Innovations in Incidence Geometry

Volume 3 (2006), Pages 1–12 ISSN 1781-6475

Small maximal partial ovoids of $H(3, q^2)$

Klaus Metsch

Abstract

The trivial lower bound for the size of a maximal partial ovoid of $H(3,q^2)$ is q^2+1 . In [4] it was shown that this bound can be attained if and only if q is even. In the present paper it is shown that a maximal partial ovoid of $H(3,q^2)$, q odd, has at least $q^2+1+\frac{4}{9}q$ points (previously, only q^2+3 was known). It is also shown that a maximal partial spread of $H(3,q^2)$, q even, has size q^2+1 or size at least $q^2+1+\frac{4}{9}q$.

Keywords: ovoid, polar space, Hermitian variety

MSC 2000: 51E20, 51E12, 05B25

1 Introduction

An *ovoid* of the hermitian polar space $H(3,q^2)$ is a set of points such that each generator is incident with exactly one point of the ovoid. Ovoids of $H(3,q^2)$ have size q^3+1 and there exist many different types of ovoids. The easiest example is to take the point set $\mathcal O$ of a hermitian curve $H(2,q^2)$ in a plane π of the ambient projective space $\mathsf{PG}(3,q^2)$. One can pass through a second example by replacing the q+1 points of a secant line l of π to the hermitian curve by the q+1 points on the secant line l^\perp in $H(3,q^2)$. Here and throughout the paper, \perp denotes the unitary polarity of $\mathsf{PG}(3,q^2)$ defining the hermitian polar space $H(3,q^2)$.

A partial ovoid of $H(3,q^2)$ is a set of points such that no generator meets it in more than one point; it is called maximal, if it is not contained in a strictly larger partial ovoid. It was shown in [5] that the largest maximal partial ovoid of $H(3,q^2)$ that is not an ovoid has size q^3+1-q . On the other side, the trivial lower bound for the size of a maximal partial ovoid in $H(3,q^2)$ is q^2+1 (see [4]), and Cossidente and Korchmáros constructed a maximal partial ovoid of that size when q is even [2]. The size of the smallest maximal partial ovoid for

odd q is not known. In [4] it was shown by A. Aguglia, G.L. Ebert, and D. Luyckx that it is at least $q^2 + 3$.

The construction of a maximal partial ovoid of size q^2+1 in $H(3,q^2)$, q even, is as follows: Start with an elliptic quadric $\mathcal{O}=Q^-(3,q)$ in $\operatorname{PG}(3,q)$. The tangent lines to \mathcal{O} are the generators of a symplectic polar space $W(3,q)\subseteq\operatorname{PG}(3,q)$. Extend $\operatorname{PG}(3,q)$ to $\operatorname{PG}(3,q^2)$. The lines of W(3,q) cover as lines of $\operatorname{PG}(3,q^2)$ the points of a $H(3,q^2)$; this was shown in [2] and [3]. The set \mathcal{O} is then a maximal partial ovoid of this $H(3,q^2)$. It was shown in [4] that every maximal partial ovoid of $H(3,q^2)$ of size q^2+1 can be constructed in this way. It should be noticed that the example can also be constructed in a dual way using that $H(3,q^2)$ is dual to $Q^-(5,q)$. Under the duality the W(3,q) translates to a Q(4,q) inside $Q^-(5,q)$, and the ovoid \mathcal{O} of W(3,q) translates to a spread of Q(4,q), which of course is a maximal partial spread of $Q^-(5,q)$.

If one deletes from the above example for $\mathcal O$ one point P, then the q+1 generators on P miss $\mathcal O$. The points on these generators that are perpendicular to a point of $\mathcal O\setminus\{P\}$ lie in $\mathsf{PG}(3,q)$. It follows that there exists besides $\mathcal O$ essentially one other type of a maximal partial ovoid containing $\mathcal O\setminus\{P\}$. It is obtained by adjoining q+1 points of $\mathsf{PG}(3,q^2)\setminus\mathsf{PG}(3,q)$, one on each generator of P. This shows that $H(3,q^2)$, q even, has maximal partial ovoids of size q^2+q+1 .

