varphi(m)=m$. Let G be the subgroup of $\operatorname{LAut}(\Sigma)_{T}$ whose elements are defined by matrices (7) with $a_{01}=a_{02}=a_{03}=a_{04}=0$. Fix the 3-dimensional subspace Ω of Σ^{*} with equation $x_{0}=0$ and denote by Σ^{*} / T the quotient space of the lines of Σ^{*} through T. The map $\omega: n \in \Sigma^{*} / T \rightarrow n \cap \Omega \in \Omega$ is an isomorphism and the group G induces on Ω a group \bar{G} isomorphic to $\operatorname{PGL}(4, q)_{Q}$, where Q is the point $\omega\left(m^{3}\right)=(0,1,0,0,0)$, acting on the points of Ω. If $P \in \omega(\mathcal{L})$ then $P, P^{\sigma}, P^{\sigma^{2}}$, $P^{\sigma^{3}}$ are distinct, $\operatorname{dim}\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=2$ and $\{Q\}=\left\langle P, P^{\sigma^{2}}\right\rangle \cap\left\langle P^{\sigma}, P^{\sigma^{3}}\right\rangle$. Since \bar{G} acts transitively on the planes of $\Sigma \cap \Omega$ through Q, we may fix such a plane π and study the action of \bar{G}_{π} on the set \mathcal{P}_{π} of points P of $\omega(\mathcal{L})$ for which
$\left\langle P, P^{\sigma}, P^{\sigma^{2}}, P^{\sigma^{3}}\right\rangle=\pi$. As $\bar{G}_{\pi} \simeq\left(\mathrm{PGL}(4, q)_{Q}\right)_{\pi} \simeq \operatorname{PGL}(3, q)_{Q}$, it follows from (iii) of Proposition 3.3 that \bar{G}_{π} acts transitively on \mathcal{P}_{π}. This means that \bar{G} acts transitively on $\omega(\mathcal{L})$, and so $G \leq \operatorname{LAut}(\Sigma)_{T}$ acts transitively on \mathcal{L}.

By Theorem 2.4 and by Proposition 4.1 we get the following result.
Proposition 4.2. In Case $\left(\mathbf{B}_{21}\right)$, all \mathbb{F}_{q}-linear blocking sets are isomorphic.
(\mathbf{B}_{22}) If $m \neq m^{\prime}$, then exactly two lines m and m^{\prime}, fixed by σ, are projected from l to a point of $B_{l, \Sigma}$, i.e., $\left|B_{l, \Sigma}\right|=q^{4}+q^{3}+q^{2}-q+1$.

By (3.2) we may assume $S_{3}=\left\langle m, m^{\prime}\right\rangle=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}, 0\right): x_{i} \in \mathbb{F}_{q}\right\}$ and, as $\operatorname{Aut}(\Sigma)_{S_{3}}$ acts transitively on the pairs of disjoint lines of S_{3}, we may also assume $m=\left\{\left(x_{0}, x_{1}, 0,0,0\right): x_{0}, x_{1} \in \mathbb{F}_{q^{4}}\right\}$ and $m^{\prime}=\left\{\left(0,0, x_{2}, x_{3}, 0\right): x_{2}, x_{3} \in\right.$ $\left.\mathbb{F}_{q^{4}}\right\}$. Moreover, by (v) of Proposition 3.4, we can put $T=(1, \xi, 0,0,0)$, with $\xi \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. Note that $\left(\left(\operatorname{Aut}(\Sigma)_{m}\right)_{m^{\prime}}\right)_{T}=\left(\operatorname{Aut}(\Sigma)_{m^{\prime}}\right)_{T}$ since m is the unique line of Σ^{*} through T fixed by σ.

Let \mathcal{L}^{\prime} be the set of lines l^{\prime} of S_{3} through T such that $l^{\prime} \cap l^{\prime \sigma}=\emptyset$ and $m^{\prime}=\left\langle l^{\prime}, l^{\prime \sigma^{2}}\right\rangle \cap\left\langle l^{\prime \sigma}, l^{\prime \sigma^{3}}\right\rangle$, then l^{\prime} intersects m^{\prime} in a point not belonging to Σ^{\prime}. Conversely, if l^{\prime} is a line of Σ^{*} through T intersecting $m^{\prime} \backslash \Sigma^{\prime}$, then $l^{\prime} \in \mathcal{L}^{\prime}$. Therefore, it suffices to study the action of $\left(\operatorname{Aut}(\Sigma)_{m^{\prime}}\right)_{T}$ on the points of $m^{\prime} \backslash \Sigma^{\prime}$. Since the elements of the group $\left(\operatorname{Aut}(\Sigma)_{m^{\prime}}\right)_{T}$ are defined by matrices of type (7) with $a_{02}=a_{03}=a_{12}=a_{13}=a_{42}=a_{43}=0,\left(\operatorname{Aut}(\Sigma)_{m^{\prime}}\right)_{T}$ induces on m^{\prime} a group isomorphic to $\operatorname{PGL}(2, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$; so by Theorem 2.4 we have proved the following result.

Proposition 4.3. In Case $\left(\mathbf{B}_{22}\right)$, the number of non-isomorphic \mathbb{F}_{q}-linear blocking sets equals the number of orbits of the group $\operatorname{PGL}(2, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$ acting on the points of $\mathrm{PG}\left(1, q^{4}\right) \backslash \mathrm{PG}\left(1, q^{2}\right)$.

4.1.3 Blocking sets in case (B_{3})

$\left.\mathbf{(B}_{3}\right) l \cap l^{\sigma}=\emptyset$ and $\operatorname{dim}\left\langle l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}\right\rangle=4$.
In Case $\left(\mathrm{B}_{3}\right) m=\left\langle T, T^{\sigma}\right\rangle$ is the unique line of Σ^{*}, fixed by σ, projected from l to a point of $B_{l, \Sigma}$, and hence $\left|B_{l, \Sigma}\right|=q^{4}+q^{3}+q^{2}+1$. The planes $\left\langle l, l^{\sigma^{2}}\right\rangle$ and $\left\langle l^{\sigma}, l^{\sigma^{3}}\right\rangle$ intersect in a point $R \in \Sigma$. As in the previous case, we may assume that $m=\left\{\left(x_{0}, x_{1}, 0,0,0\right): x_{0}, x_{1} \in \mathbb{F}_{q^{4}}\right\}$ and $T=(1, \xi, 0,0,0)$, $\xi \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. It is not difficult to prove that $\left(\operatorname{Aut}(\Sigma)_{m}\right)_{T}=\operatorname{Aut}(\Sigma)_{T}$ acts transitively on the points of Σ which do not belong to m, hence we can put $R=(0,0,0,0,1)$. Let G be the subgroup of $\operatorname{LAut}(\Sigma)_{T}$ defined in the proof of Proposition 4.1, let Ω be the 3-dimensional subspace of Σ^{*} with equation $x_{0}=0$ and let $\overline{\mathcal{L}}$ be the set of lines l^{\prime} of Σ^{*} through T such that $l^{\prime} \cap l^{\prime \sigma}=\emptyset$ and
$\operatorname{dim}\left\langle l^{\prime}, l^{\prime \sigma}, l^{\prime \sigma^{2}}, l^{\prime \sigma^{3}}\right\rangle=4$. The map $\omega: n \in \Sigma^{*} / T \rightarrow n \cap \Omega \in \Omega$ is an isomorphism and if \bar{P} is a point of $\omega(\overline{\mathcal{L}})$, then $\bar{P}, \bar{P}^{\sigma}, \bar{P}^{\sigma^{2}}, \bar{P}^{\sigma^{3}}$ are distinct, $\{R\}=\left\langle\bar{P}, \bar{P}^{\sigma^{2}}\right\rangle \cap$ $\left\langle\bar{P}^{\sigma}, \bar{P}^{\sigma^{3}}\right\rangle$ and $Q \notin\left\langle\bar{P}, \bar{P}^{\sigma}, \bar{P}^{\sigma^{2}}, \bar{P}^{\sigma^{3}}\right\rangle$ with $Q=\omega(m)$. Also, the group G_{R} induces on Ω a group \bar{G} isomorphic to $\left(\operatorname{PGL}(4, q)_{Q}\right)_{R}$ acting on the points of Ω. By (iv) of Proposition 3.4, \bar{G} acts transitively on the points of $\omega(\overline{\mathcal{L}})$. Hence, G_{R} acts transitively on the lines of $\overline{\mathcal{L}}$. So, by Theorem 2.4 we have the following.
Proposition 4.4. In Case $\left(\mathbf{B}_{3}\right)$, all \mathbb{F}_{q}-linear blocking sets are isomorphic.

