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Abstract

A Moufang set is essentially a doubly transitive permutation group such
that the point stabilizer contains a normal subgroup which is regular on
the remaining points. These regular normal subgroups are called the root
groups and they are assumed to be conjugate and to generate the whole
group.

Moufang sets play an significant role in the theory of buildings, they
provide a tool to study linear algebraic groups of relative rank one, and
they have (surprising) connections with other algebraic structures.

In these course notes we try to present the current approach to Moufang
sets. We include examples, connections with related areas of mathematics
and some proofs where we think it is instructive and within the scope of
these notes.
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Introduction

A Moufang set is essentially a doubly transitive permutation group G such that
the point stabilizer contains a normal subgroup which is regular on the remain-
ing points. These regular normal subgroups are called the root groups and they
are assumed to be conjugate and to generate GG. (The root groups are not as-
sumed to be nilpotent.)

J. Tits introduced this notion in the context of twin buildings, but it is in
fact a tool to study absolutely simple algebraic groups of relative rank one; the
Moufang sets are precisely the Moufang buildings of rank one. It turns out that
this notion is related to other algebraic structures as well.

In these notes, we try to give the reader a sense of the “modern” approach to
Moufang sets. We include examples and connections to related areas of mathe-
matics; we provide detailed proofs where we think they could offer more insight
into the theory, but for the same reason, we have omitted many details that can
be found elsewhere and which are beyond the scope of this manuscript.

These notes have been used for a mini-course given by both authors, on
the conference “Buildings and Groups” which took place in Ghent (Belgium),
May 20-26, 2007. Our references for the material in this mini-course are [DS],
[DS2], [DST], [DW], [S] and [SW] (we give more precise references at the
beginning of the relevant sections).

We thank Pierre-Emmanuel Caprace, Shripad Garge, Max Horn, Guy Rousseau
and Richard Weiss for valuable comments on an earlier version of this manuscript.

1 Definition of a Moufang set

1.1 Notation

We start by fixing some standard notation.

Notation 1.1.1. Let G be a group and p a prime.
(1) Forz,y € G, 2¥ := y~lay and [z, y] := 2~y Lay.

(2) When we write an inequality sign H < (G, we always mean that H is a
subgroup of G (while S C G means that S is a subset of G).

(3) For S C G, (S) is the subgroup generated by S.
(4) For a set S we let | S| be the cardinality of S.
(5) For an element g € G, |g| denotes the order of G.

(6) G* denotes the set of nontrivial elements of G.
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(7) Inv(G) denotes the set of involutions of G (so 1 & Inv(G)).

Let G be a permutation group on a set {2, let Y C Q and let z1,...,x, € .

(8) We write Gy for the pointwise stabilizer of Y in G and we write Gy}
for the global stabilizer of Y in G. However when the elements of ¥ are
given, e.g. when Y = {x4,...,2,}, then we write G, ., for Gy and
G{zl,‘..,xn} for G{y}.

(9) We apply permutations on the right, i.e. for z € Q and g € G, we write
xg for the image of x under g; moreover, for g € Gy} we write Cy (g) :=

{lyeY |yg =y}

1.2 Definition of a Moufang set

A Moufang set is a set X (with |X| > 3) together with a collection of groups
{U, | x € X} satisfying the following two properties.

M,. For each z € X, U, < Sym(X) fixes « and acts regularly (i.e. sharply
transitively) on X \ {z}.

M. For all z € X, U, permutes the set {U, | y € X} by conjugation.

The Moufang set is then denoted Ml = (X, (U,).cx); the groups U, are called
the root groups of M, and the group G := (U, | z € X) is called the little
projective group of M.

Note that this implies that G acts doubly transitively on X, and that Uf =
Ugp forall z € X and all p € G.

2 Motivation and situation

2.1 Connection with BN-pairs of rank one

There are several equivalent definitions of a split BN-pair of rank one. The
one we choose is the most common. We refer to Definition 2.3.1 below for a
definition of a BN-pair of arbitrary rank.

Definition 2.1.1. A BN-pair of rank one in a group G is a system (B, N) con-
sisting of two subgroups B and N such that

BN;. G = (B,N).
BN,. H:=BNN<N.
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BN;. There is an element w € N \ H with w? € H such that N = (H,w),
G = BU BwB and wBw # B.

The BN-pair is called split, if in addition the following axiom holds.
BN,. There exists a normal subgroup' U <! B such that B = U x H.

Any BN-pair (possibly non-split) is called saturated, if it also satisfies the follow-
ing axiom. Note that we always have H < BN B“.

BN;. H = BN B“.

Remark 2.1.2. If a BN-pair (B, N) for G is not saturated, then (B, N(BN B%))
is a saturated BN-pair. However, if (B, N) is split but not saturated, then its
saturation (B, N(B N B*)) might be non-split.

Proposition 2.1.3. Let G be a group with a saturated split BN-pair of rank one,
and let B, N, H,U and w be as in Definition 2.1.1. Let

X :={U%| geG}

be the set of conjugates of U in G. For any x € X, denote the corresponding
subgroup of G (which is just x itself!) by V,.. Then (X, (V,).ex) is a Moufang set.

Proof. It is clear that each V, acts on X by conjugation. We have to check
whether the defining conditions M; and M, are satisfied. Condition M is clear,
since each conjugate of U is mapped, by conjugation, to some conjugate of U.

We claim that Ng(U) = B. Indeed, by BNy, B normalizes U. So suppose
that U9 = U for some g € G\ B. Then by BN3, g = awb for some a,b € B,
and hence U’ = U, implying U¥ = U. But since w normalizes H, this would
imply B¥ = B, contradicting the last statement of BNj.

We now proceed to show property M. Let x € X be arbitrary, and write
V., = x = UY. It is obvious that each V, fixes x (i.e. itself) by conjugation.
Assume that some element v € V, fixes some y € X, say y = U". Write
v = ¢ 'ug with u € U; then ¢ := hg~'ugh~' normalizes U, i.e. ¢ € B, and
hence c € BN U9, Suppose that iy # x, i.e. gh~' & B, and use BN3 to write
gh™' = awb with a,b € B. Then BN U9 " +# 1 implies B NU # 1. But by
BN, this would yield U N H # 1, contradicting BN,. We conclude that V. acts
semi-regularly on X \ {z}.

Observe that U¥ # U implies U # 1; let w € U*. Then the three groups U,
U* and U“" are pairwise distinct; hence | X| > 3.

1Some authors also require this subgroup to be nilpotent as part of the definition.
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We now claim that
G =BUBwU. 2.1

Indeed, we have H¥ = H and hence H = H¥ < B%. It follows that wH C Bw
and therefore BoHU C BwU. Since HU = B, we get BwB = BwU, and the
claim follows.

It remains to show that V,, is transitive on X \ {z}. Since G is transitive
by conjugation on X it suffices to show that U is transitive via conjugation on
X \ {U}. It thus suffices to show that X \ {U} = {U“" | u € U}, but this is
immediate from (2.1). (]

Remark 2.1.4. The group G might be a non-trivial extension of the little pro-
jective group of the Moufang set. For example, if G = SLy(k), then the little
projective group of the corresponding Moufang set will be PSL, (k). The crucial
observation here is that, even though the groups U9 act faithfully on X and
G = (U9 | g € G), it might be that G does not act faithfully. In other words,
if 4, is the natural injection from V, into Sym(X) for each = € X, then the
induced map ¢ from G to Sym(X) might not be injective.

We now consider the converse.

Proposition 2.1.5. Let M = (X, (U,)zcx) be an arbitrary Moufang set, with
little projective group G. Let 0,00 be two arbitrary elements of X, let B := G,
N = Gyo,00}, H = Go,00 and U := U (i.e. the root group corresponding to oo),
and let w an element of G interchanging 0 and oo. (Such elements w always exist
because G is doubly transitive.) Then B, N,w and U satisfy all the axioms of a
saturated split BN-pair of rank one.

Proof. It is straightforward to check conditions BN;, BNy, BN, and BN5. To
prove BN3s, let g € G\ B be arbitrary, and let « := cog # oo. Let u be the unique
element of U,, mapping 0 to z, and let b := gu~'w~!. Then ocob = oo, hence
b€ B and g = bwu € BwB. Moreover, wBw = B¥ = Gy # B. O

2.2 Connection with abstract rank one groups

The notion of abstract rank one groups was introduced by Franz Timmesfeld
[Tim].

Definition 2.2.1. A group G is called an abstract rank one group with unipotent
subgroups U and V, if G = (U, V'), U and V are two distinct nilpotent subgroups
of G, and
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(%) for each u € U™, there exists an element v € V* such that U¥ = V*, and
vice-versa.

Every Moufang set with nilpotent root groups gives rise in a natural way to
an abstract rank one group:

Proposition 2.2.2. Let M = (X, (U, ).cx) be a Moufang set with little projective
group G, and assume that the root groups U, are nilpotent. Let 0,00 € X be
two arbitrary elements. Then G = (U, Up) is an abstract rank one group with
unipotent subgroups U, and Uy.

Proof. Let a € UZ be arbitrary, and let = := 0a # 0. Then by My, U§ = Uy, =
U,. Let b be the (unique) element of Uy mapping oo to . Then U%, = U, = U§.
Of course, a similar argument holds if we interchange 0 and oo, and it is obvious
that U, # Up. Also, since Uy is transitive on X \ {oo} and since U§' = Uy,, for
any « € U, it follows that (U, Up) contains all the root groups U,, x € X, so
G = (Us, Up). It follows that GG is an abstract rank one group with unipotent
subgroups U, and Uj. O

Conversely, every abstract rank one group gives rise to a Moufang set. We
will show how it gives rise to a saturated split BN-pair of rank one, and hence,
by Proposition 2.1.3, to a Moufang set.