I guess that $H(3,q^2)$, q even, does not possess a maximal partial ovoid of a size between q^2+1 and q^2+q+1 . I also find it very likely that the smallest maximal partial ovoid of $H(3,q^2)$, q odd, has at least around q^2+q+1 points (but see the open problems at the end of the article). The following theorem and its corollary support this conjecture.

Theorem 1.1. Let \mathcal{O} be a maximal partial ovoid of $H(3, q^2)$. Suppose that $|\mathcal{O}| = q^2 + 1 + \delta$ for an integer δ satisfying $0 \le \delta \le (q-1)/2$ and

$$4\frac{\Delta q + \delta(q+1)}{q-\delta} + 3q < 2q^2 + 4\delta + q\sqrt{(2q+3)^2 - 8(\delta+1)(q+1)}$$
 (1)

where

$$\Delta := \left\lfloor \frac{\delta(q+1)^2(q\delta - \delta - 1)}{(q-\delta)(q^2 + 1 + \delta)} \right\rfloor .$$

Then $\delta = 0$ and q is even.

We remark that the bound is satisfied for integers δ with $0 \le \delta \le \frac{4}{9}q$.

Corollary 1.2. Every maximal partial ovoid of $H(3, q^2)$, with q odd, has at least $q^2 + 1 + \frac{4}{9}q$ points.

Most of the arguments used to prove these results remain true for $\delta < (q-1)/2$, and I could imagine that it is possible to improve the arguments so

that they cover all δ up to (q-1)/2. For $\frac{1}{2}(q-1) < \delta < q$, new arguments seem to be needed.

2 An internal incidence structure

Let \mathcal{O} be a maximal partial ovoid of $H(3, q^2)$ and suppose that

$$|\mathcal{O}| = q^2 + 1 + \delta, \quad \delta < q - 1.$$

The generators of $H(3,q^2)$ not meeting \mathcal{O} will be called *free generators*. For $i \geq 0$ we denote by \mathcal{F}_i the set consisting of all points P of $H(3,q^2)$ such that the number of generators on P that meet \mathcal{O} is i. This implies that \mathcal{O} is contained in \mathcal{F}_{q+1} . The idea of the following proof is to show that \mathcal{F}_{q+1} is the point set of a projective space $\mathsf{PG}(3,q)$.

Lemma 2.1. (a) For every free generator g we have

$$\sum_{i} |g \cap \mathcal{F}_i| = q^2 + 1$$
 and $\sum_{i} |g \cap \mathcal{F}_i| i = q^2 + 1 + \delta$.

- (b) $\mathcal{F}_i = \emptyset$ for i = 0 and $\delta + 1 < i < q + 1$.
- (c) For a free generator g we have $g \cap \mathcal{F}_{q+1} = \emptyset$.
- (d) The number of free generators is $(q+1)(q^3-q^2-\delta)$.
- *Proof.* (a) Consider a free generator g. Every point of \mathcal{O} lies on a unique generator meeting g. Hence, there exist exactly $|\mathcal{O}| = q^2 + 1 + \delta$ generators that meet \mathcal{O} and g. This proves (a).
- (b & c) Since \mathcal{O} is a maximal partial ovoid, we have $\mathcal{F}_0 = \emptyset$. By (a) we have $\sum_i |g \cap \mathcal{F}_i| (i-1) = \delta$ for the free generators g. Hence $g \cap \mathcal{F}_i = \emptyset$ for all free generators g and all indices $i > \delta + 1$. As every point P with $P \notin \mathcal{F}_{q+1}$ lies on a free generator, this proves (b).
 - (d) Since the number of generators is $(q+1)(q^3+1)$ and each point of \mathcal{O} lies on q+1 of these, we find (d).

Notation 2.2. We consider $H(3,q^2)$ in its natural embedding in $PG(3,q^2)$. The associate polarity is denoted by \bot . The points of $PG(3,q^2)$ in $H(3,q^2)$ are called the *hermitian points*. For a hermitian point, the *tangent plane* P^\bot meets $H(3,q^2)$ in the union of the q+1 generators on P. The non-tangent planes are called *hermitian planes*; they meet $H(3,q^2)$ in hermitian curves $H(2,q^2)$. A *secant line* is a line of $PG(3,q^2)$ meeting $H(3,q^2)$ in q+1 points; these points form a Baersubline of the secant line.