4.2 Blocking sets in Case (C)

In [9] the authors find eight classes of blocking sets of type (C), corresponding to different geometric configurations of the lines $l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}$ invariant under the action of $\operatorname{Aut}(\Sigma)$. Hence, by Theorem 2.4, blocking sets of type (C) belonging to different classes are not isomorphic.

4.2.1 Blocking sets in case $\left(\mathrm{C}_{1}\right)$

$\left(\mathbf{C}_{1}\right)$ Suppose that l is a line of Σ^{*} such that $\operatorname{dim}\left\langle l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}\right\rangle=3$ and let $S_{3}=$ $\left\langle l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}\right\rangle$. In this case $B_{l, \Sigma}$ is of Rédei type with a unique Rédei line. By Property (3.2) of Section 3 we can fix $S_{3}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}, 0\right): x_{0}, x_{1}, x_{2}, x_{3} \in\right.$ $\left.\mathbb{F}_{q^{4}}\right\}$.
$\left(\mathbf{C}_{11}\right)$ Suppose that $l \cap l^{\sigma} \neq \emptyset$ and let $\{P\}=l \cap l^{\sigma}$, so $l=\left\langle P, P^{\sigma^{3}}\right\rangle$. The unique lines intersecting $l, l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$ are $r=\left\langle P^{\sigma^{2}}, P\right\rangle$ and $r^{\sigma}=\left\langle P^{\sigma^{3}}, P^{\sigma}\right\rangle$. Since such lines are not fixed by σ, there is no line of Σ^{*} projected from l to a point of $B_{l, \Sigma}$, i.e., $B_{l, \Sigma}$ has maximum size.

The line r is fixed by σ^{2} and, since $r \cap r^{\sigma}=\emptyset, r \cap \Sigma=\emptyset$; hence by (ii) and (iii) of Proposition 3.4, we can fix r, P and, since $l=\left\langle P, P^{\sigma^{3}}\right\rangle$, we have the following result.
Proposition 4.5. In Case $\left(\mathrm{C}_{11}\right)$, all \mathbb{F}_{q}-linear blocking sets are isomorphic.
In the sequel of this section, we will denote by ψ the Plücker map from the line-set of $S_{3}=\mathrm{PG}\left(3, q^{4}\right)$ to the point-set of the Klein quadric $\mathcal{Q}^{+}\left(5, q^{4}\right)$ and by \perp the polarity of $\operatorname{PG}\left(5, q^{4}\right)$ defined by $\mathcal{Q}^{+}\left(5, q^{4}\right)$. Also, we will denote by τ the semilinear collineation of $\operatorname{PG}\left(5, q^{4}\right)$ defined by $\tau:\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mapsto$ $\left(x_{0}^{q}, x_{1}^{q}, x_{2}^{q}, x_{3}^{q}, x_{4}^{q}, x_{5}^{q}\right)$. Since $\psi \circ \sigma=\tau \circ \psi$, the lines of $S_{3} \cap \Sigma$ are mapped by ψ to the set of points of the Klein quadric $\mathcal{Q}^{+}(5, q)=\operatorname{Fix}(\tau) \cap \mathcal{Q}^{+}\left(5, q^{4}\right)$, where $\operatorname{Fix}(\tau) \simeq \mathrm{PG}(5, q)$. If we denote by $G\left(q^{4}\right)$ the subgroup of index two of РГО ${ }^{+}\left(6, q^{4}\right)$ leaving both systems of generators of $\mathcal{Q}^{+}\left(5, q^{4}\right)$ fixed, we have that $\operatorname{P\Gamma L}\left(4, q^{4}\right) \simeq G\left(q^{4}\right)$ (see [4, Theorem 24.2.16]) and hence, since $\operatorname{Aut}(\Sigma)_{S_{3}}=$
$\operatorname{P\Gamma L}\left(4, q^{4}\right)_{\Sigma \cap S_{3}}$, we have that $\operatorname{Aut}(\Sigma)_{S_{3}} \simeq G\left(q^{4}\right)_{\mathcal{Q}^{+}(5, q)}$. As Aut $(\Sigma)_{S_{3}}$ induces on S_{3} a group isomorphic to $\mathrm{P} \Gamma \mathrm{L}(4, q)$, the group $G\left(q^{4}\right)_{\mathcal{Q}^{+}(5, q)}$ induces on $\mathcal{Q}^{+}(5, q)$ a group isomorphic to the subgroup of index 2 , say $G(q)$, of $\mathrm{P}^{+} \mathrm{O}^{+}(6, q)$ leaving both systems of generators of $\mathcal{Q}^{+}(5, q)$ invariant. Also, if $\overline{G(q)}$ is the group $G\left(q^{4}\right)_{\mathcal{Q}^{+}(5, q)}$, we have that the action of $\operatorname{Aut}(\Sigma)_{S_{3}}$ on the lines of S_{3} is equivalent to the action of $\overline{G(q)}$ on the points of $\mathcal{Q}^{+}\left(5, q^{4}\right)$. Furthermore, the following properties hold.
(I) $\overline{G(q)}$ is transitive on the set of irreducible conics C contained in $\mathcal{Q}^{+}(5, q)$ and $\overline{G(q)}_{C} \simeq \operatorname{PGL}(2, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$.
(II) If $\mathcal{Q}^{+}(3, q)$ is a hyperbolic quadric contained in $\mathcal{Q}^{+}(5, q)$, then $\overline{G(q)}_{\mathcal{Q}^{+}(3, q)} \simeq$ $\operatorname{PGO}^{+}(4, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$.
(III) If $\mathcal{Q}^{-}(3, q)$ is an elliptic quadric contained in $\mathcal{Q}^{+}(5, q)$, then $\overline{G(q)}_{\mathcal{Q}^{-}(3, q)} \simeq$ $\mathrm{PGO}^{-}(4, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$.
(IV) If M is a point of $\mathcal{Q}^{+}(5, q), \overline{G(q)}_{M}$ acts transitively on the 3-dimensional cones with vertex M contained in $\mathcal{Q}^{+}(5, q)$.

