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Abstract

A Moufang set is essentially a doubly transitive permutation group such

that the point stabilizer contains a normal subgroup which is regular on

the remaining points. These regular normal subgroups are called the root

groups and they are assumed to be conjugate and to generate the whole

group.

Moufang sets play an significant role in the theory of buildings, they

provide a tool to study linear algebraic groups of relative rank one, and

they have (surprising) connections with other algebraic structures.

In these course notes we try to present the current approach to Moufang

sets. We include examples, connections with related areas of mathematics

and some proofs where we think it is instructive and within the scope of

these notes.
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Introduction

A Moufang set is essentially a doubly transitive permutation group G such that

the point stabilizer contains a normal subgroup which is regular on the remain-

ing points. These regular normal subgroups are called the root groups and they

are assumed to be conjugate and to generate G. (The root groups are not as-

sumed to be nilpotent.)

J. Tits introduced this notion in the context of twin buildings, but it is in

fact a tool to study absolutely simple algebraic groups of relative rank one; the

Moufang sets are precisely the Moufang buildings of rank one. It turns out that

this notion is related to other algebraic structures as well.

In these notes, we try to give the reader a sense of the “modern” approach to

Moufang sets. We include examples and connections to related areas of mathe-

matics; we provide detailed proofs where we think they could offer more insight

into the theory, but for the same reason, we have omitted many details that can

be found elsewhere and which are beyond the scope of this manuscript.

These notes have been used for a mini-course given by both authors, on

the conference “Buildings and Groups” which took place in Ghent (Belgium),

May 20–26, 2007. Our references for the material in this mini-course are [DS],

[DS2], [DST], [DW], [S] and [SW] (we give more precise references at the

beginning of the relevant sections).

We thank Pierre-Emmanuel Caprace, Shripad Garge, Max Horn, Guy Rousseau

and Richard Weiss for valuable comments on an earlier version of this manuscript.

1 Definition of a Moufang set

1.1 Notation

We start by fixing some standard notation.

Notation 1.1.1. Let G be a group and p a prime.

(1) For x, y ∈ G, xy := y−1xy and [x, y] := x−1y−1xy.

(2) When we write an inequality sign H ≤ G, we always mean that H is a

subgroup of G (while S ⊆ G means that S is a subset of G).

(3) For S ⊆ G, 〈S〉 is the subgroup generated by S.

(4) For a set S we let |S| be the cardinality of S.

(5) For an element g ∈ G, |g| denotes the order of G.

(6) G∗ denotes the set of nontrivial elements of G.
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(7) Inv(G) denotes the set of involutions of G (so 1 6∈ Inv(G)).

Let G be a permutation group on a set Ω, let Y ⊆ Ω and let x1, . . . , xn ∈ Ω.

(8) We write GY for the pointwise stabilizer of Y in G and we write G{Y }

for the global stabilizer of Y in G. However when the elements of Y are

given, e.g. when Y = {x1, . . . , xn}, then we write Gx1,...,xn
for GY and

G{x1,...,xn} for G{Y }.

(9) We apply permutations on the right, i.e. for x ∈ Ω and g ∈ G, we write

xg for the image of x under g; moreover, for g ∈ G{Y } we write CY (g) :=

{y ∈ Y | yg = y}.

1.2 Definition of a Moufang set

A Moufang set is a set X (with |X| ≥ 3) together with a collection of groups

{Ux | x ∈ X} satisfying the following two properties.

M1. For each x ∈ X, Ux ≤ Sym(X) fixes x and acts regularly (i.e. sharply

transitively) on X \ {x}.

M2. For all x ∈ X, Ux permutes the set {Uy | y ∈ X} by conjugation.

The Moufang set is then denoted M = (X, (Ux)x∈X); the groups Ux are called

the root groups of M, and the group G := 〈Ux | x ∈ X〉 is called the little

projective group of M.

Note that this implies that G acts doubly transitively on X, and that Uϕ
x =

Uxϕ for all x ∈ X and all ϕ ∈ G.

2 Motivation and situation

2.1 Connection with BN-pairs of rank one

There are several equivalent definitions of a split BN-pair of rank one. The

one we choose is the most common. We refer to Definition 2.3.1 below for a

definition of a BN-pair of arbitrary rank.

Definition 2.1.1. A BN-pair of rank one in a group G is a system (B,N) con-

sisting of two subgroups B and N such that

BN1. G = 〈B,N〉.

BN2. H := B ∩N EN .
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BN3. There is an element ω ∈ N \ H with ω2 ∈ H such that N = 〈H,ω〉,

G = B ∪BωB and ωBω 6= B.

The BN-pair is called split, if in addition the following axiom holds.

BN4. There exists a normal subgroup1 U EB such that B = U ⋊H.

Any BN-pair (possibly non-split) is called saturated, if it also satisfies the follow-

ing axiom. Note that we always have H ≤ B ∩Bω.

BN5. H = B ∩Bω.

Remark 2.1.2. If a BN-pair (B,N) for G is not saturated, then (B,N(B ∩Bω))

is a saturated BN-pair. However, if (B,N) is split but not saturated, then its

saturation (B,N(B ∩Bω)) might be non-split.

Proposition 2.1.3. Let G be a group with a saturated split BN-pair of rank one,

and let B,N,H,U and ω be as in Definition 2.1.1. Let

X := {Ug | g ∈ G}

be the set of conjugates of U in G. For any x ∈ X, denote the corresponding

subgroup of G (which is just x itself!) by Vx. Then (X, (Vx)x∈X) is a Moufang set.

Proof. It is clear that each Vx acts on X by conjugation. We have to check

whether the defining conditions M1 and M2 are satisfied. Condition M2 is clear,

since each conjugate of U is mapped, by conjugation, to some conjugate of U .

We claim that NG(U) = B. Indeed, by BN4, B normalizes U . So suppose

that Ug = U for some g ∈ G \ B. Then by BN3, g = aωb for some a, b ∈ B,

and hence Uaωb = U , implying Uω = U . But since ω normalizes H, this would

imply Bω = B, contradicting the last statement of BN3.

We now proceed to show property M1. Let x ∈ X be arbitrary, and write

Vx = x = Ug. It is obvious that each Vx fixes x (i.e. itself) by conjugation.

Assume that some element v ∈ Vx fixes some y ∈ X, say y = Uh. Write

v = g−1ug with u ∈ U ; then c := hg−1ugh−1 normalizes U , i.e. c ∈ B, and

hence c ∈ B ∩ Ugh−1

. Suppose that y 6= x, i.e. gh−1 6∈ B, and use BN3 to write

gh−1 = aωb with a, b ∈ B. Then B ∩ Ugh−1

6= 1 implies Bω ∩ U 6= 1. But by

BN5, this would yield U ∩H 6= 1, contradicting BN4. We conclude that Vx acts

semi-regularly on X \ {x}.

Observe that Uω 6= U implies U 6= 1; let u ∈ U∗. Then the three groups U ,

Uω and Uωu are pairwise distinct; hence |X| ≥ 3.

1Some authors also require this subgroup to be nilpotent as part of the definition.
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We now claim that

G = B ∪BωU . (2.1)

Indeed, we have Hω = H and hence H = Hω ≤ Bω. It follows that ωH ⊆ Bω

and therefore BωHU ⊆ BωU . Since HU = B, we get BωB = BωU , and the

claim follows.

It remains to show that Vx is transitive on X \ {x}. Since G is transitive

by conjugation on X it suffices to show that U is transitive via conjugation on

X \ {U}. It thus suffices to show that X \ {U} = {Uωu | u ∈ U}, but this is

immediate from (2.1). �

Remark 2.1.4. The group G might be a non-trivial extension of the little pro-

jective group of the Moufang set. For example, if G = SL2(k), then the little

projective group of the corresponding Moufang set will be PSL2(k). The crucial

observation here is that, even though the groups Ug act faithfully on X and

G = 〈Ug | g ∈ G〉, it might be that G does not act faithfully. In other words,

if ψx is the natural injection from Vx into Sym(X) for each x ∈ X, then the

induced map ψ from G to Sym(X) might not be injective.

We now consider the converse.

Proposition 2.1.5. Let M = (X, (Ux)x∈X) be an arbitrary Moufang set, with

little projective group G. Let 0,∞ be two arbitrary elements of X, let B := G∞,

N := G{0,∞}, H := G0,∞ and U := U∞ (i.e. the root group corresponding to ∞),

and let ω an element of G interchanging 0 and ∞. (Such elements ω always exist

because G is doubly transitive.) Then B,N, ω and U satisfy all the axioms of a

saturated split BN-pair of rank one.

Proof. It is straightforward to check conditions BN1, BN2, BN4 and BN5. To

prove BN3, let g ∈ G\B be arbitrary, and let x := ∞g 6= ∞. Let u be the unique

element of U∞ mapping 0 to x, and let b := gu−1ω−1. Then ∞b = ∞, hence

b ∈ B and g = bωu ∈ BωB. Moreover, ωBω = Bω = G0 6= B. �

2.2 Connection with abstract rank one groups

The notion of abstract rank one groups was introduced by Franz Timmesfeld

[Tim].

Definition 2.2.1. A group G is called an abstract rank one group with unipotent

subgroups U and V , if G = 〈U, V 〉, U and V are two distinct nilpotent subgroups

of G, and
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(∗) for each u ∈ U∗, there exists an element v ∈ V ∗ such that Uv = V u, and

vice-versa.

Every Moufang set with nilpotent root groups gives rise in a natural way to

an abstract rank one group:

Proposition 2.2.2. Let M = (X, (Ux)x∈X) be a Moufang set with little projective

group G, and assume that the root groups Ux are nilpotent. Let 0,∞ ∈ X be

two arbitrary elements. Then G = 〈U∞, U0〉 is an abstract rank one group with

unipotent subgroups U∞ and U0.

Proof. Let a ∈ U∗
∞ be arbitrary, and let x := 0a 6= 0. Then by M2, Ua

0 = U0a =

Ux. Let b be the (unique) element of U0 mapping ∞ to x. Then U b
∞ = Ux = Ua

0 .

Of course, a similar argument holds if we interchange 0 and ∞, and it is obvious

that U∞ 6= U0. Also, since U∞ is transitive on X \ {∞} and since Uα
0 = U0α, for

any α ∈ U∞, it follows that 〈U∞, U0〉 contains all the root groups Ux, x ∈ X, so

G = 〈U∞, U0〉. It follows that G is an abstract rank one group with unipotent

subgroups U∞ and U0. �

Conversely, every abstract rank one group gives rise to a Moufang set. We

will show how it gives rise to a saturated split BN-pair of rank one, and hence,

by Proposition 2.1.3, to a Moufang set.

Proposition 2.2.3. Let G = 〈U, V 〉 be an abstract rank one group with unipotent

subgroups U and V . Then G has a saturated split BN-pair of rank one.

Proof. Let B := NG(U) and let H := NG(U) ∩NG(V ). Observe that

Ω := {Ug | g ∈ G} = {V g | g ∈ G}

= {Uv | v ∈ V } ∪ {V } = {V u | u ∈ U} ∪ {U} .