Lemma 2.3. A hermitian plane meets \mathcal{F}_{q+1} in at most $q+1+\delta$ points.

Proof. Let λ points of $\mathcal O$ be in the hermitian plane π , and let μ be the number of points of $\mathcal F_{q+1}\setminus \mathcal O$ in π . Count pairs (X,Y) of perpendicular points $X\in\pi\cap H(3,q^2)$ and $Y\in\mathcal O\setminus\pi$ to find

$$q^{3} + 1 - \lambda - \mu + \mu(q+1) \le (|\mathcal{O}| - \lambda)(q+1);$$

here we use that each one of the $q^3+1-\lambda-\mu$ points of π that does not lie in \mathcal{F}_{q+1} is perpendicular to at least one point of \mathcal{O} . As $|\mathcal{O}|=q^2+1+\delta$, it follows that $\lambda+\mu\leq q+1+\delta+\frac{1}{q}\delta$. Since $\delta< q$, this completes the proof.

Lemma 2.4. (a) Suppose the secant line s meets \mathcal{F}_{q+1} in more than $\delta+1$ points. Then s and s^{\perp} meet \mathcal{F}_{q+1} in exactly q+1 points.

- (b) Suppose that two different coplanar secant lines s and t both meet \mathcal{F}_{q+1} in q+1 points. Then the point $s \cap t$ lies in \mathcal{F}_{q+1} .
- (c) Suppose that the q+1 hermitian points of a secant line s belong to $\mathcal{F}_{q+1} \setminus \mathcal{O}$. Then s^{\perp} meets \mathcal{O} in at least two points.
- Proof. (a) The line s^{\perp} is a secant line. For $X \in s \cap \mathcal{F}_{q+1}$ and $Y \in s^{\perp} \cap H(3,q^2)$, the line XY is a generator and its meets \mathcal{O} as $X \in \mathcal{F}_{q+1}$. Thus Y lies on at least $|s \cap \mathcal{F}_{q+1}| > \delta + 1$ generators that meet \mathcal{O} . Then $Y \in \mathcal{F}_{q+1}$ by Lemma 2.1 (b). Hence all q+1 points of $s^{\perp} \cap H(3,q^2)$ lie in \mathcal{F}_{q+1} . As $s = (s^{\perp})^{\perp}$, the same argument shows now that all points of $s \cap H(3,q^2)$ lie in \mathcal{F}_{q+1} .
 - (b) By part (a) the lines s^{\perp} and t^{\perp} meet \mathcal{F}_{q+1} in q+1 points. As the plane $(s\cap t)^{\perp}$ contains s^{\perp} and t^{\perp} , this plane meets \mathcal{F}_{q+1} in at least 2q+1 points. By the previous lemma it is thus a tangent plane. Hence $s\cap t$ is a point of $H(3,q^2)$. As all q+1 points of $s\cap H(3,q^2)$ lie in \mathcal{F}_{q+1} , the point $s\cap t$ lies in \mathcal{F}_{q+1} .
 - (c) Consider the q+1 planes $X^{\perp}=\langle X,s^{\perp}\rangle$ for the hermitian points X of s. As the points X lie in \mathcal{F}_{q+1} , all q+1 generators on X meet \mathcal{O} . As $X\not\in\mathcal{O}$, then each plane X^{\perp} meets \mathcal{O} in q+1 points. Then the union of these q+1 planes contains $(q+1)^2-q\cdot|s^{\perp}\cap\mathcal{O}|$ points of \mathcal{F}_{q+1} . As $|\mathcal{O}|=q^2+1+\delta\leq q^2+q$, it follows that $|s^{\perp}\cap\mathcal{O}|\geq 2$.