Since the action of $G(q)$ is equivalent to the action of $\mathrm{P} \Gamma \mathrm{L}(4, q)$ on $\mathrm{PG}(3, q)$, we can easily prove the above properties by studying the corresponding geometric configurations in $\mathrm{PG}(3, q)$ under the action of $\operatorname{P\Gamma L}(4, q)$ (see [3, Table 15.10]).

Suppose $l \cap l^{\sigma}=l \cap l^{\sigma^{2}}=\emptyset$; let \mathcal{R} be the regulus of S_{3} determined by l, l^{σ} and $l^{\sigma^{2}}$ and let $\overline{\mathcal{R}}$ be the opposite regulus of \mathcal{R}.
$\left(\mathrm{C}_{12}\right)$ Suppose $l^{\sigma^{3}} \in \mathcal{R}$. Since \mathcal{R} is fixed by $\sigma, \mathcal{R} \cap \Sigma$ is a regulus of $S_{3} \cap \Sigma$. This implies that each transversal line to $\mathcal{R} \cap \Sigma$ is projected from l to a point of $B_{l, \Sigma}$. Hence $\left|B_{l, \Sigma}\right|=q^{4}+q^{3}+1$.

Let $\overline{\mathcal{L}}^{\prime}$ be the set of lines l^{\prime} of Σ^{*} such that $l^{\prime} \cap l^{\prime \sigma}=l^{\prime} \cap l^{\prime \sigma^{2}}=\emptyset$ and such that $l^{\prime}, l^{\prime \sigma}, l^{\prime \sigma^{2}}, l^{\prime \sigma^{3}}$ belong to the same regulus. A line l^{\prime} of $\overline{\mathcal{L}^{\prime}}$ determines a point $S=\psi\left(l^{\prime}\right)$ of $\mathcal{Q}^{+}\left(5, q^{4}\right)$ such that $S, S^{\tau}, S^{\tau^{2}}, S^{\tau^{3}}$ belong to an irreducible conic C of $\mathcal{Q}^{+}\left(5, q^{4}\right)$ fixed by τ. This means that $C \cap \mathcal{Q}^{+}(5, q)$ is a conic and since, by (I), $\overline{G(q)}$ is transitive on the conics contained in $\mathcal{Q}^{+}(5, q)$, we can fix the conic C. So, we have to study the action of $\overline{G(q)}_{C}$ on the set of points S of C such that $S \neq S^{\tau}$ and $S \neq S^{\tau^{2}}$. By (I), we have the following result.

Proposition 4.6. In Case $\left(\mathrm{C}_{12}\right)$, the number of non-isomorphic \mathbb{F}_{q}-linear blocking sets equals the number of orbits of the group $\operatorname{PGL}(2, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$ acting on the points of $\mathrm{PG}\left(1, q^{4}\right) \backslash \mathrm{PG}\left(1, q^{2}\right)$.

Now, suppose $l^{\sigma^{3}} \notin \mathcal{R}$. A line m fixed by σ and concurrent with l, is concurrent with $l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$ and hence it is a transversal line of $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$, i.e., $m \in \overline{\mathcal{R}} \cap \overline{\mathcal{R}}^{\sigma} \cap \overline{\mathcal{R}}^{\sigma^{2}} \cap \overline{\mathcal{R}}^{\sigma^{3}}$. Note that two distinct reguli can have at
most two transversal lines in common and that the intersection of $\overline{\mathcal{R}}, \overline{\mathcal{R}}^{\sigma}, \overline{\mathcal{R}}^{\sigma^{2}}$ and $\overline{\mathcal{R}}^{\sigma^{3}}$ is fixed by σ.
$\left(\mathrm{C}_{13}\right)$ Suppose $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have two transversal lines, m and m^{\prime}, in common both fixed by σ. Then $B_{l, \Sigma}$ has size $q^{4}+q^{3}+q^{2}-q+1$.

Since LAut $(\Sigma)_{S_{3}} \simeq \operatorname{PGL}(4, q), \operatorname{Aut}(\Sigma)_{S_{3}}$ acts transitively on the pairs of disjoint lines of $S_{3} \cap \Sigma$ and hence we can fix m and m^{\prime}. Since $m^{\sigma}=m$ and $\left(m^{\prime}\right)^{\sigma}=m^{\prime}$, the lines m and m^{\prime} are mapped, under the Plücker map ψ, into two points, M and M^{\prime}, of $\mathcal{Q}^{+}(5, q)$.

Let $\overline{\overline{\mathcal{L}}}$ be the set of lines l^{\prime} of S_{3} such that $l^{\prime} \cap l^{\prime \sigma}=l^{\prime} \cap l^{\sigma^{2}}=\emptyset$ and such that the reguli $\mathcal{R}^{\prime}=\mathcal{R}^{\prime}\left(l^{\prime}, l^{\prime \sigma}, l^{\sigma^{2}}\right), \mathcal{R}^{\prime \sigma}, \mathcal{R}^{\prime \sigma^{2}}$ and $\mathcal{R}^{\prime \sigma^{3}}$ have the lines m and m^{\prime} as the unique transversal lines in common. If $F \in \psi(\overline{\mathcal{L}})$, then $F, F^{\tau}, F^{\tau^{2}}, F^{\tau^{3}} \in\left\langle M, M^{\prime}\right\rangle^{\perp} \cap \mathcal{Q}^{+}\left(5, q^{4}\right), F, F^{\tau}, F^{\tau^{2}}, F^{\tau^{3}}$ are pairwise noncollinear in $\mathcal{Q}^{+}\left(3, q^{4}\right)$ and, since $\mathcal{R}^{\prime} \neq \mathcal{R}^{\prime \sigma}, \operatorname{dim}\left\langle F, F^{\tau}, F^{\tau^{2}}, F^{\tau^{3}}\right\rangle=3$. The line $\left\langle M, M^{\prime}\right\rangle$ is a secant line to $\mathcal{Q}^{+}\left(5, q^{4}\right)$, fixed by τ, hence the 3 -dimensional space $\left\langle M, M^{\prime}\right\rangle^{\perp}$ meets the quadric $\mathcal{Q}^{+}\left(5, q^{4}\right)$ in the hyperbolic quadric $\mathcal{Q}^{+}\left(3, q^{4}\right)$ fixed by τ, i.e., $F, F^{\tau}, F^{\tau^{2}}, F^{\tau^{3}} \in \mathcal{Q}^{+}\left(3, q^{4}\right)$ and $\mathcal{Q}^{+}\left(3, q^{4}\right) \cap \mathcal{Q}^{+}(5, q)=\mathcal{Q}^{+}(3, q)$ (see [3, Table 15.10]). Hence, the study of the action of $\left(\operatorname{Aut}(\Sigma)_{S_{3}}\right)_{\left\{m, m^{\prime}\right\}}$ on the lines of $\overline{\overline{\mathcal{L}}}$ is equivalent to the study of the action of $\overline{G(q)}_{\left\langle M, M^{\prime}\right\rangle}=\overline{G(q)}_{\left\langle M, M^{\prime}\right\rangle}{ }^{\perp}=$ $\overline{G(q)}_{\mathcal{Q}^{+}(3, q)}$ on the points F of $\mathcal{Q}^{+}\left(3, q^{4}\right)$ such that $F \in \psi(\overline{\mathcal{L}})$. By (II), we have proved the following.
Proposition 4.7. In Case $\left(\mathrm{C}_{13}\right)$, the number of non-isomorphic \mathbb{F}_{q}-linear blocking sets equals the number of orbits of the subgroup $\mathrm{PGO}^{+}(4, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$ of $\mathrm{P}^{\circ} \mathrm{O}^{+}\left(4, q^{4}\right)$, fixing $\mathcal{Q}^{+}(3, q)$, acting on the points F of $\mathcal{Q}^{+}\left(3, q^{4}\right)$ such that F, F^{τ}, $F^{\tau^{2}}, f^{\tau^{3}}$ are pairwise non-collinear on $\mathcal{Q}^{+}\left(3, q^{4}\right)$ and $\operatorname{dim}\left\langle F, F^{\tau}, F^{\tau^{2}}, F^{\tau^{3}}\right\rangle=3$.
(\mathbf{C}_{14}) Suppose $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have two transversal lines m and m^{\prime} in common, each one not fixed by σ. In this case $B_{l, \Sigma}$ has maximum size.
Since $\overline{\mathcal{R}} \cap \overline{\mathcal{R}}^{\sigma} \cap \overline{\mathcal{R}}^{\sigma^{2}} \cap \overline{\mathcal{R}}^{\sigma^{3}}$ is fixed by σ, we have $m^{\sigma}=m^{\prime}$ and $\left(m^{\prime}\right)^{\sigma}=m$, hence both m and m^{\prime} are fixed by σ^{2}. By (ii) of Proposition 3.4 we can fix m. If $M=\psi(m)$, then $\psi\left(m^{\prime}\right)=M^{\tau}$ and the line $\left\langle M, M^{\tau}\right\rangle$ determines a line external to $\mathcal{Q}^{+}(5, q)$. This implies that the 3-dimensional subspace $\left\langle M, M^{\tau}\right\rangle^{\perp}=$ S_{3}^{\prime} intersects $\mathcal{Q}^{+}(5, q)$ in an elliptic quadric $\mathcal{Q}^{-}(3, q)$ (see [3, Table 15.10]).