Proposition 2.2.3. Let G = (U, V) be an abstract rank one group with unipotent
subgroups U and V. Then G has a saturated split BN-pair of rank one.

Proof. Let B := Ng(U) and let H := Ng(U) N Ng (V). Observe that

Q:={U7]geG}={VI]geG}
—(UY |veVIU{V}={V"|uecUlU{U}.

This follows easily from condition (x) in Definition 2.2.1. Notice that condition
(%) also implies that Ng(U) NV =1, so | 2 |> 3. Hence the above observation
implies that GG is doubly transitive by conjugation on 2. Let w be an arbitrary
element of G conjugating U to V and V to U, and set N := (H,w).

If b is an arbitrary element of B, then V® # U, hence V® = V* for some
u € U. Of course, we also have U? = U*; hence bu—! € H, i.e. b € UH. Also
UNH =1, since UN Ng(V) = 1. Hence BN, holds.

BN, is immediate. To show BNj, observe that U and w are contained in
(B, N), and since G = (U, V) = (U,U¥), we get G = (B, N).

Also, wBw = B¥ = Ng(V), so if wBw = B then we would have B = H,
contradicting BN;. Now let ¢ € G\ B be arbitrary; then U? # U, and hence
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U9 = V% = U“" for some u € U. It follows that wug=—! = b for some b € B =
N¢(U), and hence g = b~ lwu € BwB.

Finally, we have B N B¥ = Ng(U) N Ng(U¥) = H, which shows that BNj
holds, i.e. the BN-pair (B, N) is saturated. O

Remark 2.2.4. If G = (U,V) is an abstract rank one group with unipotent
subgroups U and V, then the corresponding Moufang set is given by defining
X = {UY% | g € G}, i.e. X is the set of all conjugates of U in G. The root
groups are precisely the elements of X (seen as subgroups of ), and the action
is given by conjugation; this is very similar to the approach in Proposition 2.1.3.

2.3 Connection with higher rank groups

This subsection is not self-contained and the reader should consult one of the
other lectures of this conference for more information about buildings.

Let A be a spherical building with chamber set C. There exist several defini-
tions of the Moufang property for spherical buildings, which are all equivalent
in rank > 2, but they do not all make sense in rank one. The following definition
is due to B. Miihlherr [M].

A Moufang structure on A is a family of groups (U.).cc such that

e U, < Stabpye(a)(c), and U, is transitive on c°P, the set of chambers oppo-
site ¢;

e foralla € U, and all d € C, we have UJ = Uy ;

e let c € C, let P be a panel containing ¢, let d be a chamber in P\ {c}, and
let « € U, with doo = d; then o € U, forall x € P.

If A is thick and its diagram has no isolated nodes, then I" admits at most
one Moufang structure. The building A is said to satisfy the Moufang property
if it admits a Moufang structure.

It is clear from this definition that in this sense, the Moufang buildings of
rank one are precisely the Moufang sets. Moreover, every rank one residue of a
higher rank Moufang spherical building is a Moufang set.

Also the notion of a (split) BN-pair of rank one has a generalization to higher
rank. Our definition is taken from [T74, 3.2.1].

Definition 2.3.1. A BN-pair in a group G is a system (B, N) consisting of two
subgroups B and N such that
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BNy. H:=BNN<N;

BNj3. The group W := N/H has a generating set R of involutions such that the
following two relations hold for any r € R and any w € W:

e rBwB C BwB U BrwbB;
e rBr # B.

The group W is called the Weyl group of the BN-pair.

The BN-pair is called split, if there exists a normal subgroup® U <! B such that
B =U x H. Itis called saturated if H = (., B".

Any group with a BN-pair has a natural associated building on which it acts
strongly transitively (i.e. transitive on the pairs consisting of an apartment and a
chamber contained in it). In fact, a saturated BN-pair for a group G is equivalent
to a building on which G acts strongly transitively. See, for example, [T74,
Theorem 3.2.6 and Proposition 3.11].

2.4 Connection with linear algebraic groups of relative rank
one

This subsection is not self-contained and requires knowledge about linear alge-
braic groups. The sole purpose of this subsection is to mention, very briefly and
without proofs, one of the most important motivations for the study of Moufang
sets.

Let G be an absolutely simple algebraic group defined over a field k, of k-rank
one. Let X denote the set of all k-parabolic subgroups of G. Note that, since G
has k-rank one, all elements of X are conjugate under G(k). For each element
z € X, we let U, be the root subgroup of the k-parabolic subgroup = (which
coincides with the k-unipotent radical of z). Let G* (k) be the group generated
by all these root subgroups. Then (X, (U,).cx) is a Moufang set, on which
G (k) modulo its center acts faithfully; we will denote it by M(G, k).

The pairs of elements of X are in one-to-one correspondence with the max-
imal k-split tori of G. More precisely, for each k-split torus there are precisely
two k-parabolic subgroups containing it, and every two k-parabolics contain a
common k-split torus. If S is such a maximal k-split torus, then N(S)/Z(95)
(which is the relative Weyl group of G over k) is a group of order 2.

Many of the exceptional algebraic groups of relative rank one are still poorly
understood. It is our hope that the study of Moufang sets will eventually provide
more insight into these groups.

2Some authors also require this subgroup to be nilpotent as part of the definition.
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2.5 Finite Moufang sets

Finite Moufang sets have already been studied and classified a long time before
the notion of a Moufang set existed, as part of the classification of the finite
simple groups, and more precisely in the study of finite split BN-pairs of rank
one. Their classification was carried out by Suzuki [Su], Shult [Sh] and Peter-
falvi [P] when the degree is odd, and by Hering, Kantor and Seitz [HKSe] when
the degree is even. Some of these papers are hard and rely, in addition to the
Feit-Thompson odd order theorem, on many other deep results in finite group
theory.

It turns out that any finite Moufang set is either sharply two-transitive, or it
is PSLa(q), PSU3(q), Sz(q) = %Ba(q) or Re(q) = 2Gy(q) for appropriate prime
powers q.

In subsection 7.7, we will outline an elementary proof for the classification
when the Moufang set is special, in which case the only possibility is PSL2(q).

3 Main construction

Here we will describe how to construct an arbitrary Moufang set starting with
a group U and one permutation of the set U*. The material of this section is
taken from [DW].

Let U be a group with composition + and identity 0. (The operation + is
not necessarily commutative. It will become clear in the examples why we have
nevertheless chosen an additive notation.) Let X denote the disjoint union of
U with {oo}, where oo is a new symbol. For each a € U, we denote

00 — 00
Sym(X) 3 a,: 3.1
ym(X) {x»—>x—|—a forallac U . (3.1)

Thus the map a — «, is essentially the right regular representation of the
group U. Let
Uso i ={aq|ae€U}.

Now let 7 be a permutation of U*. We extend 7 to an element of Sym(X)
(which we also denote by 7) by setting 0™ = co and co” = 0. Next we set

Uy := UL and U, := Ug (3.2)

forall a € U. Let
M(U7 T) = (Xv (UZ)IEX) (33)
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and let
G:=(Us,Uy) = (U, |z € X).

Of course, this construction does not always give rise to a Moufang set, but
every Moufang set can be obtained in this way, and we can tell exactly when this
construction does indeed give rise to a Moufang set; see Theorem 3.5 below.

Remark 3.1. Let p € Sym(X) be a permutation interchanging 0 and co. Then
M(U, p) = M(U, 7) if and only if UL, = UZ . In particular 7 is not determined by
the Moufang set and can be chosen in a variety of different ways.

Remark 3.2. In view of equation (3.1), it makes sense to use the convention
thata+oco=o0c0o+a=ocforalla € U.

Definition 3.3. For each a € U, we define v, := o7, i.e. 27, = (x77! + a)7 for
all z € X. Consequently, Uy = {7, | a € U}.

We will now give an ad-hoc definition of the so-called Hua maps of a Moufang
set; it will become clear in section 4 how these maps arise. These maps can be
defined for any datum M(U, 7) as defined in equation (3.3) above.

Definition 3.4. For each a € U*, we define
ha =TT 'O (qr-1)TO_(~(4r-1))r € Sym(X);
if we use the convention of Remark 3.2, then we can write this explicitly as
ha: X = Xz (e +a)7 ! —ar™ )7 = (=(ar™ 1)) 7.
Observe that each h,, fixes the elements 0 and co.

Theorem 3.5 ([DW]). M(U, 1) is a Moufang set if and only if the restriction of
each Hua map to U is contained in Aut(U), ie. if (a + b)h. = ah. + bh, for all
a,beUandall c € U*.

Proof. See [DW] for the general case. We give an easier proof here for the case
that 7 € G and 72 normalizes U,.

We claim that the restriction of h, to U is additive if and only if h, normalizes
Us. Indeed, h, normalizes U, if and only if ag"' € U, for all b € U. Note that
Oafj“ = 0h; tayh, = bh,, and hence h, normalizes U, if and only if aZ“ = app,
for all b € U. Since h, is a permutation of U, we have U = {ch, | ¢ € U}, and
hence this is equivalent to

(cha)oz{f“ = (chqy)pn,
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for all b, ¢ € U, which can be rewritten as (¢ + b)h, = ch, + bh, for all b,c € U,
proving the claim.

Assume first that M(U, 7) is a Moufang set (with 7 € G). Then each h, € G,
and hence U"« = U}, = U, i.e. each h, normalizes U,,.