Definition 2.5. For every point $P \in \mathcal{O}$, we denote by I_P the incidence structure with point set $P^{\perp} \cap \mathcal{F}_{q+1}$ and whose lines are the generators of $H(3,q^2)$ on P and the secant lines $P^{\perp} \cap Q^{\perp}$ for the points $Q \in \mathcal{O} \setminus \{P\}$. Incidence is inherited from the projective space. The number of points of I_P on a line of I_P will be called the *length* of the line. The set of lines of I_P not passing through P will be

denoted by \mathcal{L}_P . We also define the weight w(l) of every line l of I_P as follows: The weight of the generators on P is one, and the weight of a line $l \in \mathcal{L}_P$ is the number of points $Q \in \mathcal{O} \setminus \{P\}$ with $l = P^{\perp} \cap Q^{\perp}$. Clearly the sum of the weights of all lines in \mathcal{L}_P is $|\mathcal{O}| - 1 = q^2 + \delta$, so the sum of the weights of all lines of I_P is $q^2 + q + 1 + \delta$.

Finally, we call a line of I_P long, if it lies in \mathcal{L}_P and has q+1 points in I_P . We call a line of I_P short, if it lies in \mathcal{L}_P and has less than q+1 points in I_P . We shall see in the next lemma that short lines have at most $\delta+1$ points.

Lemma 2.6. The incidence structure I_P has the following properties.

- (a) Every line has length at most q + 1.
- (b) A line not passing through P has length q + 1 or at most $\delta + 1$.
- (c) Any two long lines meet in I_P .
- *Proof.* (a) A generator on P meets \mathcal{F}_{q+1} in P and in at most $\lfloor |\mathcal{O}\setminus \{P\}|/q\rfloor = q$ further points, since each point of $\mathcal{F}_{q+1}\setminus \mathcal{O}$ is perpendicular to q+1 points of \mathcal{O} .
 - For a point $Q \in \mathcal{O} \setminus \{P\}$ the line $Q^{\perp} \cap P^{\perp}$ is a secant line of $H(3,q^2)$. Hence it has q+1 points in $H(3,q^2)$ and thus at most q+1 points in \mathcal{F}_{q+1} .
 - (b) The lines of I_P not passing through P are secant lines to $H(3, q^2)$. Part (a) of Lemma 2.4 shows that they meet \mathcal{F}_{q+1} in q+1 or at most $\delta+1$ points.
 - (c) Part (b) of Lemma 2.4 shows that any two long lines of I_P meet in I_P . \square

Lemma 2.7. Suppose that the sum of the weights of the long lines of I_P is larger than q. Then the plane P^{\perp} contains a Baer-subplane $B_P = \mathsf{PG}(2,q)$ such that $P \in B_P$ and $X \in B_P$ for every point X of I_P that lies on a long line of I_P .

Proof. Every point $\neq P$ of I_P is perpendicular to P and q further points of \mathcal{O} . Thus for a point $X \neq P$ of I_P the sum of the weights of the lines of \mathcal{L}_P on X is q. In particular, every line of I_P has weight at most q.

Thus we find two long lines l_1 and l_2 . By part (c) of Lemma 2.6, these meet in a point Q of I_P . The q+1 points of I_P on each line l_i form a Baer-subline in PG(3, q^2). There exists a unique Baer-subplane B_P containing these two Baer-sublines. As the two long lines l_1 and l_2 meet all generators on P in a point of I_P , then the q generators on P that meet l_1 and l_2 in different points are lines of the Baer-subplane. Hence P is a point of the subplane, and then all q+1 generators on P are lines of B_P (since they contain P and meet B_P in a point on l_1).

As the sum of the weights of all lines of \mathcal{L}_P on Q is q, the hypothesis implies that there exists a long line l_3 not passing through Q. Then l_3 meets l_1 and l_2 in different points of I_P and hence l_3 is a line of B_P . As the generators of $H(3,q^2)$ through P belong to the subplane, they intersect l_3 in points of the subplane. The q+1 intersection points are the points of I_P on l_3 and so they lie in the subplane.

Finally, every long line l other than l_1, l_2, l_3 meets two of the lines l_1, l_2, l_3 in different points, so it belongs to the subplane and as before all its points of I_P belong to the subplane.

Lemma 2.8. In the situation that the subplane B_P described in Lemma 2.7 exists, suppose that the long lines of I_P cover more than $(\delta + 1)(q + 1)$ points of I_P . Then all points and lines of B_P belong to I_P .