Let $\overline{\mathcal{L}}^{\prime}$ be the set of lines l^{\prime} of S_{3} such that $l^{\prime} \cap l^{\prime \sigma}=l^{\prime} \cap l^{\sigma^{2}}=\emptyset$ and such that the reguli $\mathcal{R}^{\prime}=\mathcal{R}^{\prime}\left(l^{\prime}, l^{\prime \sigma}, l^{\prime \sigma^{2}}\right), \mathcal{R}^{\prime \sigma}, \mathcal{R}^{\prime \sigma^{2}}$ and $\mathcal{R}^{\prime \sigma^{3}}$ have the lines m and m^{σ} as the unique transversal lines in common. If $V \in \psi\left(\overline{\mathcal{L}^{\prime}}\right)$, then $\left\langle V, V^{\tau}, V^{\tau^{2}}, V^{\tau^{3}}\right\rangle=S_{3}^{\prime}$, $V, V^{\tau}, V^{\tau^{2}}, V^{\tau^{3}}$ are pairwise non-collinear in $\mathcal{Q}^{+}\left(3, q^{4}\right)=S_{3}^{\prime} \cap \mathcal{Q}^{+}\left(5, q^{4}\right)$. Hence the action of $\left(\operatorname{Aut}(\Sigma)_{S_{3}}\right)_{m}$ on the lines of S_{3} of $\overline{\mathcal{L}}^{\prime}$ is equivalent to the action of $\overline{G(q)}_{M}=\overline{G(q)}_{\left\langle M, M^{\tau}\right\rangle}=\overline{G(q)}_{S_{3}^{\prime}}=\overline{G(q)}_{\mathcal{Q}^{-}(3, q)}$, subgroup of $G\left(q^{4}\right)_{\mathcal{Q}^{+}\left(3, q^{4}\right)}$, on the points $V \in \psi\left(\overline{\mathcal{L}}^{\prime}\right)$. By (III), we have the following.

Proposition 4.8. In Case $\left(\mathrm{C}_{14}\right)$, the number of non-isomorphic \mathbb{F}_{q}-linear blocking sets equals the number of orbits of the subgroup $\mathrm{PGO}^{-}(4, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$ of РГО ${ }^{+}\left(4, q^{4}\right)$, fixing $\mathcal{Q}^{-}(3, q)$, on the points $V \in \mathcal{Q}^{+}\left(3, q^{4}\right)$ such that $V, V^{\tau}, V^{\tau^{2}}$ and $V^{\tau^{3}}$ are pairwise non-collinear on $\mathcal{Q}^{+}\left(3, q^{4}\right)$ and $\operatorname{dim}\left\langle V, V^{\tau}, V^{\tau^{2}}, V^{\tau^{3}}\right\rangle=3$.
$\left(\mathbf{C}_{15}\right)$ Suppose $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have a unique transversal line m in common. Such transversal is fixed by σ, so $\left|B_{l, \Sigma}\right|=q^{4}+q^{3}+q^{2}+1$.

By (3.2) of Section 3, we can fix the line m. The line m is mapped, under the Plücker map ψ, to the point M of $\mathcal{Q}^{+}\left(5, q^{4}\right)$ such that $M^{\tau}=M$, i.e., $M \in$ $\mathcal{Q}^{+}(5, q)$. Let \mathcal{L}^{*} be the set of lines l^{\prime} of S_{3} such that $l^{\prime} \cap l^{\prime \sigma}=l^{\prime} \cap l^{\sigma^{2}}=\emptyset$ and such that the reguli $\mathcal{R}^{\prime}=\mathcal{R}^{\prime}\left(l^{\prime}, l^{\prime \sigma}, l^{\sigma^{2}}\right), \mathcal{R}^{\prime \sigma}, \mathcal{R}^{\prime \sigma^{2}}$ and $\mathcal{R}^{\prime \sigma^{3}}$ have the line m as unique transversal line in common.

If $Z \in \psi\left(\mathcal{L}^{*}\right)$, then $Z, Z^{\tau}, Z^{\tau^{2}}, Z^{\tau^{3}} \in M^{\perp}$ and $S_{3}^{\prime}=\left\langle Z, Z^{\tau}, Z^{\tau^{2}}, Z^{\tau^{3}}\right\rangle$ is a 3-dimensional subspace of $\operatorname{PG}\left(5, q^{4}\right)$ fixed by τ. Then $\mathcal{K}_{q^{4}}=S_{3}^{\prime} \cap \mathcal{Q}^{+}\left(5, q^{4}\right)$ is a cone with vertex M fixed by τ, i.e., $\mathcal{K}_{q}=\mathcal{K}_{q^{4}} \cap \mathcal{Q}^{+}(5, q)$ is a cone of $\mathcal{Q}^{+}(5, q)$ with vertex M. By (IV), $\overline{G(q)}_{M}=\overline{G(q)}_{M^{\perp}}$ acts transitively on the 3dimensional cones of $\mathcal{Q}^{+}(5, q)$ with vertex M and so we can fix \mathcal{K}_{q}. Now, since $\left(\overline{G(q)}_{M^{\perp}}\right)_{\mathcal{K}_{q}}=G\left(q^{4}\right)_{\mathcal{K}_{q}}$ we get the following.