Conversely, assume that each h, normalizes U,,. Since Ck(_(a.,-—l))TT_2 nor-
malizes U, it follows that 7,7 'a_(,,-1)7~ ' normalizes Uy as well, i.e.
Ugoo‘ﬂrfl = UL'""'. By the definition of the groups U, in equation (3.2), this
can be rewritten as U] = U,,-1, for all a € U*, and this clearly also holds for
a € {0,00}. Also, again by the definition of the groups U,, we have U = Uy,
foralla € X and all b € U. Since G = (U, 7~ '), we conclude that U? = U,,
for all « € X and all ¢ € G, which proves that M(U, 7) is a Moufang set. O

Lemma 3.6. Let M(U, 7) be a Moufang set. Then M(U,7~') is a Moufang set;
furthermore g, = h.}, where g, is the Hua map of M(U, 7~1) corresponding to a.

Proof. For a permutation ¢ € Sym(X) that fixes oo let

o® =

P a—(0p) -
First we claim that

() If £ and 7 are two permutations of X that fix co and ¢ normalizes U,
then (nf)(o) = 77(0)5(0)~

Indeed,
OO = na_ g€ (o) = nE(a—(on)) a—(og) € N€Us -

But (7¢)(©) is the unique element in 7¢U,, that fixes 0, so () holds.
Leta € U* and let

Pa = TaaT_la—aT_lTv wa = T_laa7a7a77_1~
Notice that h, = <p,(10) and g, = 1/),(10). Also,
wa(par = idX-

From () we get gohor = id()?) = idx. This shows that g, = h.!. In particular
ga € Aut(U), so by Theorem 3.5, M(U, 7~ 1) is a Moufang set. O

Remark 3.7. Notice that although it is not made explicit in the notation A,, the
Hua-maps h, depend on 7; see Remark 3.1.
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4 First properties of Moufang sets

From now on we assume that M = M(U, ) is a Moufang set; in particular, by
Theorem 3.5(i), the Hua maps h, act on U as automorphisms. The material of
subsections 4.1 and 4.2 can be found in [DW] and of subsections 4.3 and 4.4
in [DS].

4.1 The pu-maps

We start by introducing certain permutations of X which interchange the el-
ements 0 and oo. These maps play a central role in the analysis of Moufang
sets.

Proposition 4.1.1. For each a € U*, there is a unique permutation p, € Uja,Ug
interchanging 0 and co. This permutation will be denoted by 1.,; we have

fa = Q{_gyr—1 " Qa - QL (51
Proof. Let p € Uy, Up and assume that 0p = oo and ocop = 0. Write p = 7,07y,
with v,, v, € U as in Definition 3.3. Then co = 0p = a~y,, = (a7~ ' +y)7. Hence
ar ' +y =00t =0,50y = —(ar™t). Also,

0=oop= OV laYy = OOT_la:cTaa'yy = TTQYy = (‘TT + a)’yy :
It follows that 27 4+ a = 0y, ' = 0,50 2 = (—a)7 ", -

Since the p-maps of Proposition 4.1.1 are permutations interchanging 0 and
00, any of them can take the role of the permutation 7:

Lemma 4.1.2. For each a € U*, we have M(U, 1) = M(U, p,,).

Proof. This follows from the fact that pu, € G, p, interchanges 0 and oo, and
Remark 3.1. O

Remark 4.1.3. It follows from Proposition 4.1.1 that, unlike the Hua-maps, the
p-maps are independent of the choice of 7.

Remark 4.1.4. If A is an arbitrary Moufang spherical building, then each group
X = (Ua,U_,) generated by two opposite root groups is an abstract rank one
group and therefore induces a Moufang set. The p-maps of this Moufang set are
elements of X, and hence act on all of A. It turns out that these py-maps play
an important role in the theory of Moufang buildings in general. For the rank
two case (i.e. the case of Moufang polygons), see [TW, Chapter 6].
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4.2 The Hua subgroup

We start with the definition of the Hua subgroup:

Definition 4.2.1. We define the Hua subgroup of M by
H = (uaqpp | a,b € U").
Notice that H < G .

In light of Lemma 4.1.2, Theorem 3.5 and Proposition 4.3.1(2) below, we
see that p,up, € Aut(U), for all a,b € U*. Thus the Hua subgroup H consists of
automorphisms of U.

Lemma 4.2.2 ([DW, Theorem 3.1(i)]). H = Gy -

Proof. By Lemma 4.1.2, we may and we will assume that 7 = p. for some
ec U*. Let K := UpH < Gy, and let Q := K7 U KU. Note that G = (Uw,, 7);
we want to show that Q(U.., ) C @, which will imply that @ = G. Since only
the trivial element in {7} U U fixes 0, this will imply that Gy = K, and then
Gooo = Koo = H.

So it remains to show that QU,, C @ and Q7 C . We have K7U,, =
KtUJ = KUyt = K7, which proves that QU,, C Q. Clearly (K7)r = K12 C
KH = K. Observe that KH = K implies KT = Ky, for all a € U* (because
puyt = p_, foralla € U*, see Proposition 4.3.1(1) below), and hence by Propo-
sition 4.1.1 and the fact that KU, = K, we have K7 = Ky, = Kagra™ , for
all a € U*. It follows that

Ka,7=K7-a,, = Kagr € KUs
for all a € U*, which proves that Q7 C Q. O

Corollary 4.2.3. The following are equivalent:
(i) G is sharply two-transitive ;
() H=1;
(i) pq = pp forall a,b e U*.
Proof. Since G is always two-transitive, the equivalence between (i) and (ii)

follows immediately from Lemma 4.2.2. The equivalence between (ii) and (iii)
is immediate from the definition of H and from Proposition 4.3.1(1) below. [

Remark 4.2.4. Because of Corollary 4.2.3, the sharply two-transitive groups
have a completely different behavior than the other Moufang sets. For that
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reason, Moufang sets whose little projective group is not sharply two-transitive,
are sometimes called proper Moufang sets. Nevertheless, it seems interesting
to study these sharply two-transitive groups from the point of view of Moufang
sets. For a good introduction (from the classical point of view) to sharply two-
transitive groups, we refer to [BN, Section 11.4].

4.3 Properties of the py-maps

In this subsection, we list various elementary properties of the u-maps.
Proposition 4.3.1. Let a,b € U* and let ~a = (—at~!)7, then

D poa=pg";

) pa=7""ha;

(3) ifM(U,7) = M(U, 77 1), then pqr = p”,; in particular, jiq,, = p’,;

(4@ pan = ply, forallh € H;

(5) if M(U,7) = M(U, 7 "), then i, = a7, 1 wa;

6) ~a=—(—a)pta;

(7) ~a is independent of the choice of T, i.e. ~a = (—ap~!)p for all p with

M(U,7) = M(U, p);
(8) poa = (na)l—aQalt—a®r(—q)-

Proof. (1) Notice that p,! € Uja_,U; and p, ! interchanges 0 and oo, so by
Proposition 4.1.1, part (1) holds.

(2) We have

Ma = Tﬁla(*a)r—lTOéaTilaf(a-r_l))T = 9(—a)r1T = h:iTv

where g, is as in Lemma 3.6 and the last equality comes from Lemma 3.6.
Therefore, by (1), we have that y, = u~} = 77 h,,.

(3) Assume that M(U, 7) = M(U,7~!). Then we can apply (2) to the maps g,.
Note that by Remark 4.1.3, the maps p, are independent of 7. Therefore,
taking in (2) g, in place of h, and 7! in place of 7 we have

Ha = TYa -
On the other hand by Lemma 3.6, g, = h,.}, and hence

aT ?

1 -1 -1 -1, -1
Har = T ha'r:T Go =T Hg T,

which shows the first part of (3). The second part follows by replacing 7 by
wp recalling that M(U, 7) = M(U, uy)-
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(4) Applying (3) twice we get that for h = pu,pu,, the statement holds, where
x,y € U*. The general result now follows from Definition 4.2.1.

(5) Notice that by (1) and by the definition of y, in Proposition 4.1.1,
Har = Oéz—fa‘r)r_l " Qar - a:a .

—1
.
r. - oa_,. Hence

Using (1) and (3) we have u; ! = ug;l = Q_aqr)r1 - Q
o = Qg - QT - O_((—ar)r—1)- Since M(U,7) = M(U,7~') and since 4, is

—arT

independent of 7, this last equality holds with 7 replaced by 7—!, which is
precisely the statement in (5).

(6) This is obtained from (5) by applying both sides of the equality in (5) to
the element —a.

(7) This follows from (6) since p,, is independent of ~ by Remark 4.1.3.

(8) Since statement (8) is independent of 7, using Proposition 4.1.2 we may
assume that M(U, 7) = M(U,7~!) by replacing 7 by some p,. By part (5)
with 7 replaced by 7!, we have that

—1
Ha = CgTO—qrT X _(~qa)

and hence
-1,
A_qlaOnag = TO—_qrT ]

since the left hand side is independent of 7, we can replace 7 by any .,
and therefore

A—qlla®ra = faO—ap, -z,

for all z € U*. In particular, if we put + = —a, then we get, using the
identity in part (3), that

A_gqfla®~ag = H—aO~(—a)la

which can be rewritten as

O (~va)b—a®al—aOn(—a) = P—a - O

4.4 Connection between the p-maps and the Hua maps
The Hua-maps and the p-maps are intimately connected by the equation
fa =T Vhy.

The advantage of the py-maps is that they are an invariant of the Moufang set
and are not dependent on 7. The advantage of the Hua-maps is that they are
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in Aut(U). As we will see in section 6, the identity in Proposition 4.3.1(3)
translates to an identity which very much resembles the fundamental identity
of quadratic Jordan algebras; see QJ3 on page 98 below. Further, when dealing
with the so called “special” Moufang sets with abelian root groups, the Hua
maps should play the role of the structure maps of the underlying quadratic
Jordan division algebra. Also, when dealing with finite Moufang sets the Hua
maps help define a multiplication on U which turns U into a field.

The properties of the p-maps in Proposition 4.3.1 translate to the following
properties of the Hua-maps.