This follows easily from condition (∗) in Definition 2.2.1. Notice that condition

(∗) also implies that NG(U) ∩ V = 1, so | Ω |≥ 3. Hence the above observation

implies that G is doubly transitive by conjugation on Ω. Let ω be an arbitrary

element of G conjugating U to V and V to U , and set N := 〈H,ω〉.

If b is an arbitrary element of B, then V b 6= U , hence V b = V u for some

u ∈ U . Of course, we also have U b = Uu; hence bu−1 ∈ H, i.e. b ∈ UH. Also

U ∩H = 1, since U ∩NG(V ) = 1. Hence BN4 holds.

BN2 is immediate. To show BN1, observe that U and ω are contained in

〈B,N〉, and since G = 〈U, V 〉 = 〈U,Uω〉, we get G = 〈B,N〉.

Also, ωBω = Bω = NG(V ), so if ωBω = B then we would have B = H,

contradicting BN4. Now let g ∈ G \ B be arbitrary; then Ug 6= U , and hence
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Ug = V u = Uωu for some u ∈ U . It follows that ωug−1 = b for some b ∈ B =

NG(U), and hence g = b−1ωu ∈ BωB.

Finally, we have B ∩ Bω = NG(U) ∩ NG(Uω) = H, which shows that BN5

holds, i.e. the BN-pair (B,N) is saturated. �

Remark 2.2.4. If G = 〈U, V 〉 is an abstract rank one group with unipotent

subgroups U and V , then the corresponding Moufang set is given by defining

X := {Ug | g ∈ G}, i.e. X is the set of all conjugates of U in G. The root

groups are precisely the elements of X (seen as subgroups of G), and the action

is given by conjugation; this is very similar to the approach in Proposition 2.1.3.

2.3 Connection with higher rank groups

This subsection is not self-contained and the reader should consult one of the

other lectures of this conference for more information about buildings.

Let ∆ be a spherical building with chamber set C. There exist several defini-

tions of the Moufang property for spherical buildings, which are all equivalent

in rank ≥ 2, but they do not all make sense in rank one. The following definition

is due to B. Mühlherr [M].

A Moufang structure on ∆ is a family of groups (Uc)c∈C such that

• Uc ≤ StabAut(∆)(c), and Uc is transitive on cop, the set of chambers oppo-

site c ;

• for all α ∈ Uc and all d ∈ C, we have Uα
d = Udα ;

• let c ∈ C, let P be a panel containing c, let d be a chamber in P \ {c}, and

let α ∈ Uc with dα = d; then α ∈ Ux for all x ∈ P .

If ∆ is thick and its diagram has no isolated nodes, then Γ admits at most

one Moufang structure. The building ∆ is said to satisfy the Moufang property

if it admits a Moufang structure.

It is clear from this definition that in this sense, the Moufang buildings of

rank one are precisely the Moufang sets. Moreover, every rank one residue of a

higher rank Moufang spherical building is a Moufang set.

Also the notion of a (split) BN-pair of rank one has a generalization to higher

rank. Our definition is taken from [T74, 3.2.1].

Definition 2.3.1. A BN-pair in a group G is a system (B,N) consisting of two

subgroups B and N such that

BN1. G = 〈B,N〉;
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BN2. H := B ∩N EN ;

BN3. The group W := N/H has a generating set R of involutions such that the

following two relations hold for any r ∈ R and any w ∈W :

• rBwB ⊆ BwB ∪BrwB;

• rBr 6= B.

The group W is called the Weyl group of the BN-pair.

The BN-pair is called split, if there exists a normal subgroup2 U EB such that

B = U ⋊H. It is called saturated if H =
⋂

w∈W Bw.

Any group with a BN-pair has a natural associated building on which it acts

strongly transitively (i.e. transitive on the pairs consisting of an apartment and a

chamber contained in it). In fact, a saturated BN-pair for a groupG is equivalent

to a building on which G acts strongly transitively. See, for example, [T74,

Theorem 3.2.6 and Proposition 3.11].

2.4 Connection with linear algebraic groups of relative rank

one

This subsection is not self-contained and requires knowledge about linear alge-

braic groups. The sole purpose of this subsection is to mention, very briefly and

without proofs, one of the most important motivations for the study of Moufang

sets.

Let G be an absolutely simple algebraic group defined over a field k, of k-rank

one. Let X denote the set of all k-parabolic subgroups of G. Note that, since G

has k-rank one, all elements of X are conjugate under G(k). For each element

x ∈ X, we let Ux be the root subgroup of the k-parabolic subgroup x (which

coincides with the k-unipotent radical of x). Let G
+(k) be the group generated

by all these root subgroups. Then (X, (Ux)x∈X) is a Moufang set, on which

G
+(k) modulo its center acts faithfully; we will denote it by M(G, k).

The pairs of elements of X are in one-to-one correspondence with the max-

imal k-split tori of G. More precisely, for each k-split torus there are precisely

two k-parabolic subgroups containing it, and every two k-parabolics contain a

common k-split torus. If S is such a maximal k-split torus, then N(S)/Z(S)

(which is the relative Weyl group of G over k) is a group of order 2.

Many of the exceptional algebraic groups of relative rank one are still poorly

understood. It is our hope that the study of Moufang sets will eventually provide

more insight into these groups.

2Some authors also require this subgroup to be nilpotent as part of the definition.
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2.5 Finite Moufang sets

Finite Moufang sets have already been studied and classified a long time before

the notion of a Moufang set existed, as part of the classification of the finite

simple groups, and more precisely in the study of finite split BN-pairs of rank

one. Their classification was carried out by Suzuki [Su], Shult [Sh] and Peter-

falvi [P] when the degree is odd, and by Hering, Kantor and Seitz [HKSe] when

the degree is even. Some of these papers are hard and rely, in addition to the

Feit-Thompson odd order theorem, on many other deep results in finite group

theory.

It turns out that any finite Moufang set is either sharply two-transitive, or it

is PSL2(q), PSU3(q), Sz(q) ∼= 2B2(q) or Re(q) ∼= 2G2(q) for appropriate prime

powers q.

In subsection 7.7, we will outline an elementary proof for the classification

when the Moufang set is special, in which case the only possibility is PSL2(q).

3 Main construction

Here we will describe how to construct an arbitrary Moufang set starting with

a group U and one permutation of the set U∗. The material of this section is

taken from [DW].

Let U be a group with composition + and identity 0. (The operation + is

not necessarily commutative. It will become clear in the examples why we have

nevertheless chosen an additive notation.) Let X denote the disjoint union of

U with {∞}, where ∞ is a new symbol. For each a ∈ U , we denote

Sym(X) ∋ αa :

{

∞ 7→ ∞

x 7→ x+ a for all a ∈ U .
(3.1)

Thus the map a 7→ αa is essentially the right regular representation of the

group U . Let

U∞ := {αa | a ∈ U} .

Now let τ be a permutation of U∗. We extend τ to an element of Sym(X)

(which we also denote by τ) by setting 0τ = ∞ and ∞τ = 0. Next we set

U0 := Uτ
∞ and Ua := Uαa

0 (3.2)

for all a ∈ U . Let

M(U, τ) := (X, (Ux)x∈X) (3.3)



A course on Moufang sets 89

and let

G := 〈U∞, U0〉 = 〈Ux | x ∈ X〉 .

Of course, this construction does not always give rise to a Moufang set, but

every Moufang set can be obtained in this way, and we can tell exactly when this

construction does indeed give rise to a Moufang set; see Theorem 3.5 below.

Remark 3.1. Let ρ ∈ Sym(X) be a permutation interchanging 0 and ∞. Then

M(U, ρ) = M(U, τ) if and only if Uτ
∞ = Uρ

∞. In particular τ is not determined by

the Moufang set and can be chosen in a variety of different ways.

Remark 3.2. In view of equation (3.1), it makes sense to use the convention

that a+ ∞ = ∞ + a = ∞ for all a ∈ U .

Definition 3.3. For each a ∈ U , we define γa := ατ
a, i.e. xγa = (xτ−1 + a)τ for

all x ∈ X. Consequently, U0 = {γa | a ∈ U}.

We will now give an ad-hoc definition of the so-called Hua maps of a Moufang

set; it will become clear in section 4 how these maps arise. These maps can be

defined for any datum M(U, τ) as defined in equation (3.3) above.

Definition 3.4. For each a ∈ U∗, we define

ha := ταaτ
−1α−(aτ−1)τα−(−(aτ−1))τ ∈ Sym(X) ;

if we use the convention of Remark 3.2, then we can write this explicitly as

ha : X → X : x 7→
(

(xτ + a)τ−1 − aτ−1
)

τ −
(

−(aτ−1)
)

τ .

Observe that each ha fixes the elements 0 and ∞.

Theorem 3.5 ([DW]). M(U, τ) is a Moufang set if and only if the restriction of

each Hua map to U is contained in Aut(U), i.e. if (a + b)hc = ahc + bhc for all

a, b ∈ U and all c ∈ U∗.

Proof. See [DW] for the general case. We give an easier proof here for the case

that τ ∈ G and τ2 normalizes U∞.

We claim that the restriction of ha to U is additive if and only if ha normalizes

U∞. Indeed, ha normalizes U∞ if and only if αha

b ∈ U∞ for all b ∈ U . Note that

0αha

b = 0h−1
a αbha = bha, and hence ha normalizes U∞ if and only if αha

b = αbha

for all b ∈ U . Since ha is a permutation of U , we have U = {cha | c ∈ U}, and

hence this is equivalent to

(cha)αha

b = (cha)αbha
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for all b, c ∈ U , which can be rewritten as (c+ b)ha = cha + bha for all b, c ∈ U ,

proving the claim.

Assume first that M(U, τ) is a Moufang set (with τ ∈ G). Then each ha ∈ G,

and hence Uha
∞ = U∞ha

= U∞, i.e. each ha normalizes U∞.

Conversely, assume that each ha normalizes U∞. Since α(−(aτ−1))ττ
−2 nor-

malizes U∞, it follows that ταaτ
−1α−(aτ−1)τ

−1 normalizes U∞ as well, i.e.

Uταaτ−1

∞ = U
τα

aτ−1

∞ . By the definition of the groups Ua in equation (3.2), this

can be rewritten as Uτ−1

a = Uaτ−1 , for all a ∈ U∗, and this clearly also holds for

a ∈ {0,∞}. Also, again by the definition of the groups Ua, we have Uαb
a = Uaαb

for all a ∈ X and all b ∈ U . Since G = 〈U∞, τ
−1〉, we conclude that Uϕ

a = Uaϕ

for all a ∈ X and all ϕ ∈ G, which proves that M(U, τ) is a Moufang set. �

Lemma 3.6. Let M(U, τ) be a Moufang set. Then M(U, τ−1) is a Moufang set;

furthermore ga = h−1
aτ , where ga is the Hua map of M(U, τ−1) corresponding to a.

