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Abstract

In this article, we explain how spherical Tits buildings arise naturally

and play a basic role in studying many questions about symmetric spaces

and arithmetic groups, why Bruhat-Tits Euclidean buildings are needed for

studying S-arithmetic groups, and how analogous simplicial complexes arise

in other contexts and serve purposes similar to those of buildings.

We emphasize the close relationships between the following: (1) the

spherical Tits building ∆Q(G) of a semisimple linear algebraic group G de-

fined over Q, (2) a parametrization by the simplices of ∆Q(G) of the bound-

ary components of the Borel-Serre partial compactification X
BS

of the sym-

metric space X associated with G, which gives the Borel-Serre compacti-

fication of the quotient of X by every arithmetic subgroup Γ of G(Q), (3)

and a realization of X
BS

by a truncated submanifold XT of X. We then ex-

plain similar results for the curve complex C(S) of a surface S, Teichmüller

spaces Tg, truncated submanifolds Tg(ε), and mapping class groups Modg

of surfaces. Finally, we recall the outer automorphism groups Out(Fn) of

free groups Fn and the outer spaces Xn, construct truncated outer spaces

Xn(ε), and introduce an infinite simplicial complex, called the core graph

complex and denoted by CG(Fn), and we then parametrize boundary com-

ponents of the truncated outer space Xn(ε) by the simplices of the core

graph complex CG(Fn). This latter result suggests that the core graph com-

plex is a proper analogue of the spherical Tits building.

The ubiquity of such relationships between simplicial complexes and

structures at infinity of natural spaces sheds a different kind of light on

the importance of Tits buildings.
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1 Introduction

Symmetric spaces and Lie groups, in particular symmetric spaces of noncom-

pact type and their quotients by arithmetic groups, real and p-adic semisimple

Lie groups, are fundamental objects in many different subjects of mathematics

such as differential geometry, topology, analysis, Lie group theory, algebraic ge-

ometry, and number theory. Both Tits buildings and Bruhat-Tits buildings arise

naturally and play a crucial role in better understanding structures at infinity of

these spaces, for example, the topology of the boundaries of compactifications

of such spaces.

In this article, we try to illustrate this through some applications. For ex-

ample, we show how the classification of geodesics in a symmetric space X

of noncompact type naturally leads to the spherical Tits building ∆(G) of an

associated semisimple Lie group G. We explain that the Borel-Serre compactifi-

cation Γ\X
BS

of quotients Γ\X of X by arithmetic subgroups Γ, or rather the

Borel-Serre partial compactification X
BS

of X, is related to the Tits building
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∆Q(G) of an algebraic group G defined over Q [11]. We also explain that the

Solomon-Tits theorem on the homotopy type of ∆Q(G) can be used to show

that arithmetic subgroups Γ are virtual duality groups, but not virtual Poincaré

duality groups if Γ\X are not compact [11]. We discuss a realization of the

partial compactification X
BS

by a truncated submanifold XT of X [40, 35],

which is convenient for many applications and generalizations. Furthermore,

we use the Borel-Serre compactification Γ\X
BS

and its relationship to the Tits

building ∆Q(G) to determine completely the ends of locally symmetric spaces

Γ\X (Proposition 4.7).

S-arithmetic subgroups such as GL(n, Z[ 1
p1

, . . . , 1
pk

]), where p1, . . . , pk are

prime numbers, are natural generalizations of arithmetic subgroups such as

GL(n, Z). We explain how Bruhat-Tits buildings are naturally needed in order

to study S-arithmetic subgroups. A Bruhat-Tits building can be compactified by

adding a corresponding spherical Tits building, and this compactification was

used to prove that S-arithmetic subgroups of semisimple linear algebraic groups

are duality groups [12].

More importantly, we also try to explain and emphasize in this article the fol-

lowing basic point, in a variety of settings, that natural simplicial complexes can

be used to understand geometry and structures at infinity of noncompact spaces,

as in the above case of buildings for symmetric spaces and locally symmetric

spaces.