Proposition 4.4.1. Let a,b € U*, then

(1) ha = Tpa;

) FM(U,7) = M(U,771), then hyy = 7 h_,7;

(3) han, = h—shy}h;

(4) if 7 is an involution, then h,, = h,';

(5) if pg is an involution, then h, = h_g;

(6) if T and py are involutions, then hqp, = hyhahe.
Proof. (1) This is Proposition 4.3.1(2).
(2) By (1) and Proposition 4.3.1(3),

Bar = Thar = py ' 7 =7 1p_o)T =7 h_oT.
(3) Again by (1) and Proposition 4.3.1(3),
Rahy, = Tharp, = THy flar iy = TR bl T T = hophy e

(4) By (1) and by Proposition 4.3.1(3), har = Tiar = pi—aT = h, L.
(5) By (1) and Proposition 4.3.1(1), hy = Tt = Tl—aq = h_q.

(6) This follows from (3) using (4) and (5). As we will see later, this identity is
closely related to quadratic Jordan algebras; see subsection 5.3 below. [

5 Examples of Moufang sets

5.1 M(k), k a commutative field

We start by describing the easiest class of Moufang sets, namely those that arise
from a commutative field k. The corresponding little projective group will turn
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out to be PSLy(k), and in this way, it makes sense to think about Moufang sets
as (albeit very broad) generalizations of PSLy (k).

So let k£ be an arbitrary commutative field, of arbitrary characteristic. Let
U = (k,+) be the additive group of k, and let
U= U z— —z . (5.1

We will use the convention that 0! = co. Then the Hua maps are given by
1 n-1\ "t
wha:a—(a_ —(a—x_) )

foralla € U* and all # € X (here X = kU {oo}). The classical Hua identity
states precisely that the right hand side of this expression is equal to a?z, and
so it is clear that the restriction of each &, to U is in Aut(U). Hence by Theo-
rem 3.5, M(U, 1) is a Moufang set. We will denote this Moufang set by M(k);
it is sometimes called the projective Moufang set over k, since the underlying set
X = kU {co} can be seen as the projective line PG(1, k).

The little projective group of M (k) is PSLy(k); just for this example, we will
make the isomorphism explicit. Let Y be the set of vector lines in V' (2, k), i.e.
Y = {k(0,1)} U{k(1,2) | € k}. Let x: SLo(k) — PSLy(k) be the canonical
map. We act by PSL, (k) on the right on Y, and we let

Voo = {(§4)" [a €k},
Vor={(4a9)" [ack},
o=(%%)".

Now let 5: Y — X be the bijection which maps %(0, 1) to co and each &(1, z) to
x for all x € k. Then f induces an isomorphism

@: Sym(Y) — Sym(X): p— B 1pp.

The restriction of ¢ to PSLy(k) is then an isomorphism between PSL,(k) and
the little projective group of M(U, 7) such that Vo = Uy (¢: (§4)" = aa),
Vop =Up (p: (L9)" = v,) and op = 7.

Remark 5.1.1. The minus-sign in equation (5.1) is actually not needed; even
if omitted, the corresponding Hua-maps will still induce automorphisms on U.
However, the map 7 will then in general no longer be an element of the little
projective group G, as can be seen from the isomorphism above. Indeed, 7
would then be represented by ()", which is not an element of PSLy(k) in
general.

Remark 5.1.2. From the formula zh, = a?x, it is clear that H = (k*)2. In
particular, H is abelian.
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5.2 M(D), D a skew field or an octonion division algebra

We will now generalize the previous example to so-called alternative division
rings. These include all skew-fields, and in addition a family of non-associative
division rings called octonion division algebras or Cayley-Dickson algebras.

Definition 5.2.1. A (not necessarily associative) ring (D, +,-) is called an al-
ternative division ring if, for each a € D*, there exists some element a~! € D*
such thata-a b =b="ba"'-aforallb e D.

Even though this is a seemingly very weak associativity law, it turns out that
almost all alternative division rings are skew fields:

Theorem 5.2.2. Let D be an alternative division ring which is not a skew field.
Then D is 8-dimensional over its center k. It is a so-called octonion division algebra
or Cayley-Dickson algebra. Its automorphism group is an anisotropic algebraic
group of type Go defined over k.

Proof. The fact that D is a Cayley-Dickson algebra is due to Bruck and Kleinfeld
[BrKl] when char(D) # 2, and then completed by Kleinfeld [Kl] for the case
where char(D) = 2. See, for example, [TW] for a characteristic-free proof. For
the fact about the automorphism group in general characteristic, see [SV]. [

So let D be an arbitrary alternative division ring. It can be shown that every
subring generated by two elements is associative; in particular, the expression
aba with a,b € D makes sense. Let U := (D, +), the additive group of D, and
as in the previous example, let

U = U " p— —z L. (5.2)

Then the Hua maps are again given by

The = a — (afl _ (a B 3:71)_1)71

for all @ € U* and all x € X. The Hua identity now states that the right hand
side of this expression is equal to axa, and again it is clear that the restriction
of each h, to U is in Aut(U). Hence by Theorem 3.5, M(U, ) is a Moufang set.
We will denote this Moufang set by M(D); it is sometimes called the projective
Moufang set over D, and its little projective group is denoted by PSLy(D).

5.3 M(J), J a quadratic Jordan division algebra

All known examples of Moufang sets with abelian root groups (including the
previous two examples) arise in the fashion which we will now describe.
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We first recall the definition of quadratic Jordan algebras, as introduced by
K. McCrimmon [Mc1]. We will use the notation W, in place of the more com-
mon notation U,, to avoid confusion with our notation for the root groups.

Let k be an arbitrary commutative field, let J be a vector space over k of
arbitrary dimension, and let 1 € J* be a distinguished element. For each = € J,
let W, € Endg(J), and assume that the map W: J — End(J): x — W, is
quadratic, i.e.

W = Wt for all t € k, and

the map (z,y) — W, , is k-bilinear,
(note that we multiply scalars on the right) where
Wr,y = ch+y - W’c - VVy
forall x,y € J. Let
sz,y = yWa:,z
for all z,y,z € J. Then the triple (J, W, 1) is a quadratic Jordan algebra if the
identities
QJi. W1 =idy;
QJQ- W:I:Va:,y = Vy,mWa:7
QJs. Wyw, = W, W, W, [“the fundamental identity”]

hold strictly, i.e. if they continue to hold in all scalar extensions of J. (It suffices
for them to hold in the polynomial extension Jy(,; and this is automatically true
if the base field k has at least 4 elements.)

Any element e € J such that W, = id; is called an identity element. An
element z € J is called invertible if there exists y € J such that

yWy =2 and 1W,W, =1

In this case y is called the inverse of = and is denoted y = 2~!. By [Mc2, 6.1.2],
an element = € J is invertible if and only if W, is invertible; we then have
Wt = W,-1. In particular,

(x7H'=2z and 7 '=aW;'.

If all elements in J* are invertible, then (J, W, 1) is called a quadratic Jordan
division algebra.

Now assume that (J, W, 1) is an arbitrary quadratic Jordan division algebra.
We will now construct a Moufang set M(.J), in the same way as we did in the
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previous two examples. So let U := (J,+), the additive group of the vector
space J, and let
U= U z— —z L. (5.3)

Then the Hua maps are once again given by

rhy =a— (afl —(a— x’l)fl)_l

for all « € U* and all # € X. The Hua identity for Jordan algebras now states
that the right hand side of this expression is precisely equal to 2W,, and again it
is clear that the restriction of each A, to U is in Aut(U). Hence by Theorem 3.5,
M(U, ) is a Moufang set. We will denote this Moufang set by M(.J), and it
makes sense to denote its little projective group by PSLy(.J).

Remark 5.3.1. In the theory of Jordan algebras, there is the important notion
of the structure group for J, which is the group of isomorphisms from J to an
arbitrary isotope of J. The group (W, | x € J*) is known as the inner structure
group of J, and plays an important role in understanding the structure of J.
Since h, = W, in our case, we see that the inner structure group is precisely
the Hua subgroup H of M((.J), and this illustrates once more that this group H
ought to be very important in the theory of Moufang sets in general.

Remark 5.3.2. Quadratic Jordan division algebras have been classified by K. Mc-
Crimmon and E. ZeI'manov [McZ]. We give a very brief overview of the outcome
of this classification, and we refer to [McZ] for more details. Every quadratic
Jordan division algebra belongs to one of the following (non-disjoint) classes:

(a) an algebra D™ for some associative division algebra D, defined by bW, =
aba for all a,b € D

(b) a hermitian algebra H(A,x) = {z € A|z* =z} C AT for some associative
algebra A with involution %, or more generally, an ample subspace H(A, *)
of H(A,x);

(c) aJordan Clifford algebra associated to a non-degenerate anisotropic quadratic
form ¢ with basepoint ¢ (which lives inside the classical Clifford algebra
with basepoint C(q, €)) ;

(d) an ample outer ideal of a “small” Jordan Clifford algebra ;

(e) an Albert division algebra, i.e. an exceptional 27-dimensional Jordan divi-
sion algebra.
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5.4 Examples of Moufang sets with non-abelian root groups

We will now briefly describe two different examples of Moufang sets with non-
abelian root groups. There are many more interesting examples, but it is out of
the scope of this course to go into more detail.

Example 5.4.1. Let k be an arbitrary commutative field, and let A be either a
separable quadratic extension field of k, a quaternion division algebra over £,
or an octonion division algebra over k. Let o be the standard involution of A/k,
and let N(a) := aa” and T'(a) := a + a° (for all a € A) be the norm map and
the trace map of A/k, respectively. Let

U:={(a,b) € A x A| N(a) +T(b) = 0}.