Proof. For a permutation ϕ ∈ Sym(X) that fixes ∞ let

ϕ(0) = ϕ · α−(0ϕ) .

First we claim that

(∗) If ξ and η are two permutations of X that fix ∞ and ξ normalizes U∞,

then (ηξ)(0) = η(0)ξ(0).

Indeed,

η(0)ξ(0) = ηα−(0η)ξα−(0ξ) = ηξ(α−(0η))
ξα−(0ξ) ∈ ηξU∞ .

But (ηξ)(0) is the unique element in ηξU∞ that fixes 0, so (∗) holds.

Let a ∈ U∗ and let

ϕa := ταaτ
−1α−aτ−1τ, ψa := τ−1αaτα−aττ

−1.

Notice that ha = ϕ
(0)
a and ga = ψ

(0)
a . Also,

ψaϕaτ = idX .

From (∗) we get gahaτ = id
(0)
X = idX . This shows that ga = h−1

aτ . In particular

ga ∈ Aut(U), so by Theorem 3.5, M(U, τ−1) is a Moufang set. �

Remark 3.7. Notice that although it is not made explicit in the notation ha, the

Hua-maps ha depend on τ ; see Remark 3.1.
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4 First properties of Moufang sets

From now on we assume that M = M(U, τ) is a Moufang set; in particular, by

Theorem 3.5(i), the Hua maps ha act on U as automorphisms. The material of

subsections 4.1 and 4.2 can be found in [DW] and of subsections 4.3 and 4.4

in [DS].

4.1 The µ-maps

We start by introducing certain permutations of X which interchange the el-

ements 0 and ∞. These maps play a central role in the analysis of Moufang

sets.

Proposition 4.1.1. For each a ∈ U∗, there is a unique permutation µa ∈ U∗
0αaU

∗
0

interchanging 0 and ∞. This permutation will be denoted by µa; we have

µa = ατ
(−a)τ−1 · αa · ατ

−(aτ−1) .

Proof. Let ρ ∈ U0αaU0 and assume that 0ρ = ∞ and ∞ρ = 0. Write ρ = γxαaγy,

with γx, γy ∈ U0 as in Definition 3.3. Then ∞ = 0ρ = aγy = (aτ−1 +y)τ . Hence

aτ−1 + y = ∞τ−1 = 0, so y = −(aτ−1). Also,

0 = ∞ρ = ∞γxαaγy = ∞τ−1αxταaγy = xταaγy = (xτ + a)γy .

It follows that xτ + a = 0γ−1
y = 0, so x = (−a)τ−1. �

Since the µ-maps of Proposition 4.1.1 are permutations interchanging 0 and

∞, any of them can take the role of the permutation τ :

Lemma 4.1.2. For each a ∈ U∗, we have M(U, τ) = M(U, µa).

Proof. This follows from the fact that µa ∈ G, µa interchanges 0 and ∞, and

Remark 3.1. �

Remark 4.1.3. It follows from Proposition 4.1.1 that, unlike the Hua-maps, the

µ-maps are independent of the choice of τ .

Remark 4.1.4. If ∆ is an arbitrary Moufang spherical building, then each group

Xα = 〈Uα, U−α〉 generated by two opposite root groups is an abstract rank one

group and therefore induces a Moufang set. The µ-maps of this Moufang set are

elements of Xα, and hence act on all of ∆. It turns out that these µ-maps play

an important role in the theory of Moufang buildings in general. For the rank

two case (i.e. the case of Moufang polygons), see [TW, Chapter 6].
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4.2 The Hua subgroup

We start with the definition of the Hua subgroup:

Definition 4.2.1. We define the Hua subgroup of M by

H := 〈µaµb | a, b ∈ U∗〉 .

Notice that H ≤ G0,∞.

In light of Lemma 4.1.2, Theorem 3.5 and Proposition 4.3.1(2) below, we

see that µaµb ∈ Aut(U), for all a, b ∈ U∗. Thus the Hua subgroup H consists of

automorphisms of U .

Lemma 4.2.2 ([DW, Theorem 3.1(ii)]). H = G0,∞ .

Proof. By Lemma 4.1.2, we may and we will assume that τ = µe for some

e ∈ U∗. Let K := U0H ≤ G0, and let Q := Kτ ∪KU∞. Note that G = 〈U∞, τ〉;

we want to show that Q〈U∞, τ〉 ⊆ Q, which will imply that Q = G. Since only

the trivial element in {τ} ∪ U∞ fixes 0, this will imply that G0 = K, and then

G0,∞ = K∞ = H.

So it remains to show that QU∞ ⊆ Q and Qτ ⊆ Q. We have KτU∞ =

KτUτ
0 = KU0τ = Kτ , which proves that QU∞ ⊆ Q. Clearly (Kτ)τ = Kτ2 ⊆

KH = K. Observe that KH = K implies Kτ = Kµa for all a ∈ U∗ (because

µ−1
a = µ−a for all a ∈ U∗, see Proposition 4.3.1(1) below), and hence by Propo-

sition 4.1.1 and the fact that KU0 = K, we have Kτ = Kµaτ = Kαaτα
τ
−a for

all a ∈ U∗. It follows that

Kαaτ = Kτ · ατ
a = Kαaτ ⊆ KU∞

for all a ∈ U∗, which proves that Qτ ⊆ Q. �

Corollary 4.2.3. The following are equivalent:

(i) G is sharply two-transitive ;

(ii) H = 1 ;

(iii) µa = µb for all a, b ∈ U∗ .

Proof. Since G is always two-transitive, the equivalence between (i) and (ii)

follows immediately from Lemma 4.2.2. The equivalence between (ii) and (iii)

is immediate from the definition of H and from Proposition 4.3.1(1) below. �

Remark 4.2.4. Because of Corollary 4.2.3, the sharply two-transitive groups

have a completely different behavior than the other Moufang sets. For that
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reason, Moufang sets whose little projective group is not sharply two-transitive,

are sometimes called proper Moufang sets. Nevertheless, it seems interesting

to study these sharply two-transitive groups from the point of view of Moufang

sets. For a good introduction (from the classical point of view) to sharply two-

transitive groups, we refer to [BN, Section 11.4].

4.3 Properties of the µ-maps

In this subsection, we list various elementary properties of the µ-maps.

Proposition 4.3.1. Let a, b ∈ U∗ and let ∼a = (−aτ−1)τ , then

(1) µ−a = µ−1
a ;

(2) µa = τ−1ha ;

(3) if M(U, τ) = M(U, τ−1), then µaτ = µτ
−a ; in particular, µaµb

= µµb

−a ;

(4) µah = µh
a , for all h ∈ H ;

(5) if M(U, τ) = M(U, τ−1), then µa = αaα
τ
−aτ−1α−∼a ;

(6) ∼a = −(−a)µa ;

(7) ∼a is independent of the choice of τ , i.e. ∼a = (−aρ−1)ρ for all ρ with

M(U, τ) = M(U, ρ) ;

(8) µ−a = α−(∼a)µ−aαaµ−aα∼(−a) .

Proof. (1) Notice that µ−1
a ∈ U∗

0α−aU
∗
0 and µ−1

a interchanges 0 and ∞, so by

Proposition 4.1.1, part (1) holds.

(2) We have

µa = τ−1α(−a)τ−1ταaτ
−1α−(aτ−1))τ = g(−a)τ−1τ = h−1

−aτ,

where ga is as in Lemma 3.6 and the last equality comes from Lemma 3.6.

Therefore, by (1), we have that µa = µ−1
−a = τ−1ha.

(3) Assume that M(U, τ) = M(U, τ−1). Then we can apply (2) to the maps ga.

Note that by Remark 4.1.3, the maps µa are independent of τ . Therefore,

taking in (2) ga in place of ha and τ−1 in place of τ we have

µa = τga .

On the other hand by Lemma 3.6, ga = h−1
aτ , and hence

µaτ = τ−1haτ = τ−1g−1
a = τ−1µ−1

a τ ,

which shows the first part of (3). The second part follows by replacing τ by

µb recalling that M(U, τ) = M(U, µb).
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(4) Applying (3) twice we get that for h = µxµy, the statement holds, where

x, y ∈ U∗. The general result now follows from Definition 4.2.1.

(5) Notice that by (1) and by the definition of µa in Proposition 4.1.1,

µaτ = ατ
(−aτ)τ−1 · αaτ · ατ

−a .

Using (1) and (3) we have µ−1
a = µτ−1

aτ = α(−aτ)τ−1 · ατ−1

aτ · α−a. Hence

µa = αa · ατ−1

−aτ · α−((−aτ)τ−1). Since M(U, τ) = M(U, τ−1) and since µa is

independent of τ , this last equality holds with τ replaced by τ−1, which is

precisely the statement in (5).

(6) This is obtained from (5) by applying both sides of the equality in (5) to

the element −a.

(7) This follows from (6) since µa is independent of τ by Remark 4.1.3.

(8) Since statement (8) is independent of τ , using Proposition 4.1.2 we may

assume that M(U, τ) = M(U, τ−1) by replacing τ by some µx. By part (5)

with τ replaced by τ−1, we have that

µa = αaτα−aτ τ
−1α−(∼a)

and hence

α−aµaα∼a = τα−aττ
−1 ;

since the left hand side is independent of τ , we can replace τ by any µx,

and therefore

α−aµaα∼a = µxα−aµx
µ−x ,

for all x ∈ U∗. In particular, if we put x = −a, then we get, using the

identity in part (3), that

α−aµaα∼a = µ−aα∼(−a)µa

which can be rewritten as

α−(∼a)µ−aαaµ−aα∼(−a) = µ−a . �

4.4 Connection between the µ-maps and the Hua maps

The Hua-maps and the µ-maps are intimately connected by the equation

µa = τ−1ha .

The advantage of the µ-maps is that they are an invariant of the Moufang set

and are not dependent on τ . The advantage of the Hua-maps is that they are
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in Aut(U). As we will see in section 6, the identity in Proposition 4.3.1(3)

translates to an identity which very much resembles the fundamental identity

of quadratic Jordan algebras; see QJ3 on page 98 below. Further, when dealing

with the so called “special” Moufang sets with abelian root groups, the Hua

maps should play the role of the structure maps of the underlying quadratic

Jordan division algebra. Also, when dealing with finite Moufang sets the Hua

maps help define a multiplication on U which turns U into a field.

The properties of the µ-maps in Proposition 4.3.1 translate to the following

properties of the Hua-maps.

Proposition 4.4.1. Let a, b ∈ U∗, then

(1) ha = τµa;

(2) If M(U, τ) = M(U, τ−1), then haτ = τ−1h−aτ ;

(3) hahb
= h−bh

−1
aτ hb;

(4) if τ is an involution, then haτ = h−1
a ;

(5) if µa is an involution, then ha = h−a;

(6) if τ and µb are involutions, then hahb
= hbhahb.

Proof. (1) This is Proposition 4.3.1(2).

(2) By (1) and Proposition 4.3.1(3),

haτ = τµaτ = µ−1
a τ = τ−1(τµ−a)τ = τ−1h−aτ .