Proposition 4.9. In Case $\left(\mathrm{C}_{15}\right)$, the number of non-isomorphic \mathbb{F}_{q}-linear blocking sets equals the number of orbits of the group $G\left(q^{4}\right)_{\mathcal{K}_{q}}$ acting on the points $Z \in \mathcal{K}_{q^{4}}$ such that $Z, Z^{\tau}, Z^{\tau^{2}}, Z^{\tau^{3}}$ are pairwise non-collinear on $\mathcal{K}_{q^{4}}$ and $\operatorname{dim}\left\langle Z, Z^{\tau}, Z^{\tau^{2}}, Z^{\tau^{3}}\right\rangle=3$.
(C_{16}) Suppose $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have no transversal line in common.
This case does not occur. Indeed, the transversal lines of the reguli \mathcal{R}, $\mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}, \mathcal{R}^{\sigma^{3}}$ correspond to the points of $S^{\perp} \cap \mathcal{Q}^{+}\left(5, q^{4}\right)$ where S is the 3dimensional space generated by $P, P^{\tau}, P^{\tau^{2}}, P^{\tau^{3}}$ with $P=\psi(l)$. Now, since S^{\perp} is fixed by τ, S^{\perp} determines a line over \mathbb{F}_{q}, and hence S^{\perp} cannot be external to the extended quadric $\mathcal{Q}^{+}\left(5, q^{2}\right)$ of $\mathcal{Q}^{+}(5, q)$, i.e., $S^{\perp} \cap \mathcal{Q}^{+}\left(5, q^{4}\right) \neq \emptyset$.

4.2.2 Blocking sets in case $\left(\mathrm{C}_{2}\right)$

$\left(\mathbf{C}_{2}\right) \operatorname{dim}\left\langle l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}\right\rangle=4$.
In such a case $B_{l, \Sigma}$ is not of Rédei type. Also $l, l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$ are pairwise disjoint. Let $S_{3}=\left\langle l, l^{\sigma}\right\rangle$ and let $L=S_{3} \cap S_{3}^{\sigma} \cap S_{3}^{\sigma^{2}} \cap S_{3}^{\sigma^{3}}$, then $\operatorname{dim} L \in\{0,1\}$.
(C_{21}) Suppose $\operatorname{dim} L=1$. In this case L is the unique line of Σ projected from l to a point of $B_{l, \Sigma}$. So $\left|B_{l, \Sigma}\right|=q^{4}+q^{3}+q^{2}+1$.

By (3.2) of Section 3 we can fix $L=\left\{\left(x_{0}, x_{1}, 0,0,0\right): x_{0}, x_{1} \in \mathbb{F}_{q^{4}}\right\}$. Let d be the duality of $\operatorname{PG}\left(4, q^{4}\right)$ which maps the point $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ to the
hyperplane with equation $a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=0$, and note that $d \circ \sigma=\sigma \circ d$. The line L is mapped to the plane L^{d} with equations $x_{0}=x_{1}=0 ; L^{d}$ is fixed by σ and $\operatorname{Aut}(\Sigma)_{L}$ induces on L^{d} a group isomorphic to $\operatorname{PGL}(3, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$. The 3-dimensional space S_{3} is mapped to a point S_{3}^{d} of L^{d} for which $\left\langle S_{3}^{d},\left(S_{3}^{d}\right)^{\sigma},\left(S_{3}^{d}\right)^{\sigma^{2}},\left(S_{3}^{d}\right)^{\sigma^{3}}\right\rangle=L^{d}$. By (iii) of Proposition 3.3 we can fix $S_{3}^{d}=(0,0, \xi,-1, t)$ with $\xi \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$, i.e., $S_{3}=\left\{\left(x_{0}, x_{1}, x_{2}, \xi x_{2}+t x_{4}, x_{4}\right): x_{0}, x_{1}, x_{2}, x_{4} \in \mathbb{F}_{q^{4}}\right\}$. It is not difficult to verify that an element of $\left(\operatorname{LAut}(\Sigma)_{L}\right)_{S_{3}}=\operatorname{LAut}(\Sigma)_{S_{3}}$ is defined by a matrix of type

$$
\begin{equation*}
\left(\right) \tag{8}
\end{equation*}
$$

where $a_{i j} \in \mathbb{F}_{q}, I$ is the identity matrix of order 3 and $a_{00} a_{11}-a_{01} a_{10} \neq 0$. Moreover, $\pi=S_{3} \cap S_{3}^{\sigma^{3}}=\left\{\left(x_{0}, x_{1}, A x_{4}, B x_{4}, x_{4}\right): x_{0}, x_{1}, x_{4} \in \mathbb{F}_{q^{4}}\right\}$, where $A=\frac{t^{q^{3}}-t}{\xi-\xi^{q}}$ and $B=\xi A+t$. A line l^{\prime} of S_{3} such that $\operatorname{dim}\left\langle l^{\prime}, l^{\prime \sigma}, l^{\prime \sigma^{2}}, l^{\prime \sigma^{3}}\right\rangle=4$ and $S_{3}=\left\langle l^{\prime}, l^{\prime \sigma}\right\rangle$ is contained in π and intersects L in a point not belonging to Σ^{\prime}, hence l^{\prime} has equations $x_{1}=\eta x_{0}+c x_{4}, x_{2}=A x_{4}, x_{3}=B x_{4}$ where $\eta \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$ and $c \in \mathbb{F}_{q^{4}}$ and we write $l^{\prime}=l_{\eta, c}$. Let $P^{\prime}=(1, \eta, 0,0,0)$ be the point $l^{\prime} \cap L$ and consider the stabilizer of P^{\prime} in $\operatorname{LAut}(\Sigma)_{S_{3}}$. An element of $\left(\operatorname{LAut}(\Sigma)_{S_{3}}\right)_{P^{\prime}}$ is defined by a matrix of type (8) with $a_{00}=a_{11} \neq 0$ and $a_{01}=a_{10}=0$, and it maps the line $l_{\eta, 0}$ to the line $l_{\eta, c}$ where