Then we can make U into a (non-abelian) group by defining the group “addi-
tion”
(a,b) + (¢,d) == (a+¢,b+d—ca)

for all (a,b),(c,d) € U; it is easily checked that this is indeed a group, with
neutral element (0, 0) and with the inverse given by —(a,b) = (—a,b”). Now we
define a permutation 7 on U*, by setting

7(a,b) = (—ab~',b71)
for all (a,b) € U*. Then M(U, 7) is a Moufang set.

Remark 5.4.2. When k = GF(2) and A = GF(4), this gives the smallest example
of a Moufang set with non-abelian root groups. It has U = s, and hence
|X| =9, and G = PSU3(2).

Example 5.4.3. Let k be an arbitrary commutative field with char(k) = 3 and

admitting a Tits endomorphism 6, i.e. an endomorphism such that (z%)? = 23

for all z € k. Let
U:={(a,b,c)|a,b,cek}.

Then we can turn U into a (non-abelian) group by defining the group “addition”
(a,a’,a”) + (b,0/,0") = (a+b,a’ +b +ab’ a” +b" +abl — a'b— ab'™?)
forall a,a’,a”,b,b',b" € k. We define a “norm” function on U by setting
N(a,d',d") = —a*" —ad"’ + a0/’ + o> + o/ — a/a®? — a2
for all a,a’,a” € k. We also set
Ti(a,d',a") = —a®t?0 — a"® +a%° +da" + ad® ,

9
Tr(a,d',a") = —a®>t% +a/" — ad” + a*d’,
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for all a,a’,a” € k. Now let

T: U - U": (a,d',d") — (—Tl(a,a’,a”) —Ty(a,a’,a"”) —a” )

N(a,a’,a") = N(a,a’,a”) " N(a,a’,a")

Then M(U, 1) is a Moufang set. These are the so-called Ree-Tits Moufang sets.
The corresponding little projective groups are the Ree groups of type 2Gs; in the
finite case, these groups are sometimes considered to be the most complicated
infinite class of finite simple groups.

Remark 5.4.4. A more natural but less direct way to describe these Moufang
sets, is as the action of a certain subgroup of the centralizer of a polarity of a
mixed Moufang hexagon H (k, k?) on the corresponding set of absolute points;
see, for example, [DW2].

Remark 5.4.5. In example 5.4.1, the root groups have nilpotency class 2, and
in example 5.4.3, they have nilpotency class 3. There is only one known other
class of Moufang sets with root groups of nilpotency class 3, namely those aris-
ing from a polarity of a Moufang quadrangle of type F,; see [MV]. All other
known examples of proper’ Moufang sets with non-abelian root groups have
root groups of nilpotency class 2. On the other hand, it is not known whether
there exist examples with non-nilpotent root groups, or with nilpotent root
groups of higher nilpotency class.

5.5 Connection with algebraic groups

As we briefly explained in subsection 2.4, the theory of Moufang sets is mo-
tivated by its connection to linear algebraic groups of relative rank one. We
point out (without going into detail) which of the previous examples arise from
algebraic groups, and which do not.

The examples M(k), where & is a commutative field, all arise from algebraic
groups; in fact, they are the only examples arising from a split algebraic group
of rank one defined over £, i.e. they arise from G = A;.

The examples M(D), where D is a skew field, arise from an algebraic group
if and only if D is finite-dimensional over its center k. In that case, they arise
from a group with index

Asg_q —  —o—(o—o— . —o

3See Remark 4.2.4.
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where d = \/dimg(D). If D is an octonion division algebra, then the Moufang
set also arises from an algebraic group. Even though the octonions are ex-
ceptional algebraic structures, the corresponding Moufang set is still classical,
because its structure is in fact completely determined by its norm form, which is
an 8-dimensional quadratic form. The algebraic group has the following index.

D5 @—o—c<:

As for the Moufang set M(.J) where J is a Jordan division algebra, we only
mention that a necessary condition for it to arise from an algebraic group is
that J has to be finite-dimensional over k, but even then, there exist examples
which do not arise from algebraic groups, such as, for example, the so-called
amply sandwiched Jordan division algebras. Let us mention, however, that the
Moufang sets M(J) where J is an exceptional Jordan division algebra, do arise
from algebraic groups of the following index.

S S

We now turn to the examples with non-abelian root groups. All Moufang sets
arising from algebraic groups have root groups that are either abelian, or nilpo-
tent of class 2. In particular, the example of the previous subsection of nilpo-
tency class 3 does not arise from algebraic groups. The examples of nilpotency
class 2 of the previous subsection do arise from algebraic groups. Depending
on whether A is a quadratic field extension, a quaternion division algebra or an
octonion division algebra, the corresponding indices are as follows.

2A3
F4

a
GG —@s
O—=—r

6 More advanced properties of Moufang sets

In Proposition 4.4.1(6) we saw that the identity

han, = hohahy, if T and py, are involutions, (6.1)
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holds in any Moufang set. As we discussed earlier, this is the so-called funda-
mental identity in the area of quadratic Jordan algebras. As we will see, when
M(U, 7) is special and U is abelian, y, is an involution, for all b € U*, and (of
course) we can, in this case, choose 7 to be an involution, so that equation (6.1)
holds for all a,b € U*.

In subsection 6.1, we will deduce a second important identity that holds in
any Moufang set. We will see later how this identity relates to the axiom QJ; of
quadratic Jordan algebras discussed in the previous subsection 5.3.

Subsection 6.2 is devoted to the notion of a “root subgroup”, an important
and useful notion in the theory of Moufang sets. Subsection 6.1 comes from
[DS] and 6.2 from [S].

6.1 Identities in Moufang sets
Proposition 6.1.1. Let a,b € U* with a # b, then

(1) the element (at~' — br ') is independent of 7; more precisely,

(a7 —br 7 = (@ — b)uy + (~D).

(2) Har—1—br—1)r = H—bHb—alla-

Proof. (1) Let

Notice that for all z € U*,

c=(ar " = br ) 7pg e = (apy ' = bpg

because, by Proposition 4.3.1(2) and Theorem 3.5, 7,1 € Aut(U), hence
the first statement of (1) holds. Since for x € U*, M(U,7) = M(U, u,),
we may again assume that M(U,7) = M(U,7~!) by replacing 7 by some
1z. Notice that ¢ = avy_,,-1, so by Proposition 4.3.1(5), we have ¢ =
ad_ppQasp, OT

c=(a—Db)up+ (~b);

and (1) holds.
(2) We have that ~c = (br—! — a7~ !)7. By interchanging a and b in (1) we get
~c=(b—a)pa + (~a). (6.2)
Since ¢ is independent of the choice of 7, we have

c=(ar — bT)T_1 .
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Notice that since ~b = (—(b7))7 7!, br = —((~b)7). Also, ~(~b) = b and by
Proposition 4.3.1(1 and 3), p~, = p—p. From Proposition 4.3.1(5) (with a
replaced by ~b and 7 by 7—1) it now follows that

TopT L = Q_ () =l - (6.3)
Thus, by a repeated use of Proposition 4.3.1(5) and equation (6.3), we get

—1
O_cfbeQne = TO_c7T
—1
= TOQpr—qaqrT
_ —1 —1
=TT  TQ_qrT

= a_(Nb)u,baba,auaaNa .

It follows that

He = Qe (b)) H—bOb A —alaC(~a)—(~c) 5
and using (1), we can write this as

He = X(a—b)p, H—bOb—alla®—(b—a)p, -

Therefore

Hofreb—a = HbO(a—b)upl—b * Ob—a " Ha®—(b—a)paH—a -

We now apply equation (6.3) (with p,, in place of 7 and (a —b) in place of b)
and Proposition 4.3.1(5) (with ! in place of 7 and (b — a) in place of a),
and we get that

Hobefb—q = OO N(a—b)/ibfaaafb cQp—gq Oéafbﬂbfaam(b—a)
= O ~(a—b)Mb—ala—bHb—aO¥~(b—a)

= Mb—a

where we have used Proposition 4.3.1(8) with a — b in place of a. O

6.2 Root subgroups and the fixpoints of the Hua maps

Given a Moufang set M(U, 7) a root subgroup of U is roughly a r-invariant sub-
group V < U so that M(V, 7) is a Moufang set. More precisely:

Definition 6.2.1 (Root subgroup). A root subgroup of U is a subgroup V < U
such that there exists some a € V* with V*p, = V*.

Lemma 6.2.2. Let V < U be a root subgroup of U. Then
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(1) M(V, p) is a Moufang set, where p := u, |V U{o0};
(2) V¥, =V*, forallv e V*.

Proof. (1) Since M(U,7) = M(U, p,), we may assume that 7 = p,. By the
definition of the Hua-maps we now see that the Hua-maps of M(V, p) are
the restriction of Hua-maps of M(U, u1,) to V, and hence they belong to
Aut(V). By Theorem 3.5, M(V, p) is a Moufang set.

(2) This follows from the definition of the y-maps in Proposition 4.1.1. O

One important place where root subgroups appear and where they turn out
to be useful, is the following:

Lemma 6.2.3. For any h € H, then Cy (h) is a root subgroup.

Proof. SetV := Cy(h) and let v,w € V. Then, by Proposition 4.3.1(4), we have
Vitwh = Vhpwr = Vi, € V, hence V*u,, = V* and by definition V is a root
subgroup. O

We will see that the notion of a root subgroups and Lemma 6.2.3 had already
been used successfully for finite Moufang sets and for the “special if and only if
abelian root groups” conjecture.

Notation 6.2.4. Let 0 # V < U be a root subgroup and let x € V*.

(1) Welet Vo, :={ay |v €V}, V:=VL, and forw € V, V,, :== V. Notice
that, since o,""" = ayp,pu, € Vo for allv € V and all z,y € V*, the

definition of V,,, y € V U {oo} is independent of the choice of .

(2) We let G(V) := (ay, iy | v € V*), N(V) := (1p | v € V*), HV) :=
(ppte | v,w € V*Yyand X(V) :=V U {oo}.