Proof. Since the points of the long lines of I_P belong to B_P , then B_P and I_P share more than $(\delta + 1)(q + 1)$ points.

Assume by way of contradiction that for some generator g on P, at most $\delta+1$ of the q points $\neq P$ of B_P on g are also points of I_P . Then more than $(\delta+1)q$ common points of B_P and I_P lie outside g. Consider a point X on g that lies in B_P but not in I_P . One of the q lines $\neq g$ of B_P on X has more than $\delta+1$ points in I_P . These points lie in \mathcal{F}_{q+1} and the line is a secant line to $H(3,q^2)$. Lemma 2.4 shows that all hermitian points on this secant line lie in \mathcal{F}_{q+1} . As X is one of these points, then $X \in \mathcal{F}_{q+1}$. But then X is a point of I_P , a contradiction.

Hence every generator on P has apart from P at least $\delta+2$ points that belong to B_P and I_P .

Assume by way of contradiction that some point X of B_P is not a point of I_P . As each of the q generators $\neq PX$ on P has apart from P at least another $\delta+2$ points that belong to I_P and B_P , there exist at least $(\delta+2)q$ points outside the line PX that belong to I_P and B_P . Some of the q lines $\neq PX$ of B_P on X thus contain more than $\delta+1$ of these points. As before this implies that $X\in\mathcal{F}_{q+1}$ with the same contradiction.

Hence every point of B_P is also a point of I_P , that is every point other than P of B_P lies in \mathcal{F}_{q+1} . By the construction in the proof of Lemma 2.7, the lines of B_P on P belong to I_P . Consider one of the other q^2 lines s of B_P . Then s is a secant line to $H(3,q^2)$ with all its hermitian points in $\mathcal{F}_{q+1}\setminus\mathcal{O}$. Part (c) of Lemma 2.4 shows that there exists a point $Q\in\mathcal{O}\setminus\{P\}$ with $s\in Q^\perp$. This means by definition that s is a line of I_P .

Lemma 2.9. Suppose that the sum of the weights of the long lines of I_P is larger than q, and that the long lines of I_P cover more than $(\delta + 1)(q + 1)$ points of I_P .

Then $\delta = 0$, q is even, and \mathcal{O} is an ovoid of a Baer-subspace PG(3,q) of $PG(3,q^2)$, and thus \mathcal{O} is an ovoid of a W(3,q) embedded in $H(3,q^2)$.

Proof. From the previous lemmas we see that I_P contains a Baer-subplane B_P . As the sum of the weights of all lines of I_P on a point of I_P is q+1, we see that every line of I_P that belongs to B_P has weight one. Also, the lines of B_P are all lines of I_P that are incident with a point of B_P . But then the lines of I_P are all lines of B_P , since the Baer-subplane B_P meets every line of $P^\perp = \mathsf{PG}(2,q^2)$.

Thus, \mathcal{L}_P contains exactly q^2 lines and all have weight one. As the sum of the weights of the lines of \mathcal{L}_P is $q^2 + \delta$ we find $\delta = 0$, that is $|\mathcal{O}| = q^2 + 1$.

The results in [4] show that this implies that q is even and \mathcal{O} is an ovoid in a Baer-subspace. We sketch an alternative proof which is prepared by the previous arguments:

Two different $Q_1,Q_2\in\mathcal{O}\setminus\{P\}$ give different lines $Q_1^\perp\cap P^\perp$ and $Q_2^\perp\cap P^\perp$, since the lines of I_P have weight one. Then they are lines of the Baer-subplane B_P and thus meet in a point of B_P . It follows that $Q_1^\perp\cap Q_2^\perp\cap P^\perp$ is a point of $H(3,q^2)$. Hence P,Q_1,Q_2 are non-collinear in $PG(3,q^2)$ and span a tangent plane of $H(3,q^2)$.

As $\delta=0$, then $\mathcal{F}_i=\emptyset$ except for i=1 and i=q+1 (Lemma 2.1 (b)). Then every generator on a point of \mathcal{O} meets \mathcal{F}_{q+1} in exactly q+1 points. Thus what we have proved for P holds for every point of \mathcal{O} . Therefore any three points of \mathcal{O} span a tangent plane. Using what we have shown in the above lemmata, it is now easy to see that $|\mathcal{F}_{q+1}|=q^3+q^2+q+1$, that the points of \mathcal{F}_{q+1} form a Baer-subspace, and that \mathcal{O} is an ovoid of this Baer-subspace.