(3) Again by (1) and Proposition 4.3.1(3),

hahb
= τµaτµb

= τµ−1
b µ−1

aτ µb = τµ−bµ
−1
aτ τ

−1τµb = h−bh
−1
aτ hb .

(4) By (1) and by Proposition 4.3.1(3), haτ = τµaτ = µ−aτ = h−1
a .

(5) By (1) and Proposition 4.3.1(1), ha = τµa = τµ−a = h−a.

(6) This follows from (3) using (4) and (5). As we will see later, this identity is

closely related to quadratic Jordan algebras; see subsection 5.3 below. �

5 Examples of Moufang sets

5.1 M(k), k a commutative field

We start by describing the easiest class of Moufang sets, namely those that arise

from a commutative field k. The corresponding little projective group will turn
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out to be PSL2(k), and in this way, it makes sense to think about Moufang sets

as (albeit very broad) generalizations of PSL2(k).

So let k be an arbitrary commutative field, of arbitrary characteristic. Let

U = (k,+) be the additive group of k, and let

τ : U∗ → U∗ : x 7→ −x−1 . (5.1)

We will use the convention that 0−1 = ∞. Then the Hua maps are given by

xha = a−
(

a−1 −
(

a− x−1
)−1

)−1

for all a ∈ U∗ and all x ∈ X (here X = k ∪ {∞}). The classical Hua identity

states precisely that the right hand side of this expression is equal to a2x, and

so it is clear that the restriction of each ha to U is in Aut(U). Hence by Theo-

rem 3.5, M(U, τ) is a Moufang set. We will denote this Moufang set by M(k);

it is sometimes called the projective Moufang set over k, since the underlying set

X = k ∪ {∞} can be seen as the projective line PG(1, k).

The little projective group of M(k) is PSL2(k); just for this example, we will

make the isomorphism explicit. Let Y be the set of vector lines in V (2, k), i.e.

Y := {k(0, 1)} ∪ {k(1, x) | x ∈ k}. Let ∗ : SL2(k) → PSL2(k) be the canonical

map. We act by PSL2(k) on the right on Y , and we let

V∞ :=
{

( 1 a
0 1 )

∗ ∣

∣ a ∈ k
}

,

V0 :=
{

( 1 0
a 1 )

∗ ∣

∣ a ∈ k
}

,

σ :=
(

0 1
−1 0

)∗
.

Now let β : Y → X be the bijection which maps k(0, 1) to ∞ and each k(1, x) to

x for all x ∈ k. Then β induces an isomorphism

ϕ : Sym(Y ) → Sym(X) : ρ 7→ β−1ρβ .

The restriction of ϕ to PSL2(k) is then an isomorphism between PSL2(k) and

the little projective group of M(U, τ) such that V∞ϕ = U∞ (ϕ : ( 1 a
0 1 )

∗
7→ αa),

V0ϕ = U0 (ϕ : ( 1 0
a 1 )

∗
7→ γa) and σϕ = τ .

Remark 5.1.1. The minus-sign in equation (5.1) is actually not needed; even

if omitted, the corresponding Hua-maps will still induce automorphisms on U .

However, the map τ will then in general no longer be an element of the little

projective group G, as can be seen from the isomorphism above. Indeed, τ

would then be represented by ( 0 1
1 0 )

∗
, which is not an element of PSL2(k) in

general.

Remark 5.1.2. From the formula xha = a2x, it is clear that H ∼= (k∗)2. In

particular, H is abelian.
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5.2 M(D), D a skew field or an octonion division algebra

We will now generalize the previous example to so-called alternative division

rings. These include all skew-fields, and in addition a family of non-associative

division rings called octonion division algebras or Cayley-Dickson algebras.

Definition 5.2.1. A (not necessarily associative) ring (D,+, ·) is called an al-

ternative division ring if, for each a ∈ D∗, there exists some element a−1 ∈ D∗

such that a · a−1b = b = ba−1 · a for all b ∈ D.

Even though this is a seemingly very weak associativity law, it turns out that

almost all alternative division rings are skew fields:

Theorem 5.2.2. Let D be an alternative division ring which is not a skew field.

Then D is 8-dimensional over its center k. It is a so-called octonion division algebra

or Cayley-Dickson algebra. Its automorphism group is an anisotropic algebraic

group of type G2 defined over k.

Proof. The fact that D is a Cayley-Dickson algebra is due to Bruck and Kleinfeld

[BrKl] when char(D) 6= 2, and then completed by Kleinfeld [Kl] for the case

where char(D) = 2. See, for example, [TW] for a characteristic-free proof. For

the fact about the automorphism group in general characteristic, see [SV]. �

So let D be an arbitrary alternative division ring. It can be shown that every

subring generated by two elements is associative; in particular, the expression

aba with a, b ∈ D makes sense. Let U := (D,+), the additive group of D, and

as in the previous example, let

τ : U∗ → U∗ : x 7→ −x−1 . (5.2)

Then the Hua maps are again given by

xha = a−
(

a−1 −
(

a− x−1
)−1

)−1

for all a ∈ U∗ and all x ∈ X. The Hua identity now states that the right hand

side of this expression is equal to axa, and again it is clear that the restriction

of each ha to U is in Aut(U). Hence by Theorem 3.5, M(U, τ) is a Moufang set.

We will denote this Moufang set by M(D); it is sometimes called the projective

Moufang set over D, and its little projective group is denoted by PSL2(D).

5.3 M(J), J a quadratic Jordan division algebra

All known examples of Moufang sets with abelian root groups (including the

previous two examples) arise in the fashion which we will now describe.



98 T. De Medts • Y. Segev

We first recall the definition of quadratic Jordan algebras, as introduced by

K. McCrimmon [Mc1]. We will use the notation Wx in place of the more com-

mon notation Ux, to avoid confusion with our notation for the root groups.

Let k be an arbitrary commutative field, let J be a vector space over k of

arbitrary dimension, and let 1 ∈ J∗ be a distinguished element. For each x ∈ J ,

let Wx ∈ Endk(J), and assume that the map W : J → End(J) : x 7→ Wx is

quadratic, i.e.

Wxt = Wxt
2 for all t ∈ k, and

the map (x, y) 7→Wx,y is k-bilinear,

(note that we multiply scalars on the right) where

Wx,y := Wx+y −Wx −Wy

for all x, y ∈ J . Let

zVx,y := yWx,z

for all x, y, z ∈ J . Then the triple (J,W, 1) is a quadratic Jordan algebra if the

identities

QJ1. W1 = idJ ;

QJ2. WxVx,y = Vy,xWx ;

QJ3. WyWx
= WxWyWx [“the fundamental identity”]

hold strictly, i.e. if they continue to hold in all scalar extensions of J . (It suffices

for them to hold in the polynomial extension Jk[t] and this is automatically true

if the base field k has at least 4 elements.)

Any element e ∈ J such that We = idJ is called an identity element. An

element x ∈ J is called invertible if there exists y ∈ J such that

yWx = x and 1WyWx = 1.

In this case y is called the inverse of x and is denoted y = x−1. By [Mc2, 6.1.2],

an element x ∈ J is invertible if and only if Wx is invertible; we then have

W−1
x = Wx−1 . In particular,

(x−1)−1 = x and x−1 = xW−1
x .

If all elements in J∗ are invertible, then (J,W, 1) is called a quadratic Jordan

division algebra.

Now assume that (J,W, 1) is an arbitrary quadratic Jordan division algebra.

We will now construct a Moufang set M(J), in the same way as we did in the
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previous two examples. So let U := (J,+), the additive group of the vector

space J , and let

τ : U∗ → U∗ : x 7→ −x−1 . (5.3)

Then the Hua maps are once again given by

xha = a−
(

a−1 −
(

a− x−1
)−1

)−1

for all a ∈ U∗ and all x ∈ X. The Hua identity for Jordan algebras now states

that the right hand side of this expression is precisely equal to xWa, and again it

is clear that the restriction of each ha to U is in Aut(U). Hence by Theorem 3.5,

M(U, τ) is a Moufang set. We will denote this Moufang set by M(J), and it

makes sense to denote its little projective group by PSL2(J).

Remark 5.3.1. In the theory of Jordan algebras, there is the important notion

of the structure group for J , which is the group of isomorphisms from J to an

arbitrary isotope of J . The group 〈Wx | x ∈ J∗〉 is known as the inner structure

group of J , and plays an important role in understanding the structure of J .

Since ha = Wa in our case, we see that the inner structure group is precisely

the Hua subgroup H of M(J), and this illustrates once more that this group H

ought to be very important in the theory of Moufang sets in general.

Remark 5.3.2. Quadratic Jordan division algebras have been classified by K. Mc-

Crimmon and E. Zel’manov [McZ]. We give a very brief overview of the outcome

of this classification, and we refer to [McZ] for more details. Every quadratic

Jordan division algebra belongs to one of the following (non-disjoint) classes:

(a) an algebra D+ for some associative division algebra D, defined by bWa =

aba for all a, b ∈ D ;

(b) a hermitian algebra H(A, ∗) = {x ∈ A | x∗ = x} ⊂ A+ for some associative

algebra A with involution ∗, or more generally, an ample subspace H0(A, ∗)

of H(A, ∗) ;

(c) a Jordan Clifford algebra associated to a non-degenerate anisotropic quadratic

form q with basepoint ǫ (which lives inside the classical Clifford algebra

with basepoint C(q, ǫ)) ;

(d) an ample outer ideal of a “small” Jordan Clifford algebra ;

(e) an Albert division algebra, i.e. an exceptional 27-dimensional Jordan divi-

sion algebra.
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5.4 Examples of Moufang sets with non-abelian root groups

We will now briefly describe two different examples of Moufang sets with non-

abelian root groups. There are many more interesting examples, but it is out of

the scope of this course to go into more detail.

Example 5.4.1. Let k be an arbitrary commutative field, and let A be either a

separable quadratic extension field of k, a quaternion division algebra over k,

or an octonion division algebra over k. Let σ be the standard involution of A/k,

and let N(a) := aaσ and T (a) := a + aσ (for all a ∈ A) be the norm map and

the trace map of A/k, respectively. Let

U := {(a, b) ∈ A×A | N(a) + T (b) = 0} .

Then we can make U into a (non-abelian) group by defining the group “addi-

tion”

(a, b) + (c, d) := (a+ c, b+ d− cσa)

for all (a, b), (c, d) ∈ U ; it is easily checked that this is indeed a group, with

neutral element (0, 0) and with the inverse given by −(a, b) = (−a, bσ). Now we

define a permutation τ on U∗, by setting

τ(a, b) = (−ab−1, b−1)

for all (a, b) ∈ U∗. Then M(U, τ) is a Moufang set.

Remark 5.4.2. When k = GF(2) and A = GF(4), this gives the smallest example

of a Moufang set with non-abelian root groups. It has U ∼= Q8, and hence

|X| = 9, and G ∼= PSU3(2).

Example 5.4.3. Let k be an arbitrary commutative field with char(k) = 3 and

admitting a Tits endomorphism θ, i.e. an endomorphism such that (xθ)θ = x3

for all x ∈ k. Let

U := {(a, b, c) | a, b, c ∈ k} .