Definition 6.2.5. A group G is called a generalized abstract rank one group
with unipotent subgroups A and B, if G = (A4, B), A and B are two different
subgroups of G, and for each a € A*, there exists an element b € B* such
that A’ = B?, and conversely. Note that the only difference with Timmesfeld’s
definition of an abstract rank one group (as given in Definition 2.2.1) is that we
do not require A and B to be nilpotent.

Lemma 6.2.6. Let 0 # V < U be root subgroup, set X := X(V) and let G :=
Gixyand & := G(V). Then

(1) & is a generalized rank one group with unipotent subgroups V., and Vy;

(2) 884G and G = BHyy;
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(3) Gy = Hy and [Gx,®] = 1, in particular, x = Z(®).

Proof. The proof is omitted; see [S, Section 3]. O

7 Special Moufang sets

In this last section, we will concentrate on the so-called special Moufang sets.
This is the class of Moufang sets that has been studied the most so far, and de-
spite some significant progress, there are some very intriguing questions in this
area which are still unsolved. The material of subsection 7.4 comes from [SW]
and of subsection 7.7 from [DS2] and [S]. The results of the other subsections
can be found in [DS] and [DST].

7.1 Definition of special Moufang sets

Definition 7.1.1. A Moufang set M(U, 7) is called special if the condition
(—a)T = —(ar) foralla € U* ()

holds.

Remark 7.1.2. The notion of “special” abstract rank one group is due to Timmes-
feld. In his book [Tim] Timmesfeld defines an abstract rank one group Y with
unipotent subgroups A and B to be special if and only if for each a € A there
exists b € B with a® = (b~1)® and vice versa. It can be shown that this condition
is equivalent to condition (x) in the case where Y is a Moufang set.

There are several reasons for singling out the “special” property.

(a) In [Tim, Remark, p. 26] Franz Timmesfeld writes: “I believe that each spe-
cial rank one group with abelian unipotent subgroups is either quasisimple
or isomorphic to SLy(2) or (P)SLy(3). If one could prove this, it would quite
simplify the proofs of simplicity for classical and Lie type groups”.

The following theorem in [DST] shows that the the above assertion of
Timmesfeld about special rank one groups holds:

Theorem 7.1.3. (1) Let M(U, 1) be a special Moufang set, let G be its little
projective group and let H = G be its Hua-subgroup. Assume that
|U| > 3, then [Us,, H| = U, and hence G is perfect.

(2) Let Y be a special abstract rank one group with unipotent subgroups A
and B and let K = Ny(A) N Ny (B). Then A is abelian, and either
Y 2 SL,(2) or (P)SLa(3), or [A, K| = A and hence Y is quasisimple.
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(b) Itis clear that the structure of a Moufang set M(U, 7) and its little projective
group is related to the structure of U. So it is only natural to start investi-
gating the simplest case, i.e., the case where U is abelian. Conjectures 7.2.1
and 7.2.6 assert that M(U, 7) is special if and only if U is abelian.

(c) The “special” property can be used efficiently to further restrict the structure
of U, M(U, 7) and G.

We now start our investigation of special Moufang sets.

Lemma 7.1.4. Let M(U, 7) be a Moufang set. Then the following are equivalent:
(1) M(U, ) is special;
(i) ~a = —a, forall a € U*, where ~a = (—at~1)7;
(iii) (%) of Definition 7.1.1 holds with p.. in place of T, for some x € U*;
(iv) (%) of Definition 7.1.1 holds with p, in place of 7, for all x € U*;
V) (—a)pq = a, forall a € U*.
Proof. (i)« (ii). Notice that by definition, (ii) means that M(U, 7~ 1) is special.
Assume that M(U, 7) is special. Then replacing a with ar~! in (x) we get

(—(at™))7 = —a = (—a)T7 7, s0 (—a)T~! = —(ar~!). Conversely the
same argument shows that if M(U, 7~ 1) is special then M(U, 7) is special.

()= (iv). Let a,z € U*. By Proposition 4.3.1(2), p,7~ > € Aut(U). Hence
(=a)pa™" = —(ap,71), 50

1

17 = (~(apem )T = ~(aper ') = —(aps)-

(—a)pe = (—a)paT™
(iv)=-(iii). This is trivial.
(iii)=-(@{). Assume (iii) holds, then for a € U* we have

(—a)T = (—a)Tpapt—o = (—(aTpz)) t—z = —(a7),
and hence (i) holds.

(ii)<(v). By Lemma 4.3.1(6), ~a = —(—a)uq, so (ii) and (v) are equivalent.
O

7.2 The structure of the root groups

We will assume from now on, and until the end of these notes, that M(U, ) is a
special Moufang set. The main conjecture here is:

Conjecture 7.2.1. Let M(U, 1) be a special Moufang set. Then U is abelian.
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At the moment we cannot prove Conjecture 7.2.1, but we can impose severe
restrictions on the structure of U:

Proposition 7.2.2. Let a € U*, n > 1 be a positive integer such that a-n # 0, and
p € Sym(X) such that p interchanges 0 and oo and satisfies M(U, p) = M(U, 1) =
M(U, p=1). Then

(1) there exists a unique b € U* such that b - n = a, we denote b := a - %;
(2) (ap)-n #0; (a-n)p = (ap)- L, and hence (a- L)p = (ap) - n;

(3) if U is torsion free, then U is a uniquely divisible group;

(4) if b € U* has finite order, then the order of b is a prime number;

(5) ([T, Thm. 5.2(a), p. 55]) if U is abelian then either U is an elementary
abelian p-group, for some prime p, or U is a divisible torsion free abelian

group;
(6) assume U is abelian and that U - n # 0 and let s € {n,n~'}. Then xp,., =
T - 82, for all x € U*. It follows that h,., = h, - 52

Proof. We will prove only (1) and (2), the rest can be found in [DS] and [DST].
Let n > 1 be a positive integer. Assume that the equality

(a-n)i_q-n=—aforalla € U* suchthata-n #0 (7.1)

holds. We claim that then (1) and (2) hold for n. First, by Proposition 7.3.1(2)
below, ap = (—a)p_qp. Now p_,p is the inverse of the map p~'u, which, by
Proposition 4.3.1(2), is a Hua map corresponding to p=1, so p_,p € Aut(U). It
follows that

(ap) -n = (=a)pi—ap-n=((=a) n)pu—ap #0.
Also, the equality

(a-n)p-n=apforalla € U such thata-n #0, (7.2)
holds. This is because
((a-n)p)-n=((a-n)ug pap)-n=(((a-n)ug ') - n)pap = (—a)pap = ap,

since p.p € Aut(U). It follows (by taking p = pu,) that the element b :=
((—a) - n)p, satisfies b - n = a. Furthermore, if ¢ - n = a, then by (7.2) (with cin
place of a and 4 * in place of p),

(—a)-n=(apy") = (c-mhu " -n=cp,”,

so ¢ = b.
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It thus remains to show (7.1). The proof is by induction on n. For n = 1, this
is Proposition 7.3.1(2). Assume that a - (n + 1) # 0. Note that if a - n = 0, then
a-(n+1ug - (n+1) =aps - (n+ 1) = —a, so we may assume that a - n # 0;
hence by the induction hypothesis, equations (7.1), (7.2) and parts (1) and (2)
hold for n. Notice that also a - (n + 1)n # 0, because otherwise we would get
(a-n)-n = (—a)-n, but then, by the uniqueness in part (1) (which holds for n),
a-n = —a, which is false. Hence a - (n + 1) - + makes sense.

By Proposition 4.3.1(8) and Lemma 7.1.4(V), ji_q = Qqfi—qQafi—aCq. Hence,
using equation (7.2) (which holds for n by induction) we get

—((a-(n+1))p-a) =((=a)- (n+1))p—a
= ((7(1) ' (n + 1))04(1#—(1050,#—(104(1

= ((—a) n)p_aapi—atq

induction 1
= (a- nt a)p—al

= (@~ (n+1)- Dpiag

induction (

a-(n+1Du_g) n+a.

Hence, (a-(n+1))p—q-(n+1) = —a. This completes the proof of (1) and (2). O
Remark 7.2.3. The statement in Proposition 7.2.2(5) is equivalent to stating
that U is a vector space over some field F, where F can be chosen to be either a

finite field GF(p) or the field of rationals Q. This field IF is called the prime field
of U, and such a group U is sometimes called a vector group.

Remark 7.2.4. Notice that Proposition 7.2.2 says that the order of any element
in U* is either a prime or oo and that U has very interesting unique divisibility
properties, i.e., if a € U* is such that a - n # 0, then (ap~! - n)p is the unique
n-th root of @ in U.

The next lemma shows that the structure of centralizers in U is very re-
stricted.

Lemma 7.2.5. (1) Ifa € U* is an element whose order is a prime p, then Cy(a)
is a group of exponent p;

(2) if a € U* is of infinite order, then Cy(a) is a torsion-free uniquely divisible
group.

Proof. (1) Letb € Cy(a) and assume that the order of b is not p. Then the order
of a + b is not p and by (1) we have

((a—{—b)-%—b-%})-p:a,

contradicting the fact that a has no p-root in U (by Proposition 7.2.2(4)).
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(2) Follows from (1), because by (1) each element in Cyy(a) has infinite order,
and by Proposition 7.2.2(1), Cy (a) is uniquely divisible. O

It is also conjectured that the converse of Conjecture 7.2.1 holds:

Conjecture 7.2.6. Let M(U, 1) be a Moufang set such that U is abelian. Then
either H = 1 or M(U, 1) is special.

Conjecture 7.2.6 is, at the moment, wide open®.