$$
c=-\eta\left(a_{02} A+a_{03} B+a_{04}\right)+a_{12} A+a_{13} B+a_{14}
$$

It is straightforward to prove that $A, B, 1$ are independent on \mathbb{F}_{q}, hence the \mathbb{F}_{q}-subspace $W=\langle A, B, 1\rangle_{\mathbb{F}_{q}}$ of $\mathbb{F}_{q^{4}}$ has dimension 3. If $\eta W=W$, then there exists a (3×3)-matrix C over \mathbb{F}_{q} having $(A, B, 1)$ as an eigenvector whose eigenvalue is η. This implies $\eta \in \mathbb{F}_{q^{2}}$, a contradiction. From these we get that $\eta W+W=\mathbb{F}_{q^{4}}$, and this implies that each element $c \in \mathbb{F}_{q^{4}}$ can be written as $c=\eta a+b$ where $a, b \in W$, i.e., c can be written as in ($\star \star$) for suitable elements $a_{i j} \in \mathbb{F}_{q}$. Hence, $\left(\operatorname{LAut}(\Sigma)_{S_{3}}\right)_{P^{\prime}}$ acts transitively on the lines of π through P^{\prime} different from L. This means that the action of $\operatorname{Aut}(\Sigma)_{S_{3}}=\left(\operatorname{Aut}(\Sigma)_{S_{3}}\right)_{\pi}$ on the lines $l_{\eta, c}$ with $\eta \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}, c \in \mathbb{F}_{q^{4}}$ equals the action of the group induced by $\operatorname{Aut}(\Sigma)_{S_{3}}$ on L acting on the points $P^{\prime} \in L \backslash \Sigma^{\prime}$. The group induced by $\operatorname{Aut}(\Sigma)_{S_{3}}$ on L is isomorphic to $\operatorname{PGL}(2, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$. Indeed, if $\beta \in \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$, we can write $t^{\beta}=s+r t$ where $s, r \in \mathbb{F}_{q^{2}}$ and $r \neq 0$. This implies that there exist $a, b, a^{\prime}, b^{\prime}, a^{\prime \prime}, b^{\prime \prime} \in \mathbb{F}_{q}$ such that $r=\frac{1}{a+b \xi}, \frac{s}{r}=a^{\prime}+b^{\prime} \xi$ and $\frac{\xi^{\beta}}{r}=a^{\prime \prime}+b^{\prime \prime} \xi$. Since
$\xi^{\beta} \notin \mathbb{F}_{q}, a b^{\prime \prime}-a^{\prime \prime} b \neq 0$. Hence a matrix of type

$$
D=\left(\begin{array}{ccccc}
a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \tag{9}\\
a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\
0 & 0 & b^{\prime \prime} & -b & b^{\prime} \\
0 & 0 & -a^{\prime \prime} & a & -a^{\prime} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where $a_{i j} \in \mathbb{F}_{q}$ and $a_{00} a_{11}-a_{01} a_{10} \neq 0$, is non-singular and the semilinear collineation φ defined by D with associated automorphism β is an element of $\operatorname{Aut}(\Sigma)_{S_{3}}$, which induces on L the semilinear collineation defined by the ma$\operatorname{trix}\left(\begin{array}{cc}a_{00} & a_{01} \\ a_{10} & a_{11}\end{array}\right)$ and with associated automorphism β. So we have proved the following.

Proposition 4.10. In Case $\left(\mathrm{C}_{21}\right)$, the number of non-isomorphic \mathbb{F}_{q}-linear blocking sets equals the number of orbits of the group $\operatorname{PGL}(2, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$ acting on the points of $\mathrm{PG}\left(1, q^{4}\right) \backslash \mathrm{PG}\left(1, q^{2}\right)$.
$\left(\mathrm{C}_{22}\right)$ Suppose $\operatorname{dim} L=0$. In this case there is no line of Σ projected from l to a point of $B_{l, \Sigma}$. Hence $B_{l, \Sigma}$ has maximum size.

By (3.2) of Section 3, we can fix $L=(1,0,0,0,0)$. Under the duality d of $\mathrm{PG}\left(4, q^{4}\right)$ (see Case $\left(\mathrm{C}_{21}\right)$), the point L is mapped to a 3 -dimensional space L^{d} fixed by σ and $\operatorname{Aut}(\Sigma)_{L}$ induces on L^{d} a group isomorphic to $\operatorname{PGL}(4, q) \ltimes$ $\operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$. The 3-dimensional space S_{3} is mapped to a point S_{3}^{d} of L^{d} such that $L^{d}=\left\langle S_{3}^{d},\left(S_{3}^{d}\right)^{\sigma},\left(S_{3}^{d}\right)^{\sigma^{2}},\left(S_{3}^{d}\right)^{\sigma^{3}}\right\rangle$. By (i) of Proposition 3.4 we can fix $S_{3}^{d}=$ $(0,-\xi t, t,-1, \xi)$ with $\xi \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}, t \notin \mathbb{F}_{q^{2}}$ and $t^{2}=\xi t+1$, i.e., we can suppose that $S_{3}=\left\{\left(x_{0}, x_{1}, x_{2}, \xi x_{4}+t\left(x_{2}-\xi x_{1}\right), x_{4}\right): x_{0}, x_{1}, x_{2}, x_{4} \in \mathbb{F}_{q^{4}}\right\}$. An element of $\left(\operatorname{LAut}(\Sigma)_{L}\right)_{S_{3}}=\operatorname{LAut}(\Sigma)_{S_{3}}$ is defined by a matrix of type

$$
\left(\begin{array}{ccccc}
1 & a_{01} & a_{02} & a_{03} & a_{04} \tag{10}\\
0 & a_{33}+a_{13}\left(c+d^{2}\right)-d\left(a_{23}+a_{43}\right) & a_{23}-d a_{13}+a_{43} & a_{13} & a_{23}-d a_{13} \\
0 & c\left(a_{23}-d a_{13}+a_{43}\right) & a_{33}+c a_{13} & a_{23} & c a_{13} \\
0 & c a_{13} & a_{23} & a_{33} & c a_{43} \\
0 & a_{23}-d a_{13} & a_{13} & a_{43} & a_{33}-d a_{43}
\end{array}\right)
$$

where $a_{i j} \in \mathbb{F}_{q}$ and $\xi^{2}=c+d \xi, c, d \in \mathbb{F}_{q}$.
Also

$$
\gamma=S_{3} \cap S_{3}^{\sigma^{2}}=\left\{\left(x_{0}, x_{1}, \xi x_{1}, \xi x_{4}, x_{4}\right): x_{0}, x_{1}, x_{4} \in \mathbb{F}_{q^{4}}\right\}
$$

and
$\pi=S_{3} \cap S_{3}^{\sigma^{3}}=\left\{\left(x_{0}, x_{1}, x_{2},-c B x_{1}+(A-d B) x_{2}, A x_{1}-B x_{2}\right): x_{0}, x_{1}, x_{2} \in \mathbb{F}_{q^{4}}\right\}$
where $A=\frac{t^{q^{3}} \xi^{q}-t \xi}{\xi^{q}-\xi}$ and $B=\frac{t^{q^{3}}-t}{\xi^{q}-\xi}$. Hence

$$
r=\gamma \cap \pi=\left\{\left(x_{0}, x_{1}, \xi x_{1}, \xi t^{q^{3}} x_{1}, t^{q^{3}} x_{1}\right): x_{0}, x_{1} \in \mathbb{F}_{q^{4}}\right\}
$$