One setting is that of the Teichmüller space Tg associated with a closed, ori-

entable surface S = Sg of genus g ≥ 2. Its structure at infinity, in particular

the boundary of a Borel-Serre type partial compactificattion Tg
BS

can be de-

scribed in terms of an infinite simplicial complex, called the curve complex and

denoted by C(S) [21]. Together with an analogue of the Solomon-Tits Theorem

for the curve complex C(S), it can be shown the mapping class group Modg is

a virtual duality group [20] but not a virtual Poincaré duality group [24]. The

partial compactification Tg
BS

can also be realized by a truncated submanifold

Tg(ε), whose boundary components can be easily seen to be parametrized by

the simplices of the curve complex C(S).

Another setting is that of the outer automorphism group Out(Fn) of a free

group Fn on n-generators. It acts properly on the associated outer space Xn of

marked metric graphs with fundamental group equal to Fn [17]. In order to

prove that Out(Fn) is a virtual duality group, a Borel-Serre type partial com-

pactification Xn
BS

of Xn was constructed [8]. An infinite simplicial complex,

called the free factor complex and which is similar to a Tits building was con-

structed for Fn, and an analogue of the Solomon-Tits theorem was also proved

in [22]. On the other hand, the expected relationship between the free factor
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complex and the boundary of Xn
BS

was not clear. In the last section of this

paper, we (1) construct another simplicial complex, called the core graph com-

plex and denoted by CG(Fn), which is similar to the curve complex in its role

in describing the geometry at infinity of Xn, and which can be identified with

the free factor complex, (2) give a realization of Xn
BS

in terms of a truncated

subspace Xn(ε), (3) decompose the boundary of Xn(ε) and hence also of Xn
BS

into components, which are parametrized by the simplices of the core graph

complex CG(Fn). Since the quotient of Xn by Out(Fn) is non-compact, we also

mention the expected result that Out(Fn) is not a virtual Poincaré duality group

(Theorem 9.2), motivated by the results for non-uniform arithmetic subgroups

and mapping class groups.

The basic arrangement of topics in this paper can be seen from the table of

contents at the beginning. For each section, there is also a summary at the be-

ginning of results discussed in that section. For more applications of buildings in

geometry and topology, see the survey [25]. Though there is some overlap with

the survey paper [25], the present paper is complementary. In fact, it can be

considered as a supplement (or a sequel) to [25]. In this paper, arithmetic sub-

groups of algebraic groups have played an important role and motivated results

for natural generalizations such as mapping class groups and outer automor-

phism groups of free groups. For more results and references about arithmetic

groups and other generalizations, see the book [27].

Acknowledgments. This paper is based on a lecture by the author at the confer-

ence Buildings and Groups held in Ghent, Belgium, in May 2007. I would like to

thank the organizers for the invitation to this exciting conference and their hos-

pitality, and the referee for carefully reading an earlier version of this paper and

for making many constructive suggestions. I would also like to thank R. Spatzier

for pointing out references on the rank rigidity problem of Hadamard manifolds.

Finally I would like to thank Diane M. Vavrichek for reading the whole paper

carefully.

2 Symmetric spaces and the geodesic compactifi-

cations

In this section, we first recall the definition of symmetric spaces and their

relationships with Lie groups. Then we define the geodesic compactification

X ∪ X(∞) of a symmetric space X of noncompact type, and explain relation-

ships between the boundary points in X(∞) and the parabolic subgroups of G.

We will then be able, in the next section, to introduce the geometric realization
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of the spherical Tits building ∆(G).

By definition, a complete Riemannian manifold M is called a symmetric space

if for every point x ∈ M , the geodesic symmetry sx, which reverses every

geodesic passing through x, is defined locally and gives a local diffeomorphism

of M at x, is a global isometry of M .

Let G be the identity component of the isometry group Isom(M) of M . Then

G acts transitively on X. For any base point x ∈ X, denote the stabilizer of x in

G by K. Then X can be identified with the homogeneous space G/K, and the

Riemannian metric on X is equal to a G-invariant metric induced from an inner

product on the tangent space TxX.

The Euclidean spaces Rn with the standard metric and their quotients by

discrete isometry groups are symmetric spaces. Besides these flat symmetric

spaces, irreducible symmetric spaces are classified into two types: compact and

non-compact types.

In terms of curvature, a symmetric space of compact type has nonnegative

sectional curvature and strictly positive Ricci curvature, and is compact. Fur-

thermore, its fundamental group is finite.