7.3 The p-maps in special Moufang sets

When M(U, 1) is special, we can say more than just Proposition 4.3.1 about
the p-maps. This turns out very useful for making progress towards the main
conjectures about special Moufang sets.

Proposition 7.3.1. Let a,b € U*, and let k, m,n € Z. Then:

(1) fM(U, 1) = M(U, 771, then p, = g, _i0g;
(2) apo = —aand (—a)pa = a;

(3) pa = aa0df” o

(4) ifa-n#0, then (a-n)u = (amw) - L;

(5) ifa+b#0, then apg1p = —b—a+ aup — b;

(6) if ajpy = —a, then b = +a;

(7) if pta = pw, then b = +a;

8 (a k)pam=—a- mTz and plom

= Hy.m2s

(9) ifa-2#0, then p2., = p2 and if t € Zis such that a-t # 0, then p? o = p2;
(10) if |a| = 2, then p, is conjugate to a,; in particular, u? = 1;
(11) if |al is finite, then ut = 1;
(12) if U is abelian then p? = 1.
Proof. The parts of the proof that we omit can be found in [DS] and [DST].
(1) This comes from Proposition 4.3.1(3).

(2) By (1), app—q = a—_gYgr—10—q = Oy4r—1a_, = —a. Using Lemma 7.1.4(iv)
it follows that a = (—a)pe = —(afiq).

“4Note added in proof: this conjecture has now been proved in [S2].
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(3) This follows from (1) using (2) and taking 7 = ji,.
(4) This is Proposition 7.2.2(2) with p, in place of p.

(5) Setc:= (ar~! —br~1)r. By Proposition 6.1.1(1), ¢ = (a — b)up — b. Notice

that

-1

—c=~c=(br —ar YT =(b—a)a —a,

o)
c=a+ (a—Db)u,.

Hence we get that
(a—=b)uy —b=1a+ (a—b)ug- (7.3)
Replacing a with a + b in (7.3) we get aup — b =a + b+ afig+p-
(6) This is crucial, but we have to omit the proof.

(7) This is an immediate consequence of (6), because if u, = up, then also
apy = —a.

(8) By Proposition 7.2.2(2), (a - k)pta.m = (afla-m) - £ Also, by (2) and Propo-
sition 7.2.2(2),

aplam = ((a-m)- %)Nwm = ((a-m)pa.m) -m
2

=(—-a-m)-m=—a-m".
(9) We omit the proof of this fact.
(10) This is an immediate consequence of (3).

(11) Let a € U* be an element of finite order p and note that p is a prime
by Proposition 7.2.2(4). If p = 2, the 2 = 1, by (10). So assume that
p > 2. Suppose first that —1 is a square modulo p and let ¢ € Z such that
t> = —1 (mod p). Then, by (4), p2 = p? . = p2, and (11) follows. The
case when —1 is a non-square modulo p, is more elaborate and we omit the

details.
(12) Since p, is independent of 7 we may use (1) to get p, = aanla;Tl_lraa,

and hence

1

zpe = ((x +a)r™ ' —ar D1 +a

for all x. We then get that
(—2) g = (—(x+a)7 ' +ar HT —a
=—((z4+a)rt—ar )7 —a

= —Tflg -
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It follows that zu_, = xu, for all z, and hence u; ' = o = paq. |

Remark 7.3.2. In Theorem 7.5.2 below, we will see that (12) is actually equiv-
alent to the assertion that U is abelian.

7.4 The action of the Hua subgroup on the root groups

The following structural theorem turns out to be very useful in proving various
results about special Moufang sets.

Theorem 7.4.1 ([SW]). Let W < U be a nontrivial H-invariant subgroup. Then
either U is an elementary abelian 2-group, or W = U.

Sketch of proof. Let W be an H-invariant subgroup of U. First we notice that
W, =W+ forallu € U*. (7.4

This is because wyt, = (—w) i, for all w € W,

Stepl. Letaec W*andbeU.Ifb+a+bec W,thenb-n+a+b-neW for
alln € Z.

Step 2. As a corollary we get:
Letac W*andbe U*. Ifa+b # 0, thenb-n+apgrp+b-n € W foralln € Z.

Proof of Step 2. As a € W*, equation (7.4) says that ap, and ap,4p are also
in W, so —a + aup € W. Then, by Proposition 7.3.1(5), b + aperps + b =
—a + apy, € W, so Step 2 follows from Step 1. O

Step 3. Assume W is normal in U. Then either U is an elementary abelian
2-groupor W =U.

Proof of Step 3. We repeatedly use the fact that for x € U*, W*pu, = W* (and
hence if u € U \ W, then up, ¢ W). We assume that W # U and we show that
U is an elementary abelian 2-group.

First we show that
ifweWandw-2#0,thenw-1eW. (6]

Let w € W such that w - 2 # 0. Then, by Proposition 7.2.2(2), with p = p,,, we
have w- 1 = ((—w) - 2),,. Hence w - 3 € W. Next we claim that

ifueUandu-2#0,thenu e W. (i)



A course on Moufang sets 113

Let w € U with u -2 # 0 and choose w € W* such that u + w # 0. We have
Wty = —U — W + Why, — u. Notice however that w, w4, Wi, € W, and
since W is normal in U it follows that w1, conjugated by u is in W. Hence
—u-2 = (—u+ Whyty +u) — (—w+ wp,) € W. But u - 4 # 0, since there are
no elements of order 4 in U. It follows from (i) that u = (u - 2) - % cw.

Our next step is to show that
if u € U\ W, then v inverts W; in particular W is abelian. (iii)

By (ii) we see that all elements in U \ W are involutions. It follows that any
involution v € U \ W inverts W, because w +u ¢ W for w € W, and then w +u
is an involution, so u inverts w.

Next we claim
W is an elementary abelian 2-group, and hence so is U. @iv)

If W is an elementary abelian 2-group, then, since by (ii), all elements in U \ W
are involutions, we see that U is also an elementary abelian 2-group and we are
done.

So assume that W is not an elementary abelian 2-group. Let z,y € U \ W.
Since z and y invert W, x + y centralizes W. Butif x +y ¢ W, then z + y
inverts W. It follows that z + y € W and thus W has index 2 in U. Let now
x,y € U\W be elements such that z+y # 0. Then, —zpy1+y—y—z+zp,—y = 0.
However, x,y, Ti,, Tiz4+y ¢ W, so we get that 0 is the sum of an odd number
of elements which are not in W. This contradicts the fact that U/WW has order
two. Hence (iv) holds and the proof of Step 3 is complete. d

Step 4. If W # U, then W is of exponent 2.

Sketch of proof of step 4. We now drop the assumption that W is normal in U.
We show that V' := (w-2 | w € W) is a normal subgroup of U. Since it is
characteristic in W, it is H-invariant, so by Step 3, either V =0 or V = U (in
which case W = U as well). Hence if W # U, V = 0 and it follows that W is of
exponent 2. O

Step 5. If W # U, then U is of exponent 2.

Sketch of proof of step 5. Assume W # U; we show that all elements in U \ W
are involutions, by Step 4 it will then follow that W is of exponent 2. For that
we show first that if « € W* (which is an involution by step 4) and if b € U\ W
is not an involution, then
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(D apgyp inverts b;
(ID) by centralizes a;

(I11) if b centralizes a, then by, centralizes a.

Now choose ¢ € W* and let b € U \ W such that b is not an involution. By
(ID, bupya centralizes a. Since the order of buy, is distinct from 2, we can
apply (II) with by, in place of b. Thus, by (III), bups /e centralizes a. Since
fotatta € Aut(U), we get that ap, 'yi_(,4,) centralizes b, i.e. ap,—, central-
izes b. But by (I), ap,_p inverts b, so b must be an involution. This contradicts
our hypothesis that b is not an involution and completes the proof of Theo-
rem 7.4.1. |

7.5 The “special implies abelian” conjecture

As we indicated above the main conjecture regarding the structure of the root
groups of a special Moufang set is Conjecture 7.2.1 which asserts that they must
be abelian. In addition to Proposition 7.2.2, the best results we have toward this
conjecture are the following two results.

Theorem 7.5.1. If a root group of a special Moufang set contains involutions then
it is (abelian) of exponent 2.

Theorem 7.5.2. The root groups of a special Moufang set are abelian if and only
if its u-maps are involutions.

We only present the proof of Theorem 7.5.1.

Proof of Theorem 7.5.1.

Step 1. Leta,be U*, such that a € Inv(U) and « inverts b. Then a centralizes
b and hence b € Inv(U).

Proof of Step 1. First note that
if a,b € Inv(U) then a commutes with a. (%)

Indeed, apigrp = b+ a + app + b, s0 a + auy is an involution and (x) follows.
Notice that by Lemma 7.2.5(1),

Cy(t) is a group of exponent 2, for all ¢ € Inv(U). (%)

Let a € Inv(U) and let b € U* be an element inverted by a. We will show that
be Cy(a). If b € Inv(U), then we are done. So we may assume that b ¢ Inv(U).
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Consider the equality
algry = —b+a+au, —b=a+b+au, —0.