Let $\overline{\mathcal{L}}^{*}$ be the set of lines l^{\prime} of S_{3} such that $S_{3}=\left\langle l^{\prime}, l^{\prime \sigma}\right\rangle$. A line l^{\prime} of $\overline{\mathcal{L}}^{*}$ is contained in π and intersects r in a point $P^{\prime} \neq L$. Since $\left\{1, \xi, \xi t^{q^{3}}, t^{q^{3}}\right\}$ is an \mathbb{F}_{q}-basis of $\mathbb{F}_{q^{4}}$, it is not difficult to prove that the subgroup of LAut $(\Sigma)_{S_{3}}$, whose elements are defined by matrices of type (10) with $a_{13}=a_{23}=a_{43}=0$, acts transitively on the points $P^{\prime} \in r \backslash\{L\}$. Hence, we can fix $P^{\prime}=\left(0,1, \xi, \xi t^{q^{3}}, t^{q^{3}}\right) \in$ $r \backslash\{L\}$. A line l^{\prime} of $\overline{\mathcal{L}}^{*}$ through P^{\prime} has equations

$$
x_{0}=\alpha\left(\xi x_{1}-x_{2}\right), x_{3}=-c B x_{1}+(A-d B) x_{2}, x_{4}=A x_{1}-B x_{2}
$$

where $\alpha \in \mathbb{F}_{q^{4}}$, and we write $l^{\prime}=l_{\alpha}$. Also, since $l^{\prime} \cap l^{\prime \sigma}=\emptyset$, we have $\alpha \neq 0$. An element of $\left(\operatorname{LAut}(\Sigma)_{S_{3}}\right)_{P^{\prime}}$ is defined by a matrix of type (10) with $a_{01}=a_{02}=$ $a_{03}=a_{04}=0,\left(a_{13}, a_{23}, a_{33}, a_{43}\right) \neq(0,0,0,0)$ and it maps the line l_{α} to the line $l_{\alpha^{\prime}}$ where $\alpha^{\prime}=\frac{\alpha}{\delta}$ with $\delta=a_{33}+c a_{13}-\xi\left(a_{23}-d a_{13}+a_{43}\right)+\left(a_{23}-\xi a_{13}\right) A+$ $\left(\xi a_{23}-c a_{13}-d a_{23}\right) B$. Since we can write

$$
\delta=\left(a_{33}-\xi a_{43}\right)+c a_{13}-\xi\left(a_{23}-d a_{13}\right)+\left(\frac{a_{23}}{\xi}-a_{13}\right)(\xi A+c B)
$$

it is clear that δ belongs to the $\mathbb{F}_{q^{2}}$-subspace of $\mathbb{F}_{q^{4}}$ generated by 1 and $\xi A+$ $c B=t \xi$. It is also not difficult to see that any element of $\mathbb{F}_{q^{4}}^{*}$ can be written as in (\diamond) for suitable elements $a_{13}, a_{23}, a_{33}, a_{43} \in \mathbb{F}_{q}$, not all zero. This means that $\left(\operatorname{LAut}(\Sigma)_{S_{3}}\right)_{P^{\prime}}$ acts transitively on the lines l^{\prime} of π through P^{\prime} such that $l^{\prime} \cap l^{\prime \sigma}=\emptyset$. Therefore, we have proved the following result.

Proposition 4.11. In Case $\left(\mathrm{C}_{22}\right)$, all \mathbb{F}_{q}-linear blocking sets are isomorphic.

5 Table

According to the different geometric configurations of the lines $l, l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$, discussed above, all \mathbb{F}_{q}-linear blocking sets $B_{l, \Sigma}$ of $\mathrm{PG}\left(2, q^{4}\right)$ are listed in the following table, whose columns contain, respectively, the following informations about $B_{l, \Sigma}$: geometric configuration; size; Rédei nature; canonical forms; number of non-isomorphic blocking sets.

By using the notation introduced in Subsection 4.2, the symbols n, n^{+}, n^{-}, $n_{\mathcal{K}}$ stand, respectively, for the number of orbits of the group PGL $(2, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$ acting on the points of $\mathrm{PG}\left(1, q^{4}\right) \backslash \mathrm{PG}\left(1, q^{2}\right)$, the number of orbits of the subgroup $\mathrm{PGO}^{+}(4, q) \ltimes \operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$ of $\mathrm{P} \Gamma \mathrm{O}^{+}\left(4, q^{4}\right)$ acting on the points P of $\mathcal{Q}^{+}\left(3, q^{4}\right)$ such that $P, P^{\tau}, P^{\tau^{2}}, P^{\tau^{3}}$ are pairwise non-collinear on $\mathcal{Q}^{+}\left(3, q^{4}\right)$ and such that

CASE	ORDER	RÉDEI TYPE	CANONICAL FORMS	\#
(A)	$q^{4}+q^{2}+1$	YES all Rédei lines	Baer subplane	1
(B_{1})	$q^{4}+q^{3}+1$	YES $q+1$ Rédei lines	$\left\{\left(\alpha, x, x+x^{q}+x^{q^{2}}+x^{q^{3}}\right): x \in \mathbb{F}_{q^{4}}, \alpha \in \mathbb{F}_{q}\right\}$	1
$\left(\mathrm{B}_{21}\right)$	$q^{4}+q^{3}+q^{2}+1$	YES	$\left\{\left(\alpha, x, x^{q}-x^{q^{3}}\right): x \in \mathbb{F}_{q^{4}}, \alpha \in \mathbb{F}_{q}\right\}$	1
$\left(\mathrm{B}_{22}\right)$	$q^{4}+q^{3}+q^{2}-q+1$	YES	$\begin{gathered} \hline B_{\eta}=\left\{\left(-\xi x_{0}+x_{1},-\eta x_{2}+x_{3}, x_{4}\right): x_{i} \in \mathbb{F}_{q}\right\}, \forall \eta \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}} \text {, for a fixed } \\ \text { element } \xi \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \end{gathered}$	n
(B_{3})	$q^{4}+q^{3}+q^{2}+1$	NO	$\left\{\left(x^{q}, x^{q^{2}}-x, x^{q^{3}}-a \alpha\right): x \in \mathbb{F}_{q^{4}}, \alpha \in \mathbb{F}_{q}\right\}$, where a is a fixed element of $\mathbb{F}_{q^{4}}$ such that $a^{q^{2}} \neq-a$	1
$\left(\mathrm{C}_{11}\right)$	$q^{4}+q^{3}+q^{2}+q+1$	YES	$\left\{\left(\alpha, x, x^{q}\right): x \in \mathbb{F}_{q^{4}}, \alpha \in \mathbb{F}_{q}\right\}$	1
$\left(\mathrm{C}_{12}\right)$	$q^{4}+q^{3}+1$	YES	$B_{\eta}=\left\{\left(\eta x_{0}-\eta^{2} x_{1}+x_{2},-\eta x_{1}+x_{3}, x_{4}\right): x_{i} \in \mathbb{F}_{q}\right\}, \forall \eta \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$	n
(C_{13})	$q^{4}+q^{3}+q^{2}-q+1$	YES	$B_{\eta_{1}, \eta_{2}}=\left\{\left(x_{0}+\eta_{1} x_{2}+x_{3}, x_{1}+\eta_{2}^{-1} x_{3}, x_{4}\right): x_{i} \in \mathbb{F}_{q}\right\}, \forall \eta_{1}, \eta_{2} \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$ such that $1, \eta_{1}, \eta_{2},-\eta_{1} \eta_{2}$ are linearly independent on \mathbb{F}_{q}	n^{+}
(C_{14})	$q^{4}+q^{3}+q^{2}+q+1$	YES	$B_{\eta_{1}, \eta_{2}}=\left\{\left(x_{0}-\left(d \eta_{1}+\eta_{2}\right) x_{2}+\eta_{1} x_{3}, x_{1}+c \eta_{1} x_{2}+\eta_{2} x_{3}, x_{4}\right): x_{i} \in \mathbb{F}_{q}\right\}$ where $c, d \in \mathbb{F}_{q}$ are fixed elements such that $f(x, y)=y^{2}-c x^{2}-d x y$ is irreducible on \mathbb{F}_{q} and $\eta_{1}, \eta_{2} \in \mathbb{F}_{q^{4}}$ with $\left(\eta_{1}, \eta_{2}\right) \notin\left(\mathbb{F}_{q^{2}} \times \mathbb{F}_{q^{2}}\right)$, $1, \eta_{1}, \eta_{2}, f\left(\eta_{1}, \eta_{2}\right)$ linearly independent on \mathbb{F}_{q} and $f\left(\eta_{1}^{q^{i}}-\eta_{1}, \eta_{2}^{q^{i}}-\eta_{2}\right) \neq 0, i=1,2$	n^{-}
(C_{15})	$q^{4}+q^{3}+q^{2}+1$	YES	$\begin{gathered} B_{\eta_{1}, \eta_{2}}=\left\{\left(x_{1}-\eta_{1} x_{3},-\eta_{1} x_{0}+x_{2}-\eta_{2} x_{3}, x_{4}\right): x_{i} \in \mathbb{F}_{q}\right\}, \forall \eta_{1} \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}} \\ \text { and } \eta_{2} \in \mathbb{F}_{q^{4}} \text { with } 1, \eta_{1}, \eta_{2},-\eta_{1}^{2} \text { linearly independent on } \mathbb{F}_{q} \\ \hline \end{gathered}$	$n_{\mathcal{K}}$
(C_{21})	$q^{4}+q^{3}+q^{2}+1$	NO	$B_{\eta}=\left\{\left(-\eta x_{0}+x_{1}, x_{2}-A x_{4}, x_{3}-B x_{4}\right): x_{i} \in \mathbb{F}_{q}\right\}, \forall \eta \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}},$ where $A=\frac{t^{q^{3}}-t}{\xi-\xi^{q}}, B=\xi A+t$ for fixed elements $\xi \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$	n
$\left(\mathrm{C}_{22}\right)$	$q^{4}+q^{3}+q^{2}+q+1$	NO	$\left\{\left(x, x^{q}, x^{q^{3}}-\alpha\right): x \in \mathbb{F}_{q^{4}}, \alpha \in \mathbb{F}_{q}\right\}$	1