On the other hand, a symmetric space of non-compact type has nonposi-

tive sectional curvature and strictly negative Ricci curvature. It is also simply

connected. Hence it is a so-called Hadamard manifold, and in particular it is

diffeomorphic to its tangent space TxX (more precisely, the exponential map

expx : TxX → X is a diffeomorphism.)

In this paper, we are mainly concerned with symmetric spaces of noncom-

pact type. In terms of the identification X = G/K above, the Lie group

G = Isom(X)0 is a connected semisimple noncompact Lie group with trivial

center, and the stabilizer K is a maximal compact subgroup of G.

Conversely, for any semisimple Lie group G with finitely many connected

components and finite center, let K be a maximal compact subgroup of G, which

is unique up to conjugation by elements of G. Then the homogeneous space

X = G/K with a G-invariant metric is a Riemannian symmetric space of non-

compact type.

The main example of symmetric spaces for us arises as follows. Let G ⊂
GL(n, C) be a semisimple linear algebraic group defined over Q. Then the real

locus G = G(R) is a real semisimple Lie group with finitely many connected

components and finite center. Note that even if G is connected, G is not neces-

sarily connected.

Besides symmetric spaces X of noncompact type, we will also study their

quotients Γ\X by discrete isometry groups Γ. We will concentrate on the case

that Γ\X have finite volume with respect to the measure induced from the
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invariant metric. In terms of the identification X = G/K, Γ is a discrete sub-

group of G such that the quotient Γ\G has finite volume with respect to any

Haar measure of G, i.e., Γ is a lattice subgroup of G. If G = G(R) is the real lo-

cus of Q-algebraic group as above, then an important class of lattice subgroups

consists of arithmetic subgroups of G(Q).

Besides the above connections with Lie groups and algebraic groups, sym-

metric spaces X and locally symmetric spaces Γ\X are important in other fields

such as harmonic analysis, differential geometry, algebraic geometry, number

theory, and rigidity theory. For example, the Poincaré upper half plane H2, i.e.,

the simply connected surface with constant negative sectional curvature −1, is

the symmetric space associated with G = SL(2, R) and K = SO(2), and the

quotient SL(2, Z)\H2 is the moduli space of all elliptic curves.

Understanding the geometry of X has led to many important notions, and

relationships between the geometry of X and group theoretic structures of G

have played an important role in many problems. One important notion is the

notion of maximal flat subspaces, often called maximal flats or simply flats in

the following. By definition, a maximal flat subspace of X is a maximal totally

geodesic flat subspace. It is known that all maximal flats of X are isometric to

each other, and their common dimension is called the rank of X. Since every

geodesic in X is a totally geodesic flat subspace of dimension 1, the rank of X

is at least 1.

If X = G/K and G = G(R) is the real locus of a semisimple linear algebraic

group defined over Q and hence over R, then the rank of X is equal to the

R-rank of G as an algebraic group.

The geodesic compactification

Since X is non-compact, a natural problem is to understand its geometry at

infinity. One way to understand its geometry at infinity is to study its compact-

ifications and their relationship to its geometry. One such compactification is

the geodesic compactification X ∪ X(∞) which is obtained by adding as the

boundary the set of equivalence classes of directed geodesics.

More specifically, two unit speed directed geodesics γ1(t), γ2(t) of X are

called equivalent if

lim sup
t→+∞

d(γ1(t), γ2(t)) < +∞.

Denote the equivalence class containing a geodesic γ by [γ], and the set of all

equivalence classes of unit speed geodesics in X by X(∞).

Since X is simply connected and nonpositively curved, it can be shown that

for any base point x ∈ X, every equivalence class of geodesics contains exactly
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one geodesic passing through x. Therefore, X(∞) can be identified with the

unit sphere of the tangent space TxX and hence X(∞) is called the sphere at

infinity.

The sphere at infinity X(∞) can be attached to the space X to form the space

X ∪ X(∞) with the following topology:

(1) it restricts to the original topology of X,

(2) it restricts to the topology of X(∞) when X(∞) is identified with the unit

sphere in the tangent space TxX,

(3) a sequence xj ∈ X converges to a boundary point represented by an

equivalence class [γ] if and only if, for a base point x ∈ X, the distance

d(xj , x0) → +∞, and the unit speed geodesic passing through x and xj

and pointing towards xj converges to a geodesic in the equivalence class

[γ].