Three points $P, Q_1, Q_2 \in \mathcal{O}$ span a tangent plane; this is the plane X^{\perp} for $X = P^{\perp} \cap Q_1^{\perp} \cap Q_2^{\perp}$. The set $X^{\perp} \cap \mathcal{O}$ is an oval in the plane $\mathcal{F}_{q+1} \cap X^{\perp} = \mathsf{PG}(2,q)$. As XP, XQ_1, XQ_2 are three tangents on X, we conclude that q is even (and X is the nucleus of this oval).

In the next section we show that the hypothesis of the preceding lemma can be satisfied for at least one point P provided that δ is not too large.

3 Estimations

In this section we suppose that \mathcal{O} is a maximal partial ovoid of $H(3,q^2)$ of size $q^2+1+\delta$ with $\delta < q-1$. We first estimate the size of \mathcal{F}_{q+1} .

Lemma 3.1.

$$|\mathcal{F}_{q+1}| \ge q^3 + q^2 + q + 1 - \frac{\delta(q^2\delta - q - \delta - 1)}{q - \delta} + q\delta + \delta.$$

Proof. We estimate the number of points in the union of the \mathcal{F}_i for $1 \leq i \leq \delta + 1$. Let \mathcal{G} be the set of all free generators. Since each point of \mathcal{F}_i lies on q+1-i free generators, we have for $i \leq \delta + 1$

$$|\mathcal{F}_i| = \frac{1}{q+1-i} \sum_{g \in \mathcal{G}} |g \cap \mathcal{F}_i|.$$

Hence, using Lemma 2.1,

$$\begin{split} \sum_{i=1}^{\delta+1} |\mathcal{F}_i| &= \sum_{g \in \mathcal{G}} \sum_{i=1}^{\delta+1} \frac{|g \cap \mathcal{F}_i|}{q+1-i} \\ &= \sum_{g \in \mathcal{G}} \left(\frac{q^2+1-\sum_{i=2}^{q+1} |g \cap \mathcal{F}_i|}{q} + \sum_{i=2}^{\delta+1} \frac{|g \cap \mathcal{F}_i|}{q+1-i} \right) \\ &= \sum_{g \in \mathcal{G}} \left(\frac{q^2+1}{q} + \sum_{i=2}^{\delta+1} \frac{|g \cap \mathcal{F}_i|(i-1)}{q(q+1-i)} \right). \end{split}$$

We know from Lemma 2.1 that $\sum |g \cap \mathcal{F}_i|(i-1) = \delta$. Using part (d) of Lemma 2.1 we conclude that

$$\sum_{i=1}^{\delta+1} |\mathcal{F}_i| \le (q+1)(q^3 - q^2 - \delta) \left(\frac{q^2 + 1}{q} + \frac{\delta}{q(q-\delta)}\right)$$
$$= q^5 - q + \frac{\delta(q^2\delta - q - \delta - 1)}{q - \delta} - q\delta - \delta.$$

It follows that

$$|\mathcal{F}_{q+1}| \ge (q^2 + 1)(q^3 + 1) - (q^5 - q + \frac{\delta(q^2\delta - q - \delta - 1)}{q - \delta} - q\delta - \delta).$$

This proves the statement.

Lemma 3.2. If $\delta < \frac{q}{2}$, then there exists a point P such that $|P^{\perp} \cap \mathcal{F}_{q+1}| \ge q^2 + q + 1 - \Delta$ where

$$\Delta = \left| \frac{\delta(q+1)^2 (q\delta - \delta - 1)}{(q-\delta)(q^2 + 1 + \delta)} \right| .$$

Proof. Count pairs (P,X) of perpendicular points $P\in\mathcal{O}$ and $X\in\mathcal{F}_{q+1}\setminus\mathcal{O}$ to find

$$\sum_{P \in \mathcal{O}} (|P^{\perp} \cap \mathcal{F}_{q+1}| - 1) \ge (\mathcal{F}_{q+1} \setminus \mathcal{O})(q+1).$$

Using $|\mathcal{O}| = q^2 + 1 + \delta$ and for $|\mathcal{F}_{q+1}|$ the bound of the preceding lemma we conclude that there exists a point $P \in \mathcal{O}$ such that

$$(q^2+1+\delta)(|P^{\perp}\cap\mathcal{F}_{q+1}|-1)\geq \left(q^3+q-\frac{\delta(q^2\delta-q-\delta-1)}{q-\delta}+q\delta\right)(q+1).$$

This proves the statement.