Since a + b € Inv(U) (because a inverts b), it follows from (x) that a commutes
with apiq4p SO @ commutes with b + ap, — b. Conjugating by b we see that auy,
commutes with —b + a + b, hence

if a inverts x € U™ \ Inv(U), then ay, commutes with —z +a + 2.  (7.5)

In what follows we will use the following facts from Proposition 7.3.1(8):
(b-Npws==b- %, @ =pye (7.6)

for all v, € Q such that b -, b - § are well defined. Notice that the uniqueness
of roots in U implies that a inverts b - v, for every v € Q for which b - v is well
defined. Let now «,3 € Q such that b - « and b - § are well defined. From
equation (7.5) we get

aply., commutes with —b-a+a+b-a. (7.7)
Applying pi_p.o o3 € Aut(U) to equation (7.7) we get

app.3 commutes with —b - %2 +ap_papng+b- %2 .
Replacing in this last equality g with « and a with — we get

2

apy., commutes with b - O‘T; +apy.gitpa —b- % ) (7.8)

From equations (7.7) and (7.8) using (x*) we see that

2

—b-a+a-+b-o commutes with b - aTj‘f'CLMbﬁﬂlba —b- %
and after conjugating by —ba we get
a commutes with afp.gitp.o — b+ (o + %;) -2, (7.9)

Notice that we have used (7.6) which implies that ap,. 5. inverts b (because
Hb-glb-o € Aut(U)). Since a and appgpipe invert b, a + afip.giip.o centralizes b.
But by equation (7.9), a commutes with ¢ := a + apup.gpp.o — b~ (a0 + %) -2 and
c commutes with b. Hence, if ¢ # 0, then, by (%), ¢ is an involution, and hence
b is an involution. We have thus shown that

RS (7.10)

2
apty.githo = 6 +b- (o + ]
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Taking in equation (7.10) a = § = —1 we get
apty,=a—"b-4. (7.11)
But taking in equation (7.10) 8 = —1 and o = 2 we also get
afl—pptp2 =a—b-4. (7.12)

Hence ap?, = ap_ppp2. Applying up, on both sides of this equality and using
equation (7.6) we obtain au_, = ajly. 1 OF

a = a1 (7.13)
But from equations (7.10) and (7.13) we get
a = afty. L o =a+b-6.

so b-6 = 0. Since the order of b is a prime (see Proposition 7.2.2(4)) and
b ¢ Inv(U), we see that b - 3 = 0. But then, by Proposition 7.3.1(11), ui = pu?,.
However, by equation (7.10), au} = a+b-4 whereas au? , = a—b-4,s0b-8 = 0.
This is a contradiction and the proof this step is complete. O

Step 2. Let b € U*. We will show that b € Inv(U). Assume not and let
a € Inv(U), then apg+p = —b + a + app — b, and conjugating by b we get that
—b-2+a+ app € Inv(U). Thus ay, inverts —b -2 + a, so, by Step 1, —b-2 +a
is an involution. It follows that a« inverts —b - 2 and hence « inverts b. But
then, by Step 1, b is an involution, a contradiction. This completes the proof of
Theorem 7.5.1. |

7.6 The “special abelian implies Jordan algebra” conjecture
In this section we assume that U is abelian. Hence, by Proposition 7.3.1(13),
p2 =1, foralla c U*.

We assume that 7 = . for some e € U*, but occasionally e may vary. Recall
that by Remark 7.2.3, U is a vector space over a prime field F. Recall also that
by Theorem 3.5, h, is an invertible F-linear transformation of U, for all a € U*.

The main conjecture here is:

Conjecture 7.6.1. There exists a field extension K/F such that

(1) U is a vector space over K;

(2) hg € Endg(U), forall a € U*;
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(3) U, := (U, H,e) is a quadratic Jordan division algebra, where H: x — h, :=
e bz, for @ € U.

Notice that since quadratic Jordan division algebras have been classified (see
Remark 5.3.2), this will yield a complete classification of special Moufang sets
with abelian root groups.

One possible candidate for the field K of Conjecture 7.6.1 is
K := Z(Chuas(y(H)), if char(F) # 2.

Notice that since H acts irreducibly on U, K is a commutative field. Note that
any quadratic Jordan algebra over K is also a quadratic Jordan algebra over F,
so another possibility is just to take K = TF.

Of course U, depends on the choice of e, because the Hua-maps h, = piefiq
depend on e. Inspired by the theory of Jordan algebras, it makes sense to call
U, an isotope.

We define
ha,b = ha+b —ha — hy

for all a, b € U, with the convention that hy is the zero map. Recall that (U, H, e)
is a quadratic Jordan division algebra if and only if

(Quadratic) H is quadratic, i.e.

(1) hgt = hyt? forallt € K;
(ii) the map (x,y) — hy,, is k-bilinear.

(QJ axioms) The following identities hold strictly:
QJ1. he =idy;
QJs. ah@bha = Cha,bh,a, for all a,b,ce U,
QJs. hpn, = hahpha, foralla,beU.

Notice that axiom QJ, actually says that h,V, . = V¢ che, Where bV, . = chqp,
hence bh,V,,c = chqpn, and bV ghy = ahephg.

Of course, QJ; obviously holds. Also, QJ3 is Proposition 4.4.1(6), and h,.; =
h, -s? foralla € U* and s € F. So we can see that some of the axioms defining
a quadratic Jordan division algebra already hold. What is actually missing is:

Missing axioms: The biadditivity of (x,y) — hg, and QJs.

Our first observation is the following.
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Proposition 7.6.2. If char(U) ¢ {2,3}, then U is a quadratic Jordan division
algebra if and only if condition QJs is satisfied.

Proof. This is [DS, Proposition 5.4]. O

In other words, QJ, implies the biadditivity of (z,y) — h,,. Our next obser-
vation shows that it is enough to require that QJ, holds for a being the identity
element but in each isotope U..

Proposition 7.6.3. If QJo holds for a = e, but in each isotope U., i.e., if the
identity
ehp e = chpe, forallb,cecU”* (7.14)

holds in each isotope U,, ¢ € U*, then the stronger identity QJy holds for each
isotope U, e € U™.
Proof. This is [DS, Corollary 5.6]. O
As we noted in subsection 6.1, the identity in Proposition 6.1.1(2), i.e, the
identity
Har—t—br—1)yr = H—bHa+bHa , (7.15)

is closely related to QJ>. Indeed, one can show that
(7.15) implies (7.14) with b = ¢, i.e., ey, = bhy e, forall b € U™.

Finally, the following theorem brings us back to biadditivity and shows that (in
characteristic different from 2 and 3) it is enough to require even less then the
biadditivity of the map (x,y) — h,, to show that U, is a quadratic Jordan
division algebra.

Theorem 7.6.4. Assume that char(U) ¢ {2,3}, and that
(@) h_gp = —hgpforala,beU;
(i) ahgptc = ahgp + ahgc foral a,b,c e U.

Then U satisfies QJo. It follows that U is a quadratic Jordan division algebra. In
particular if the map (z,y) +— hs, is biadditive, then U is a quadratic Jordan
division algebra.

Proof. In the proof we show that (i) and (ii) imply (7.14), for each isotope ..
See [DS, Theorem 5.11] for more details. O
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7.7 Finite special Moufang sets

The techniques that were introduced above are useful to give a short and direct
proof for the (known) classification of finite special Moufang sets.

Notation 7.7.1. For any prime power ¢, we write M(q) := M(GF(q)), where
M(k) is the projective Moufang set over the commutative field & as defined in
subsection 5.1.

The proof of the following Theorem uses the Feit-Thompson “Odd Order The-
orem” and Glauberman’s Z*-Theorem. Otherwise, it is self contained. We will
only sketch the proof very briefly, and we refer to [DS2] for more details.

Theorem 7.7.2. Let M(U, 7) be a finite special Moufang set such that |U| = q is
even. Then q is a power of 2, U is elementary abelian and M(U, 7) = M(q).

Sketch of proof.
Step 1. By Theorem 7.5.1, U is elementary abelian.

Step 2. |H]|is odd and H is transitive on U*.

Sketch of proof of Step 2. Let
7= JU;.
reX
First we show that

7 is a conjugacy class of involutions in G. (7.16)

From (7.16) it follows that H is transitive on U*, and therefore, by Proposi-
tion 4.3.1(4) and Proposition 7.3.1(7),

{pa | @ € U} is a conjugacy class of involutions in N. (7.17)

Notice however that for a,b € U* with a # b, [j1q, ] # 1, because ph* = jiqy,,
s0 if pau, = pa, apy = a, but b is the unique fixed point of 1, because py, is
conjugate to .

By (7.16) and Glauberman’s Z*-Theorem, i,y € O (N), for all a,b € U*,
where Oy/(N) is the largest normal subgroup of odd order of N. However,
H = (g | a,b € U*),s0 H < O/ (N) and hence |H]| is odd. O
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Step 3. H is cyclic.

Proof of Step 3. We use the following very useful Lemma of Peterfalvi:

Lemma (Peterfalvi [P2]). Let p be an odd prime, and suppose that P is a p-group
acting faithfully on U with Cy(P) = 0. If |Cp(a)| = |Cp(b)| for all a,b € U*,
then P is cyclic.

Now by Step 2, H is solvable and since H is transitive on U*,
|Co,my(e)| = |Co,m(f)|, forall primespandalle, f e U".
Hence by Peterfalvi’s Lemma, O,(H) is cyclic for all primes p, so the Fitting
subgroup F(H) = [[,, pime Op(H) is cyclic and hence (h) < H, for all i €
F(H)*. Since H is transitive on U*,

Cy(h) =0, forall h € F(H)".

This implies Cp () (p1z) = 1 for all z € U* (because p, = p* = p1,, would imply
x = zh). Hence H = (p py) < Cu(F(H)) < F(H), so H is cyclic. O

Step 4. M(U, 1) = M(q), where ¢ = |U|.

Sketch of proof of Step 4. We pick e € U* and we let 7 = p.. We show that
H ={hy,|acU*},so|H|=q— 1. We then define

a-b= ahg/ 2,
and we show that (U,+,-,e) is a field and that 7 is the inverse map of this
field. O
This completes the proof of Theorem 7.7.2. O

In the case where |U]| is odd a theorem similar to Theorem 7.7.2 holds, we
state it but omit the (more involved) discussion on it.

Theorem 7.7.3. Let M(U, 7) be a finite special Moufang set such that |U| = q is
odd. Then g is a power of a prime p, U is elementary abelian and M(U, 7) = M(q).

Proof. See [S]. O
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