Then we can turn U into a (non-abelian) group by defining the group “addition”

(a, a′, a′′) + (b, b′, b′′) = (a+ b, a′ + b′ + abθ, a′′ + b′′ + ab′ − a′b− ab1+θ)

for all a, a′, a′′, b, b′, b′′ ∈ k. We define a “norm” function on U by setting

N(a, a′, a′′) := −a4+2θ − aa′′
θ

+ a1+θa′
θ

+ a′′
2

+ a′
1+θ

− a′a3+θ − a2a′
2

for all a, a′, a′′ ∈ k. We also set

T1(a, a
′, a′′) = −a3+2θ − a′′

θ
+ aθa′

θ
+ a′a′′ + aa′

2
,

T2(a, a
′, a′′) = −a3+θ + a′

θ
− aa′′ + a2a′ ,
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for all a, a′, a′′ ∈ k. Now let

τ : U∗ → U∗ : (a, a′, a′′) 7→

(

−T1(a, a
′, a′′)

N(a, a′, a′′)
,
−T2(a, a

′, a′′)

N(a, a′, a′′)
,

−a′′

N(a, a′, a′′)

)

.

Then M(U, τ) is a Moufang set. These are the so-called Ree-Tits Moufang sets.

The corresponding little projective groups are the Ree groups of type 2G2; in the

finite case, these groups are sometimes considered to be the most complicated

infinite class of finite simple groups.

Remark 5.4.4. A more natural but less direct way to describe these Moufang

sets, is as the action of a certain subgroup of the centralizer of a polarity of a

mixed Moufang hexagon H(k, kθ) on the corresponding set of absolute points;

see, for example, [DW2].

Remark 5.4.5. In example 5.4.1, the root groups have nilpotency class 2, and

in example 5.4.3, they have nilpotency class 3. There is only one known other

class of Moufang sets with root groups of nilpotency class 3, namely those aris-

ing from a polarity of a Moufang quadrangle of type F4; see [MV]. All other

known examples of proper3 Moufang sets with non-abelian root groups have

root groups of nilpotency class 2. On the other hand, it is not known whether

there exist examples with non-nilpotent root groups, or with nilpotent root

groups of higher nilpotency class.

5.5 Connection with algebraic groups

As we briefly explained in subsection 2.4, the theory of Moufang sets is mo-

tivated by its connection to linear algebraic groups of relative rank one. We

point out (without going into detail) which of the previous examples arise from

algebraic groups, and which do not.

The examples M(k), where k is a commutative field, all arise from algebraic

groups; in fact, they are the only examples arising from a split algebraic group

of rank one defined over k, i.e. they arise from G = A1.

The examples M(D), where D is a skew field, arise from an algebraic group

if and only if D is finite-dimensional over its center k. In that case, they arise

from a group with index

A2d−1

3See Remark 4.2.4.
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where d =
√

dimk(D). If D is an octonion division algebra, then the Moufang

set also arises from an algebraic group. Even though the octonions are ex-

ceptional algebraic structures, the corresponding Moufang set is still classical,

because its structure is in fact completely determined by its norm form, which is

an 8-dimensional quadratic form. The algebraic group has the following index.

D5

As for the Moufang set M(J) where J is a Jordan division algebra, we only

mention that a necessary condition for it to arise from an algebraic group is

that J has to be finite-dimensional over k, but even then, there exist examples

which do not arise from algebraic groups, such as, for example, the so-called

amply sandwiched Jordan division algebras. Let us mention, however, that the

Moufang sets M(J) where J is an exceptional Jordan division algebra, do arise

from algebraic groups of the following index.

E7

We now turn to the examples with non-abelian root groups. All Moufang sets

arising from algebraic groups have root groups that are either abelian, or nilpo-

tent of class 2. In particular, the example of the previous subsection of nilpo-

tency class 3 does not arise from algebraic groups. The examples of nilpotency

class 2 of the previous subsection do arise from algebraic groups. Depending

on whether A is a quadratic field extension, a quaternion division algebra or an

octonion division algebra, the corresponding indices are as follows.

2A3

C3

F4

6 More advanced properties of Moufang sets

In Proposition 4.4.1(6) we saw that the identity

hahb
= hbhahb, if τ and µb are involutions, (6.1)
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holds in any Moufang set. As we discussed earlier, this is the so-called funda-

mental identity in the area of quadratic Jordan algebras. As we will see, when

M(U, τ) is special and U is abelian, µb is an involution, for all b ∈ U∗, and (of

course) we can, in this case, choose τ to be an involution, so that equation (6.1)

holds for all a, b ∈ U∗.

In subsection 6.1, we will deduce a second important identity that holds in

any Moufang set. We will see later how this identity relates to the axiom QJ2 of

quadratic Jordan algebras discussed in the previous subsection 5.3.

Subsection 6.2 is devoted to the notion of a “root subgroup”, an important

and useful notion in the theory of Moufang sets. Subsection 6.1 comes from

[DS] and 6.2 from [S].

6.1 Identities in Moufang sets

Proposition 6.1.1. Let a, b ∈ U∗ with a 6= b, then

(1) the element (aτ−1 − bτ−1)τ is independent of τ ; more precisely,

(aτ−1 − bτ−1)τ = (a− b)µb + (∼b) .

(2) µ(aτ−1−bτ−1)τ = µ−bµb−aµa.

Proof. (1) Let

c := (aτ−1 − bτ−1)τ.

Notice that for all x ∈ U∗,

c = (aτ−1 − bτ−1)τµ−1
x µx = (aµ−1

x − bµ−1
x )µx ,

because, by Proposition 4.3.1(2) and Theorem 3.5, τµ−1
x ∈ Aut(U), hence

the first statement of (1) holds. Since for x ∈ U∗, M(U, τ) = M(U, µx),

we may again assume that M(U, τ) = M(U, τ−1) by replacing τ by some

µx. Notice that c = aγ−bτ−1 , so by Proposition 4.3.1(5), we have c =

aα−bµbα∼b, or

c = (a− b)µb + (∼b) ;

and (1) holds.

(2) We have that ∼c = (bτ−1 − aτ−1)τ . By interchanging a and b in (1) we get

∼c = (b− a)µa + (∼a) . (6.2)

Since c is independent of the choice of τ , we have

c = (aτ − bτ)τ−1 .
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Notice that since ∼b = (−(bτ))τ−1, bτ = −((∼b)τ). Also, ∼(∼b) = b and by

Proposition 4.3.1(1 and 3), µ∼b = µ−b. From Proposition 4.3.1(5) (with a

replaced by ∼b and τ by τ−1) it now follows that

ταbτ τ
−1 = α−(∼b)µ−bαb . (6.3)

Thus, by a repeated use of Proposition 4.3.1(5) and equation (6.3), we get

α−cµcα∼c = τα−cττ
−1

= ταbτ−aτ τ
−1

= ταbτ τ
−1τα−aτ τ

−1

= α−(∼b)µ−bαbα−aµaα∼a .

It follows that

µc = αc−(∼b)µ−bαbα−aµaα(∼a)−(∼c) ,

and using (1), we can write this as

µc = α(a−b)µb
µ−bαb−aµaα−(b−a)µa

.

Therefore

µbµcµ−a = µbα(a−b)µb
µ−b · αb−a · µaα−(b−a)µa

µ−a .

We now apply equation (6.3) (with µb in place of τ and (a−b) in place of b)

and Proposition 4.3.1(5) (with µ−1
a in place of τ and (b− a) in place of a),

and we get that

µbµcµ−a = α−∼(a−b)µb−aαa−b · αb−a · αa−bµb−aα∼(b−a)

= α−∼(a−b)µb−aαa−bµb−aα∼(b−a)

= µb−a ,

where we have used Proposition 4.3.1(8) with a− b in place of a. �

6.2 Root subgroups and the fixpoints of the Hua maps

Given a Moufang set M(U, τ) a root subgroup of U is roughly a τ -invariant sub-

group V ≤ U so that M(V, τ) is a Moufang set. More precisely:

Definition 6.2.1 (Root subgroup). A root subgroup of U is a subgroup V ≤ U

such that there exists some a ∈ V ∗ with V ∗µa = V ∗.

Lemma 6.2.2. Let V ≤ U be a root subgroup of U . Then
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(1) M(V, ρ) is a Moufang set, where ρ := µa ↾V ∪ {∞};

(2) V ∗µv = V ∗, for all v ∈ V ∗.

Proof. (1) Since M(U, τ) = M(U, µa), we may assume that τ = µa. By the

definition of the Hua-maps we now see that the Hua-maps of M(V, ρ) are

the restriction of Hua-maps of M(U, µa) to V , and hence they belong to

Aut(V ). By Theorem 3.5, M(V, ρ) is a Moufang set.

(2) This follows from the definition of the µ-maps in Proposition 4.1.1. �

One important place where root subgroups appear and where they turn out

to be useful, is the following:

Lemma 6.2.3. For any h ∈ H, then CU (h) is a root subgroup.

Proof. Set V := CU (h) and let v, w ∈ V . Then, by Proposition 4.3.1(4), we have

vµwh = vhµwh = vµw ∈ V , hence V ∗µw = V ∗ and by definition V is a root

subgroup. �

We will see that the notion of a root subgroups and Lemma 6.2.3 had already

been used successfully for finite Moufang sets and for the “special if and only if

abelian root groups” conjecture.

Notation 6.2.4. Let 0 6= V ≤ U be a root subgroup and let x ∈ V ∗.

(1) We let V∞ := {αv | v ∈ V }, V0 := V µx
∞ , and for w ∈ V , Vw := V αw

0 . Notice

that, since α
µxµy
v = αvµxµy

∈ V∞ for all v ∈ V and all x, y ∈ V ∗, the

definition of Vy, y ∈ V ∪ {∞} is independent of the choice of x.

(2) We let G(V ) := 〈αv, µv | v ∈ V ∗〉, N(V ) := 〈µv | v ∈ V ∗〉, H(V ) :=

〈µvµw | v, w ∈ V ∗〉 and X(V ) := V ∪ {∞}.

Definition 6.2.5. A group G is called a generalized abstract rank one group

with unipotent subgroups A and B, if G = 〈A,B〉, A and B are two different

subgroups of G, and for each a ∈ A∗, there exists an element b ∈ B∗ such

that Ab = Ba, and conversely. Note that the only difference with Timmesfeld’s

definition of an abstract rank one group (as given in Definition 2.2.1) is that we

do not require A and B to be nilpotent.

Lemma 6.2.6. Let 0 6= V ≤ U be root subgroup, set X := X(V ) and let G :=

G{X} and G := G(V ). Then

(1) G is a generalized rank one group with unipotent subgroups V∞ and V0;

(2) GEG and G = GH{V };
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(3) GX = HX and [GX ,G] = 1, in particular, GX = Z(G).

Proof. The proof is omitted; see [S, Section 3]. �

7 Special Moufang sets

In this last section, we will concentrate on the so-called special Moufang sets.