Lemma 3.3. Let $P \in \mathcal{O}$ and denote by x the sum of the weights of all long lines of I_P . Suppose that x > q. Then I_P has at least $\lceil 2x/q \rceil$ long lines.

Proof. If the weight of every long line is at most q/2, then the assertion is obvious. Suppose therefore that there exists a long line l with weight s>q/2. From Lemma 2.4 (b) we know that l meets every other long line in a point of \mathcal{F}_{q+1} . As the sum of the weights of all lines of \mathcal{L}_P on a point of I_P is q, it follows that every long line other than l has weight at most q-s. Hence, if g is the number of long lines, then

$$s + (y-1)(q-s) \ge x \implies y \ge \frac{x-q}{q-s} + 2 \ge \frac{2(x-q)}{q} + 2.$$

The assertion follows.

Lemma 3.4. *Suppose that* $0 \le \delta \le (q-1)/2$ *and*

$$4\frac{\Delta q + \delta(q+1)}{q - \delta} + 3q < 2q^2 + 4\delta + q\sqrt{(2q+3)^2 - 8(\delta+1)(q+1)}$$
 (2)

where

$$\Delta := \left\lfloor \frac{\delta(q+1)^2(q\delta - \delta - 1)}{(q-\delta)(q^2 + 1 + \delta)} \right\rfloor .$$

Then $\delta = 0$ and q is even.

Proof. According to Lemma 3.2 there exists a point P such that

$$|P^{\perp} \cap \mathcal{F}_{q+1}| \ge q^2 + q + 1 - \Delta.$$

For $l \in \mathcal{L}_P$, let w(l) be the weight of l and k(l) be the length of l. We know that for each point $X \neq P$ of I_P , the sum of the weights of the lines of \mathcal{L}_P on X is q. Counting *weighted* incidences between points $\neq P$ of I_P and lines of \mathcal{L}_P , we find

$$(q^2 + q - \Delta)q \le \sum_{l \in \mathcal{L}_P} w(l) \cdot k(l). \tag{3}$$

As $\sum_{l \in \mathcal{L}_P} w(l) = q^2 + \delta$, it follows that

$$\sum_{l \in \mathcal{L}_P} w(l)(q+1-k(l)) \le \delta(q+1) + q\Delta.$$

For a short line of \mathcal{L}_P we have $q+1-k(l)\geq q-\delta$, see Lemma 2.6 (b). Hence, for the sum S of the weights of all short lines of \mathcal{L}_P we have

$$S \le \frac{\delta(q+1) + q\Delta}{q - \delta}.$$

We denote by μ the largest integer satisfying $\mu \leq q+1$ and

$$(\mu - 1)\frac{q}{2} + \frac{\Delta q + \delta(q+1)}{q - \delta} < q^2 + \delta. \tag{4}$$

Since the sum of the weights of the lines of \mathcal{L}_P is $q^2+\delta$, the sum of the weights of all long lines of \mathcal{L}_P is larger than $(\mu-1)\frac{q}{2}$. Using $\Delta \leq \delta^2(q+1)/(q-\delta)$ and $\delta \leq (q-1)/2$, one easily sees that $\mu \geq 3$. [For this, it suffices to show that

$$q + \frac{\delta^2 q(q+1) + \delta(q+1)(q-\delta)}{(q-\delta)^2} < q^2 + \delta;$$

multiplying by $(q - \delta)^2$ one sees that this is equivalent to

$$\left(\frac{q-1}{2}-d\right)\left(2q^3+d\left(\frac{5}{2}q-d-\frac{1}{2}\right)\right)+\frac{1}{4}(3q^2-1)d+\frac{1}{2}qd>0$$

and this holds, sicne $d \leq \frac{1}{2}(q-1)$]. As $\mu \geq 3$, then Lemma 2.7 proves the existence of the subplane B_P . Hypothesis (2) is equivalent to

$$\frac{1}{2} \left(2q + 3 - \sqrt{(2q+3)^2 - 8(\delta+1)(q+1)} \right) < \frac{2}{q} \left(q^2 + \delta - \frac{\Delta q + \delta(q+1)}{q - \delta} \right).$$