$\operatorname{dim}\left\langle P, P^{\tau}, P^{\tau^{2}}, P^{\tau^{3}}\right\rangle=3$, the number of orbits of the subgroup $\mathrm{PGO}^{-}(4, q) \ltimes$ $\operatorname{Aut}\left(\mathbb{F}_{q^{4}}\right)$ of $\mathrm{P}^{-} \mathrm{O}^{+}\left(4, q^{4}\right)$ acting on the points P of $\mathcal{Q}^{+}\left(3, q^{4}\right)$ such that P, P^{τ}, $P^{\tau^{2}}, P^{\tau^{3}}$ are pairwise non-collinear on $\mathcal{Q}^{+}\left(3, q^{4}\right)$ and $\operatorname{dim}\left\langle P, P^{\tau}, P^{\tau^{2}}, P^{\tau^{3}}\right\rangle=$ 3, the number of orbits of the group $G\left(q^{4}\right) \mathcal{K}_{q}$ acting on the points $P \in \mathcal{K}_{q^{4}}$ such that $P, P^{\tau}, P^{\tau^{2}}, P^{\tau^{3}}$ are pairwise non-collinear on $\mathcal{K}_{q^{4}}$ and such that $\operatorname{dim}\left\langle P, P^{\tau}, P^{\tau^{2}}, P^{\tau^{3}}\right\rangle=3$.

Moreover, we remark that in Cases $\left(\mathbf{B}_{1}\right),\left(\mathbf{B}_{21}\right),\left(\mathbf{B}_{3}\right),\left(\mathbf{C}_{11}\right),\left(\mathbf{C}_{22}\right)$ the canonical forms of the \mathbb{F}_{q}-linear blocking sets $B_{l, \Sigma}$ of $\mathrm{PG}\left(2, q^{4}\right)$, given in the table, are constructed by using the canonical subgeometry $\Sigma=\left\{\left(\alpha, x, x^{q}, x^{q^{2}}, x^{q^{3}}\right): \alpha \in\right.$ $\left.\mathbb{F}_{q}, x \in \mathbb{F}_{q^{4}}\right\}$ of Σ^{*}, fixed by the semilinear collineation $\sigma:\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto$ $\left(x_{0}^{q}, x_{4}^{q}, x_{1}^{q}, x_{2}^{q}, x_{3}^{q}\right)$ (see [9]).

References

[1] S. Ball, The number of directions determined by a function over a finite field, J. Comb. Theory, Ser. A, 104, No. 2 (2003), 341-350.
[2] A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme and T. Szőnyi, On the number of slopes of the graph of a function defined on a finite field, J. Comb. Theory, Ser. A, 86, No. 1 (1999), 187-196.
[3] J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford Mathematical Monographs, Oxford: Clarendon Press. x, 316 p. (1985).
[4] J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford Mathematical Monographs, Oxford: Clarendon Press. xii, 407 p. (1991).
[5] R. Lidl and H. Niederreiter, Finite Fields. Foreword by P. M. Cohn. Encyclopedia of Mathematics and Its Applications, Vol. 20, Cambridge University Press. xx, 755 p. (1984).
[6] G. Lunardon, Normal spreads, Geom. Dedicata, 75 (1999), 245-261.
[7] \qquad , Linear k-blocking sets, Combinatorica, 21, No. 4 (2001), 571-581.
[8] G. Lunardon,P. Polito and O. Polverino, A geometric characterization of k-linear blocking sets, J. Geom., 74, No. 1-2 (2002), 120-122.
[9] P. Polito and O. Polverino, Linear blocking sets in PG $\left(2, q^{4}\right)$, Australas. J. Comb., 26 (2002), 41-48.
[10] O. Polverino, Blocking set nei piani proiettivi, Ph.D. Thesis, University of Naples Federico II, 1998.
[11] O. Polverino and L. Storme: Small minimal blocking sets in PG $\left(2, q^{3}\right)$, European J. Combin., 23 (2002), 83-92.
[12] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes, Finite Fields Appl., 3 (1997), 187-202.
[13] P. Sziklai, Small blocking sets and their linearity, manuscript.

Giovanna Bonoli
Dipartimento di Matematica, Seconda Università degli Studi di Napoli, via Vivaldi n. 43, I-81100 CASERTA, ITALY
e-mail: giovanna.bonoli@unina2.it

Olga Polverino
Dipartimento di Matematica, Seconda Università degli Studi di Napoli, via Vivaldi n. 43, I-81100 CASERTA, Italy
e-mail: olga.polverino@unina2.it

[^0]: *Work supported by National Research Project Strutture geometriche, Combinatoria e loro applicazioni of the Italian Ministero dell'Università e della Ricerca Scientifica