This is the class of Moufang sets that has been studied the most so far, and de-

spite some significant progress, there are some very intriguing questions in this

area which are still unsolved. The material of subsection 7.4 comes from [SW]

and of subsection 7.7 from [DS2] and [S]. The results of the other subsections

can be found in [DS] and [DST].

7.1 Definition of special Moufang sets

Definition 7.1.1. A Moufang set M(U, τ) is called special if the condition

(−a)τ = −(aτ) for all a ∈ U∗ (∗)

holds.

Remark 7.1.2. The notion of “special” abstract rank one group is due to Timmes-

feld. In his book [Tim] Timmesfeld defines an abstract rank one group Y with

unipotent subgroups A and B to be special if and only if for each a ∈ A there

exists b ∈ B with ab = (b−1)a and vice versa. It can be shown that this condition

is equivalent to condition (∗) in the case where Y is a Moufang set.

There are several reasons for singling out the “special” property.

(a) In [Tim, Remark, p. 26] Franz Timmesfeld writes: “I believe that each spe-

cial rank one group with abelian unipotent subgroups is either quasisimple

or isomorphic to SL2(2) or (P)SL2(3). If one could prove this, it would quite

simplify the proofs of simplicity for classical and Lie type groups”.

The following theorem in [DST] shows that the the above assertion of

Timmesfeld about special rank one groups holds:

Theorem 7.1.3. (1) Let M(U, τ) be a special Moufang set, let G be its little

projective group and let H = G0,∞ be its Hua-subgroup. Assume that

|U | > 3, then [U∞,H] = U∞, and hence G is perfect.

(2) Let Y be a special abstract rank one group with unipotent subgroups A

and B and let K = NY (A) ∩ NY (B). Then A is abelian, and either

Y ∼= SL2(2) or (P)SL2(3), or [A,K] = A and hence Y is quasisimple.
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(b) It is clear that the structure of a Moufang set M(U, τ) and its little projective

group is related to the structure of U . So it is only natural to start investi-

gating the simplest case, i.e., the case where U is abelian. Conjectures 7.2.1

and 7.2.6 assert that M(U, τ) is special if and only if U is abelian.

(c) The “special” property can be used efficiently to further restrict the structure

of U , M(U, τ) and G.

We now start our investigation of special Moufang sets.

Lemma 7.1.4. Let M(U, τ) be a Moufang set. Then the following are equivalent:

(i) M(U, τ) is special;

(ii) ∼a = −a, for all a ∈ U∗, where ∼a = (−aτ−1)τ ;

(iii) (∗) of Definition 7.1.1 holds with µx in place of τ , for some x ∈ U∗;

(iv) (∗) of Definition 7.1.1 holds with µx in place of τ , for all x ∈ U∗;

(v) (−a)µa = a, for all a ∈ U∗.

Proof. (i)⇔(ii). Notice that by definition, (ii) means that M(U, τ−1) is special.

Assume that M(U, τ) is special. Then replacing a with aτ−1 in (∗) we get

(−(aτ−1))τ = −a = (−a)τ−1τ , so (−a)τ−1 = −(aτ−1). Conversely the

same argument shows that if M(U, τ−1) is special then M(U, τ) is special.

(i)⇒(iv). Let a, x ∈ U∗. By Proposition 4.3.1(2), µxτ
−1 ∈ Aut(U). Hence

(−a)µxτ
−1 = −(aµxτ

−1), so

(−a)µx = (−a)µxτ
−1τ = (−(aµxτ

−1))τ = −(aµxτ
−1τ) = −(aµx).

(iv)⇒(iii). This is trivial.

(iii)⇒(i). Assume (iii) holds, then for a ∈ U∗ we have

(−a)τ = (−a)τµxµ−x = (−(aτµx))µ−x = −(aτ) ,

and hence (i) holds.

(ii)⇔(v). By Lemma 4.3.1(6), ∼a = −(−a)µa, so (ii) and (v) are equivalent.

�

7.2 The structure of the root groups

We will assume from now on, and until the end of these notes, that M(U, τ) is a

special Moufang set. The main conjecture here is:

Conjecture 7.2.1. Let M(U, τ) be a special Moufang set. Then U is abelian.
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At the moment we cannot prove Conjecture 7.2.1, but we can impose severe

restrictions on the structure of U :

Proposition 7.2.2. Let a ∈ U∗, n ≥ 1 be a positive integer such that a ·n 6= 0, and

ρ ∈ Sym(X) such that ρ interchanges 0 and ∞ and satisfies M(U, ρ) = M(U, τ) =

M(U, ρ−1). Then

(1) there exists a unique b ∈ U∗ such that b · n = a, we denote b := a · 1
n ;

(2) (aρ) · n 6= 0; (a · n)ρ = (aρ) · 1
n , and hence (a · 1

n )ρ = (aρ) · n;

(3) if U is torsion free, then U is a uniquely divisible group;

(4) if b ∈ U∗ has finite order, then the order of b is a prime number;

(5) ([T, Thm. 5.2(a), p. 55]) if U is abelian then either U is an elementary

abelian p-group, for some prime p, or U is a divisible torsion free abelian

group;

(6) assume U is abelian and that U · n 6= 0 and let s ∈ {n, n−1}. Then xµa·s =

xµa · s2, for all x ∈ U∗. It follows that ha·s = ha · s2.

Proof. We will prove only (1) and (2), the rest can be found in [DS] and [DST].

Let n ≥ 1 be a positive integer. Assume that the equality

(a · n)µ−a · n = −a for all a ∈ U∗ such that a · n 6= 0 (7.1)

holds. We claim that then (1) and (2) hold for n. First, by Proposition 7.3.1(2)

below, aρ = (−a)µ−aρ. Now µ−aρ is the inverse of the map ρ−1µa which, by

Proposition 4.3.1(2), is a Hua map corresponding to ρ−1, so µ−aρ ∈ Aut(U). It

follows that

(aρ) · n = (−a)µ−aρ · n = ((−a) · n)µ−aρ 6= 0 .

Also, the equality

(a · n)ρ · n = aρ for all a ∈ U∗ such that a · n 6= 0 , (7.2)

holds. This is because

((a · n)ρ) · n = ((a · n)µ−1
a µaρ) · n = (((a · n)µ−1

a ) · n)µaρ = (−a)µaρ = aρ ,

since µaρ ∈ Aut(U). It follows (by taking ρ = µa) that the element b :=

((−a) · n)µa satisfies b · n = a. Furthermore, if c · n = a, then by (7.2) (with c in

place of a and µ−1
a in place of ρ),

(−a) · n = (aµ−1
a ) · n = (c · n)µ−1

a · n = cµ−1
a ,

so c = b.
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It thus remains to show (7.1). The proof is by induction on n. For n = 1, this

is Proposition 7.3.1(2). Assume that a · (n+ 1) 6= 0. Note that if a · n = 0, then

a · (n + 1)µa · (n + 1) = aµa · (n + 1) = −a, so we may assume that a · n 6= 0;

hence by the induction hypothesis, equations (7.1), (7.2) and parts (1) and (2)

hold for n. Notice that also a · (n + 1)n 6= 0, because otherwise we would get

(a ·n) ·n = (−a) ·n, but then, by the uniqueness in part (1) (which holds for n),

a · n = −a, which is false. Hence a · (n+ 1) · 1
n makes sense.

By Proposition 4.3.1(8) and Lemma 7.1.4(v), µ−a = αaµ−aαaµ−aαa. Hence,

using equation (7.2) (which holds for n by induction) we get

−((a · (n+ 1))µ−a) = ((−a) · (n+ 1))µ−a

= ((−a) · (n+ 1))αaµ−aαaµ−aαa

= ((−a) · n)µ−aαaµ−aαa

induction
= (a · 1

n + a)µ−aαa

= (a · (n+ 1) · 1
n )µ−aαa

induction
= (a · (n+ 1)µ−a) · n+ a .

Hence, (a·(n+1))µ−a ·(n+1) = −a. This completes the proof of (1) and (2). �

Remark 7.2.3. The statement in Proposition 7.2.2(5) is equivalent to stating

that U is a vector space over some field F, where F can be chosen to be either a

finite field GF(p) or the field of rationals Q. This field F is called the prime field

of U , and such a group U is sometimes called a vector group.

Remark 7.2.4. Notice that Proposition 7.2.2 says that the order of any element

in U∗ is either a prime or ∞ and that U has very interesting unique divisibility

properties, i.e., if a ∈ U∗ is such that a · n 6= 0, then (aρ−1 · n)ρ is the unique

n-th root of a in U .

The next lemma shows that the structure of centralizers in U is very re-

stricted.

Lemma 7.2.5. (1) If a ∈ U∗ is an element whose order is a prime p, then CU (a)

is a group of exponent p;

(2) if a ∈ U∗ is of infinite order, then CU (a) is a torsion-free uniquely divisible

group.

Proof. (1) Let b ∈ CU (a) and assume that the order of b is not p. Then the order

of a+ b is not p and by (1) we have
(

(a+ b) · 1
p − b · 1

p

)

· p = a,

contradicting the fact that a has no p-root in U (by Proposition 7.2.2(4)).
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(2) Follows from (1), because by (1) each element in CU (a) has infinite order,

and by Proposition 7.2.2(1), CU (a) is uniquely divisible. �

It is also conjectured that the converse of Conjecture 7.2.1 holds:

Conjecture 7.2.6. Let M(U, τ) be a Moufang set such that U is abelian. Then

either H = 1 or M(U, τ) is special.

Conjecture 7.2.6 is, at the moment, wide open4.

7.3 The µ-maps in special Moufang sets

When M(U, τ) is special, we can say more than just Proposition 4.3.1 about

the µ-maps. This turns out very useful for making progress towards the main

conjectures about special Moufang sets.

Proposition 7.3.1. Let a, b ∈ U∗, and let k,m, n ∈ Z. Then:

(1) if M(U, τ) = M(U, τ−1), then µa = αaα
τ
−aτ−1αa;

(2) aµa = −a and (−a)µa = a;

(3) µa = αaα
µa
a αa;

(4) if a · n 6= 0, then (a · n)µb = (aµb) ·
1
n ;

(5) if a+ b 6= 0, then aµa+b = −b− a+ aµb − b;

(6) if aµb = −a, then b = ±a;

(7) if µa = µb, then b = ±a;

(8) (a · k)µa·m = −a · m2

k and µµa·m

a·k = µ
a·m2

k

;

(9) if a ·2 6= 0, then µ2
a·2 = µ2

a and if t ∈ Z is such that a · t 6= 0, then µ2
a·t2 = µ2

a;

(10) if |a| = 2, then µa is conjugate to αa; in particular, µ2
a = 1;

(11) if |a| is finite, then µ4
a = 1;

(12) if U is abelian then µ2
a = 1.

Proof. The parts of the proof that we omit can be found in [DS] and [DST].

(1) This comes from Proposition 4.3.1(3).