Therefore

$$\mu > \frac{1}{2} \left(2q + 3 - \sqrt{(2q+3)^2 - 8(\delta+1)(q+1)} \right).$$

The right-hand side of this inequality is the smaller solution for x of the equation

$$\binom{q+2}{2} - \binom{q+2-x}{2} = (\delta+1)(q+1).$$

It follows that

$$\binom{q+2}{2} - \binom{q+2-\mu}{2} > (\delta+1)(q+1). \tag{5}$$

As the sum of the weights of the long lines of I_P is larger than $(\mu - 1)\frac{q}{2}$, Lemma 3.3 shows that I_P has at least μ long lines. As $\mu \leq q+1$, then μ long lines cover at least

$$\sum_{i=1}^{\mu} (q+2-i) = {q+2 \choose 2} - {q+2-\mu \choose 2}$$

points. By (5), this is larger than $(\delta+1)(q+1)$. We have verified the hypothesis of Lemma 2.9. Application of this lemma shows that $\delta=0$ and q is even, proving the lemma and also Theorem 1.1.

- **Problems.** (a) Construct small maximal partial ovoids of $H(3,q^2)$, q odd. Dually this asks for small maximal partial spreads of $Q^-(5,q)$, q odd. One construction, that appears in [4] and [6] uses maximal partial spreads in PG(3,q). A maximal partial spreads of size s in PG(3,q) gives rise to a maximal partial spread of size q(s-1)+1 of $Q^-(5,q)$. Another idea is to embed Q(4,q) in $Q^-(5,q)$ and start with a large partial spread of Q(4,q). If this partial spread has $q^2+1-\delta$ lines, then this can be extended to a maximal partial spread of $Q^-(5,q)$, which has at most $q^2+1+q\delta$ lines. Unfortunately, no general construction for maximal partial spreads of Q(4,q) is known. For small q, examples for large partial spreads of Q(4,q) were found by M. Cimráková [1] (see her tables for maximal partial ovoids of W(3,q)). For $q\in\{3,5,7\}$ her search was exhaustive, but using her results, the size $q^2+1+q\delta$ is slightly worse than the size of the examples found by the first approach in [4]. No construction is known producing examples of size close to q^2+1 .
 - (b) Prove that a maximal partial ovoid of $H(3, q^2)$, q odd, has at least $q^2 + q$ points.

References

- [1] **M. Cimráková**, Search algorithms for substructures in generalized quadrangles, Ph.D. thesis, Ghent University, 2006.
- [2] **A. Cossidente** and **G. Korchmáros**, Transitive ovoids of the Hermitian surface of $PG(3, q^2)$, q even, J. Combin. Theory Ser. A **101** (2003), 117–130.
- [3] **A. Aguglia**, **A. Cossidente** and **G. L. Ebert**, Complete spans on Hermitian varieties, *Des. Codes Cryptogr.* **29** (2003), 7–15.
- [4] A. Aguglia, G. L. Ebert and D. Luyckx, On partial ovoids of Hermitian surfaces, *Bull. Belg. Math. Soc. Simon Stevin* 12 (2005), no. 5, 641–650.

[5] **A. Klein** and **K. Metsch**, New results on covers and partial spreads of polar spaces, *Innov. Incidence Geom.* **1** (2005), 19–34.

[6] M. R. Brown, J. De Beule and L. Storme, Maximal partial spreads of $T_2(O)$ and $T_3(O)$, Europ. J. Combin. 24 (2003), 73–84.

Klaus Metsch

MATHEMATISCHES INSTITUT, ARNDTSTRASSE 2, D-35392 GIESSEN, GERMANY e-mail: klaus.metsch@math.uni-giessen.de