(2) By (1), aµ−a = aα−aγaτ−1α−a = 0γaτ−1α−a = −a. Using Lemma 7.1.4(iv)

it follows that a = (−a)µa = −(aµa).

4Note added in proof: this conjecture has now been proved in [S2].
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(3) This follows from (1) using (2) and taking τ = µa.

(4) This is Proposition 7.2.2(2) with µb in place of ρ.

(5) Set c := (aτ−1 − bτ−1)τ . By Proposition 6.1.1(1), c = (a− b)µb − b. Notice

that

−c = ∼c = (bτ−1 − aτ−1)τ = (b− a)µa − a ,

so

c = a+ (a− b)µa.

Hence we get that

(a− b)µb − b = a+ (a− b)µa. (7.3)

Replacing a with a+ b in (7.3) we get aµb − b = a+ b+ aµa+b.

(6) This is crucial, but we have to omit the proof.

(7) This is an immediate consequence of (6), because if µa = µb, then also

aµb = −a.

(8) By Proposition 7.2.2(2), (a · k)µa·m = (aµa·m) · 1
k . Also, by (2) and Propo-

sition 7.2.2(2),

aµa·m = ((a ·m) · 1
m )µa·m = ((a ·m)µa·m) ·m

= (−a ·m) ·m = −a ·m2 .

(9) We omit the proof of this fact.

(10) This is an immediate consequence of (3).

(11) Let a ∈ U∗ be an element of finite order p and note that p is a prime

by Proposition 7.2.2(4). If p = 2, the µ2
a = 1, by (10). So assume that

p > 2. Suppose first that −1 is a square modulo p and let t ∈ Z such that

t2 ≡ −1 (mod p). Then, by (4), µ2
a = µ2

a·t2 = µ2
−a and (11) follows. The

case when −1 is a non-square modulo p, is more elaborate and we omit the

details.

(12) Since µa is independent of τ we may use (1) to get µa = αaτ
−1α−1

aτ−1ταa,

and hence

xµa = ((x+ a)τ−1 − aτ−1)τ + a

for all x. We then get that

(−x)µ−a = (−(x+ a)τ−1 + aτ−1)τ − a

= −((x+ a)τ−1 − aτ−1)τ − a

= −xµa .
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It follows that xµ−a = xµa for all x, and hence µ−1
a = µ−a = µa. �

Remark 7.3.2. In Theorem 7.5.2 below, we will see that (12) is actually equiv-

alent to the assertion that U is abelian.

7.4 The action of the Hua subgroup on the root groups

The following structural theorem turns out to be very useful in proving various

results about special Moufang sets.

Theorem 7.4.1 ([SW]). Let W ≤ U be a nontrivial H-invariant subgroup. Then

either U is an elementary abelian 2-group, or W = U .

Sketch of proof. Let W be an H-invariant subgroup of U . First we notice that

W ∗µu = W ∗ for all u ∈ U∗. (7.4)

This is because wµu = (−w)µwµu, for all w ∈W ∗.

Step 1. Let a ∈W ∗ and b ∈ U . If b+ a+ b ∈W , then b · n+ a+ b · n ∈W for

all n ∈ Z.

Step 2. As a corollary we get:

Let a ∈W ∗ and b ∈ U∗. If a+ b 6= 0, then b ·n+ aµa+b + b ·n ∈W for all n ∈ Z.

Proof of Step 2. As a ∈ W ∗, equation (7.4) says that aµb and aµa+b are also

in W , so −a + aµb ∈ W . Then, by Proposition 7.3.1(5), b + aµa+b + b =

−a+ aµb ∈W , so Step 2 follows from Step 1. �

Step 3. Assume W is normal in U . Then either U is an elementary abelian

2-group or W = U .

Proof of Step 3. We repeatedly use the fact that for x ∈ U∗, W ∗µx = W ∗ (and

hence if u ∈ U \W , then uµx /∈W ). We assume that W 6= U and we show that

U is an elementary abelian 2-group.

First we show that

if w ∈W and w · 2 6= 0, then w · 1
2 ∈W. (i)

Let w ∈ W such that w · 2 6= 0. Then, by Proposition 7.2.2(2), with ρ = µw, we

have w · 1
2 = ((−w) · 2)µw. Hence w · 1

2 ∈W . Next we claim that

if u ∈ U and u · 2 6= 0, then u ∈W. (ii)
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Let u ∈ U with u · 2 6= 0 and choose w ∈ W ∗ such that u + w 6= 0. We have

wµw+u = −u − w + wµu − u. Notice however that w,wµw+u, wµu ∈ W , and

since W is normal in U it follows that wµw+u conjugated by u is in W . Hence

−u · 2 = (−u + wµw+u + u) − (−w + wµu) ∈ W . But u · 4 6= 0, since there are

no elements of order 4 in U . It follows from (i) that u = (u · 2) · 1
2 ∈W .

Our next step is to show that

if u ∈ U \W , then u inverts W ; in particular W is abelian. (iii)

By (ii) we see that all elements in U \W are involutions. It follows that any

involution u ∈ U \W inverts W , because w+u /∈W for w ∈W , and then w+u

is an involution, so u inverts w.

Next we claim

W is an elementary abelian 2-group, and hence so is U . (iv)

If W is an elementary abelian 2-group, then, since by (ii), all elements in U \W

are involutions, we see that U is also an elementary abelian 2-group and we are

done.

So assume that W is not an elementary abelian 2-group. Let x, y ∈ U \W .

Since x and y invert W , x + y centralizes W . But if x + y /∈ W , then x + y

inverts W . It follows that x + y ∈ W and thus W has index 2 in U . Let now

x, y ∈ U \W be elements such that x+y 6= 0. Then, −xµx+y−y−x+xµy−y = 0.

However, x, y, xµy, xµx+y /∈ W , so we get that 0 is the sum of an odd number

of elements which are not in W . This contradicts the fact that U/W has order

two. Hence (iv) holds and the proof of Step 3 is complete. �

Step 4. If W 6= U , then W is of exponent 2.

Sketch of proof of step 4. We now drop the assumption that W is normal in U .

We show that V := 〈w · 2 | w ∈ W 〉 is a normal subgroup of U . Since it is

characteristic in W , it is H-invariant, so by Step 3, either V = 0 or V = U (in

which case W = U as well). Hence if W 6= U , V = 0 and it follows that W is of

exponent 2. �

Step 5. If W 6= U , then U is of exponent 2.

Sketch of proof of step 5. Assume W 6= U ; we show that all elements in U \W

are involutions, by Step 4 it will then follow that W is of exponent 2. For that

we show first that if a ∈W ∗ (which is an involution by step 4) and if b ∈ U \W

is not an involution, then
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(I) aµa+b inverts b;

(II) bµb+a centralizes a;

(III) if b centralizes a, then bµa centralizes a.

Now choose a ∈ W ∗ and let b ∈ U \ W such that b is not an involution. By

(II), bµb+a centralizes a. Since the order of bµb+a is distinct from 2, we can

apply (III) with bµb+a in place of b. Thus, by (III), bµb+aµa centralizes a. Since

µb+aµa ∈ Aut(U), we get that aµ−1
a µ−(b+a) centralizes b, i.e. aµa−b central-

izes b. But by (I), aµa−b inverts b, so b must be an involution. This contradicts

our hypothesis that b is not an involution and completes the proof of Theo-

rem 7.4.1. �

7.5 The “special implies abelian” conjecture

As we indicated above the main conjecture regarding the structure of the root

groups of a special Moufang set is Conjecture 7.2.1 which asserts that they must

be abelian. In addition to Proposition 7.2.2, the best results we have toward this

conjecture are the following two results.

Theorem 7.5.1. If a root group of a special Moufang set contains involutions then

it is (abelian) of exponent 2.

Theorem 7.5.2. The root groups of a special Moufang set are abelian if and only

if its µ-maps are involutions.

We only present the proof of Theorem 7.5.1.

Proof of Theorem 7.5.1.

Step 1. Let a, b ∈ U∗, such that a ∈ Inv(U) and a inverts b. Then a centralizes

b and hence b ∈ Inv(U).

Proof of Step 1. First note that

if a, b ∈ Inv(U) then a commutes with aµb. (∗)

Indeed, aµa+b = b + a + aµb + b, so a + aµb is an involution and (∗) follows.

Notice that by Lemma 7.2.5(1),

CU (t) is a group of exponent 2, for all t ∈ Inv(U). (∗∗)

Let a ∈ Inv(U) and let b ∈ U∗ be an element inverted by a. We will show that

b ∈ CU (a). If b ∈ Inv(U), then we are done. So we may assume that b /∈ Inv(U).
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Consider the equality

aµa+b = −b+ a+ aµb − b = a+ b+ aµb − b .

Since a+ b ∈ Inv(U) (because a inverts b), it follows from (∗) that a commutes

with aµa+b so a commutes with b + aµb − b. Conjugating by b we see that aµb

commutes with −b+ a+ b, hence

if a inverts x ∈ U∗ \ Inv(U), then aµx commutes with −x+ a+ x. (7.5)

In what follows we will use the following facts from Proposition 7.3.1(8):

(b · γ)µb·δ = −b · δ2

γ , µµb·δ

b·γ = µ
b δ2

γ

(7.6)

for all γ, δ ∈ Q such that b · γ, b · δ are well defined. Notice that the uniqueness

of roots in U implies that a inverts b · γ, for every γ ∈ Q for which b · γ is well

defined. Let now α, β ∈ Q such that b · α and b · β are well defined. From

equation (7.5) we get

aµb·α commutes with − b · α+ a+ b · α . (7.7)

Applying µ−b·αµb·β ∈ Aut(U) to equation (7.7) we get

aµb·β commutes with − b · β2

α + aµ−b·αµb·β + b · β2

α .

Replacing in this last equality β with α and α with −β we get

aµb·α commutes with b · α2

β + aµb·βµb·α − b · α2

β . (7.8)

From equations (7.7) and (7.8) using (∗∗) we see that

−b · α+ a+ b · α commutes with b · α2

β + aµbβµbα − b · α2

β

and after conjugating by −bα we get

a commutes with aµb·βµb·α − b · (α+ α2

β ) · 2 . (7.9)

Notice that we have used (7.6) which implies that aµb·βµb·α inverts b (because

µb·βµb·α ∈ Aut(U)). Since a and aµbβµbα invert b, a + aµb·βµb·α centralizes b.

But by equation (7.9), a commutes with c := a+ aµb·βµb·α − b · (α+ α2

β ) · 2 and

c commutes with b. Hence, if c 6= 0, then, by (∗∗), c is an involution, and hence

b is an involution. We have thus shown that

aµb·βµb·α = a+ b · (α+
α2

β
) · 2 . (7.10)
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Taking in equation (7.10) α = β = −1 we get

aµ2
−b = a− b · 4 . (7.11)

But taking in equation (7.10) β = −1 and α = 2 we also get

aµ−bµb·2 = a− b · 4 . (7.12)

Hence aµ2
−b = aµ−bµb·2. Applying µb on both sides of this equality and using

equation (7.6) we obtain aµ−b = aµb· 1
2

or

a = aµb· 1
2

µb (7.13)

But from equations (7.10) and (7.13) we get

a = aµb· 1
2

µb = a+ b · 6 .

so b · 6 = 0. Since the order of b is a prime (see Proposition 7.2.2(4)) and

b /∈ Inv(U), we see that b · 3 = 0. But then, by Proposition 7.3.1(11), µ2
b = µ2

−b.

However, by equation (7.10), aµ2
b = a+b ·4 whereas aµ2

−b = a−b ·4, so b ·8 = 0.

This is a contradiction and the proof this step is complete. �

Step 2. Let b ∈ U∗. We will show that b ∈ Inv(U). Assume not and let

a ∈ Inv(U), then aµa+b = −b + a + aµb − b, and conjugating by b we get that

−b · 2 + a+ aµb ∈ Inv(U). Thus aµb inverts −b · 2 + a, so, by Step 1, −b · 2 + a

is an involution. It follows that a inverts −b · 2 and hence a inverts b. But

then, by Step 1, b is an involution, a contradiction. This completes the proof of

Theorem 7.5.1. �

7.6 The “special abelian implies Jordan algebra” conjecture

In this section we assume that U is abelian. Hence, by Proposition 7.3.1(13),

µ2
a = 1 , for all a ∈ U∗ .

We assume that τ = µe for some e ∈ U∗, but occasionally e may vary. Recall

that by Remark 7.2.3, U is a vector space over a prime field F. Recall also that

by Theorem 3.5, ha is an invertible F-linear transformation of U , for all a ∈ U∗.

The main conjecture here is:

Conjecture 7.6.1. There exists a field extension K/F such that

(1) U is a vector space over K;

(2) ha ∈ EndK(U), for all a ∈ U∗;



A course on Moufang sets 117

(3) Ue := (U,H, e) is a quadratic Jordan division algebra, where H : x 7→ hx :=

µeµx, for x ∈ U .

Notice that since quadratic Jordan division algebras have been classified (see

Remark 5.3.2), this will yield a complete classification of special Moufang sets

with abelian root groups.

One possible candidate for the field K of Conjecture 7.6.1 is

K := Z
(

CEndF(U)(H)
)

, if char(F) 6= 2.

Notice that since H acts irreducibly on U , K is a commutative field. Note that

any quadratic Jordan algebra over K is also a quadratic Jordan algebra over F,

so another possibility is just to take K = F.

Of course Ue depends on the choice of e, because the Hua-maps ha = µeµa

depend on e. Inspired by the theory of Jordan algebras, it makes sense to call

Ue an isotope.

We define

ha,b := ha+b − ha − hb

for all a, b ∈ U , with the convention that h0 is the zero map. Recall that (U,H, e)

is a quadratic Jordan division algebra if and only if

(Quadratic) H is quadratic, i.e.

(i) hxt = hxt
2 for all t ∈ K;

(ii) the map (x, y) 7→ hx,y is k-bilinear.

(QJ axioms) The following identities hold strictly:

QJ1. he = idU ;

QJ2. ahc,bha = cha,bha
, for all a, b, c ∈ U ;

QJ3. hbha
= hahbha, for all a, b ∈ U .

Notice that axiom QJ2 actually says that haVa,c = Vc,aha, where bVa,c = cha,b,

hence bhaVa,c = cha,bha
and bVc,aha = ahc,bha.

Of course, QJ1 obviously holds. Also, QJ3 is Proposition 4.4.1(6), and ha·s =

ha · s2 for all a ∈ U∗ and s ∈ F. So we can see that some of the axioms defining

a quadratic Jordan division algebra already hold. What is actually missing is:

Missing axioms: The biadditivity of (x, y) 7→ hx,y and QJ2.

Our first observation is the following.
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Proposition 7.6.2. If char(U) 6∈ {2, 3}, then U is a quadratic Jordan division

algebra if and only if condition QJ2 is satisfied.

Proof. This is [DS, Proposition 5.4]. �

In other words, QJ2 implies the biadditivity of (x, y) → hx,y. Our next obser-

vation shows that it is enough to require that QJ2 holds for a being the identity

element but in each isotope Ue.

Proposition 7.6.3. If QJ2 holds for a = e, but in each isotope Ue, i.e., if the

identity

ehb,c = chb,e, for all b, c ∈ U∗ (7.14)

holds in each isotope Ue, e ∈ U∗, then the stronger identity QJ2 holds for each

isotope Ue, e ∈ U∗.

Proof. This is [DS, Corollary 5.6]. �

As we noted in subsection 6.1, the identity in Proposition 6.1.1(2), i.e, the

identity

µ(aτ−1−bτ−1)τ = µ−bµa+bµa , (7.15)

is closely related to QJ2. Indeed, one can show that

(7.15) implies (7.14) with b = c, i.e., ehb,b = bhb,e, for all b ∈ U∗.

Finally, the following theorem brings us back to biadditivity and shows that (in

characteristic different from 2 and 3) it is enough to require even less then the

biadditivity of the map (x, y) 7→ hx,y to show that Ue is a quadratic Jordan

division algebra.

Theorem 7.6.4. Assume that char(U) 6∈ {2, 3}, and that

(i) h−a,b = −ha,b for all a, b ∈ U ;

(ii) aha,b+c = aha,b + aha,c for all a, b, c ∈ U .

Then U satisfies QJ2. It follows that U is a quadratic Jordan division algebra. In

particular if the map (x, y) 7→ hx,y is biadditive, then U is a quadratic Jordan

division algebra.

Proof. In the proof we show that (i) and (ii) imply (7.14), for each isotope Ue.

See [DS, Theorem 5.11] for more details. �



A course on Moufang sets 119

7.7 Finite special Moufang sets

The techniques that were introduced above are useful to give a short and direct

proof for the (known) classification of finite special Moufang sets.

Notation 7.7.1. For any prime power q, we write M(q) := M(GF(q)), where

M(k) is the projective Moufang set over the commutative field k as defined in

subsection 5.1.

The proof of the following Theorem uses the Feit-Thompson “Odd Order The-

orem” and Glauberman’s Z∗-Theorem. Otherwise, it is self contained. We will

only sketch the proof very briefly, and we refer to [DS2] for more details.

Theorem 7.7.2. Let M(U, τ) be a finite special Moufang set such that |U | = q is

even. Then q is a power of 2, U is elementary abelian and M(U, τ) ∼= M(q).

Sketch of proof.

Step 1. By Theorem 7.5.1, U is elementary abelian.

Step 2. |H| is odd and H is transitive on U∗.

Sketch of proof of Step 2. Let

I :=
⋃

x∈X

U∗
x .

First we show that

I is a conjugacy class of involutions in G. (7.16)

From (7.16) it follows that H is transitive on U∗, and therefore, by Proposi-

tion 4.3.1(4) and Proposition 7.3.1(7),

{µa | a ∈ U∗} is a conjugacy class of involutions in N . (7.17)

Notice however that for a, b ∈ U∗ with a 6= b, [µa, µb] 6= 1, because µµb
a = µaµb

,

so if µaµb
= µa, aµb = a, but b is the unique fixed point of µb, because µb is

conjugate to αb.

By (7.16) and Glauberman’s Z∗-Theorem, µaµb ∈ O2′(N), for all a, b ∈ U∗,

where O2′(N) is the largest normal subgroup of odd order of N . However,

H = 〈µaµb | a, b ∈ U∗〉, so H ≤ O2′(N) and hence |H| is odd. �
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Step 3. H is cyclic.

Proof of Step 3. We use the following very useful Lemma of Peterfalvi:

Lemma (Peterfalvi [P2]). Let p be an odd prime, and suppose that P is a p-group

acting faithfully on U with CU (P ) = 0. If |CP (a)| = |CP (b)| for all a, b ∈ U∗,

then P is cyclic.

Now by Step 2, H is solvable and since H is transitive on U∗,

|COp(H)(e)| = |COp(H)(f)|, for all primes p and all e, f ∈ U∗.

Hence by Peterfalvi’s Lemma, Op(H) is cyclic for all primes p, so the Fitting

subgroup F (H) =
∏

p prime Op(H) is cyclic and hence 〈h〉 E H, for all h ∈

F (H)∗. Since H is transitive on U∗,

CU (h) = 0, for all h ∈ F (H)∗.

This implies CF (H)(µx) = 1 for all x ∈ U∗ (because µx = µh
x = µxh would imply

x = xh). Hence H = 〈µxµy〉 ≤ CH(F (H)) ≤ F (H), so H is cyclic. �

Step 4. M(U, τ) ∼= M(q), where q = |U |.

Sketch of proof of Step 4. We pick e ∈ U∗ and we let τ = µe. We show that

H = {ha | a ∈ U∗}, so |H| = q − 1. We then define

a · b = ah
q/2
b ,

and we show that (U,+, ·, e) is a field and that τ is the inverse map of this

field. �

This completes the proof of Theorem 7.7.2. �

In the case where |U | is odd a theorem similar to Theorem 7.7.2 holds, we

state it but omit the (more involved) discussion on it.

Theorem 7.7.3. Let M(U, τ) be a finite special Moufang set such that |U | = q is

odd. Then q is a power of a prime p, U is elementary abelian and M(U, τ) ∼= M(q).

Proof. See [S]. �



A course on Moufang sets 121

References

[BN] A. Borovik and A. Nesin, Groups of finite Morley rank, Oxford university

press, London, 1994.

[BrKl] R. H. Bruck and E. Kleinfeld, The structure of alternative division rings,

Proc. Amer. Math. Soc. 2 (1951), 878–890.

[DS] T. De Medts and Y. Segev, Identities in Moufang sets, Trans. Amer.

Math. Soc. 360 (2008), 5831–5852.

[DS2] , Finite special Moufang sets of even characteristic, Commun.

Contemp. Math. 10 (2008), no. 3, 449–454.

[DST] T. De Medts, Y. Segev and K. Tent, Special Moufang sets, their root

groups, and their µ-maps, Proc. London Math. Soc. 96 (2008), no. 3,

767–791.

[DW] T. De Medts and R. M. Weiss, Moufang sets and Jordan division alge-

bras, Math. Ann. 335 (2006), no. 2, 415–433.

[DW2] , The norm of a Ree group, Nagoya Math. J., to appear.

[HKSe] C. Hering, W. M. Kantor and G. M. Seitz, Finite groups with a split

BN-pair of rank 1, I, J. Algebra 20 (1972), 435–475.

[Kl] E. Kleinfeld, Alternative division rings of characteristic 2, Proc. Natl.

Acad. Sci. USA 37 (1951), 818–820.

[Mc1] K. McCrimmon, A general theory of Jordan rings, Proc. Natl. Acad. Sci.

USA 56 (1966), 1072–1079.

[Mc2] , A taste of Jordan algebras, Springer-Verlag, Berlin, Heidelberg,

New York, 2004.

[McZ] K. McCrimmon and E. Zel’manov, The structure of strongly prime

quadratic Jordan algebras, Adv. Math. 69 (1988), no. 2, 133–222.
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