It can be shown easily that this topology on X ∪X(∞) is independent of the

choice of the basepoint x ∈ X in (3) and the space X ∪ X(∞) is homeomor-

phic to the closed unit ball in TxX. This compactification is called the geodesic

compactification.

Since the isometric action of G on X preserves the equivalence relation on

geodesics, it extends to a continuous action of G on the compactification X ∪
X(∞).

A natural problem is to understand relationship between the boundary X(∞)

and structures of G and X.

It is known that for any point in X, its stabilizer in G is a maximal compact

subgroup. Conversely, by a well-known theorem of Cartan, every compact sub-

group of G has at least one fixed point in X. It is also known that every maximal

compact subgroup of G has exactly one fixed point in X. Therefore, X can be

identified with the set of all maximal compact subgroups of G, and every two

maximal compact subgroups of G are conjugate.

The stabilizers of the boundary points in X(∞) are described as follows.

Proposition 2.1. For every point z ∈ X(∞), its stabilizer in G is a proper

parabolic subgroup of G. Conversely, every proper parabolic subgroup P of G

fixes at least one point in X(∞).

This gives a classification of geodesics of X, or rather their equivalence

classes, in terms of parabolic subgroups of G, whose structures are well devel-

oped and understood. On the other hand, we can also directly classify geodesics

in terms of geometry. Under the above correspondence, a generic geodesic, i.e.,
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a geodesic contained in a unique flat, corresponds to a minimal parabolic sub-

group of G. See [18] for details.

For every proper parabolic subgroup P of G, denote by σP the set of points

of X(∞) fixed by P . In general, σP consists of more than one point. Then, for

every pair of parabolic subgroups P1 and P2,

P1 ⊆ P2 if and only if σP1
⊇ σP2

.

It is also known that, for every two parabolic subgroups P1 and P2, if σP1
∩

σP2
6= ∅, then either σP1

⊆ σP2
or σP2

⊆ σP1
. In particular, X(∞) admits a

decomposition into these subsets σP , where P ranges over all proper parabolic

subgroups of G.

Proposition 2.2. For every proper parabolic subgroup P , σP is a simplex, and the

decomposition

X(∞) =
⋃

P

σP , where P ranges over all proper parabolic subgroups of G,

gives X(∞) the structure of an infinite simplicial complex.

For each P , the interior of the simplex σP , i.e., the open simplex whose

closure is equal to σP , is the set of points in X(∞) whose stabilizers are exactly

equal to P . See [4, 18, 10] for proofs of these statements.

Another important property of the action of G near the infinity X(∞) of the

compactification X ∪ X(∞) is the following.

Proposition 2.3. If Γ ⊂ G is a uniform lattice subgroup, i.e., Γ is a discrete

subgroup with a compact quotient Γ\G, then the action of Γ on X ∪ X(∞) is

small near infinity in the following sense. For every boundary point z ∈ X(∞)

and every compact subset C ⊂ X, for any neighborhood V of z in X ∪ X(∞),

there exists another neighborhood U of z in X ∪X(∞) such that for any γ ∈ Γ, if

γC ∩ U 6= ∅, then γC ⊂ V .

The smallness of the action at infinity says roughly that translates γC are

shrunk to points near X(∞). In particular, if a sequence xj of X converges to

a point z ∈ X(∞), then any other sequence x′

j within bounded distance of the

sequence xj , i.e., lim supj d(xj , x
′

j) < +∞, also converges to the same point z.

The geodesic compactification X ∪ X(∞) has applications to various prob-

lems. For example, the above proposition can be used to prove the integral

Novikov conjecture of Γ (see §6 below).
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The Dirichlet problem on X ∪ X(∞)

The construction of the geodesic compactification X ∪ X(∞) works for any

Hadamard manifold. An important problem for Hadamard manifolds is the

solvability of the Dirichlet problem on X ∪ X(∞): given a continuous function

f on X(∞), find a harmonic function u on X with boundary value equal to f ,

i.e., u can be extended continuously to the boundary X(∞) and u|X(∞) = f .

When the Hadamard manifold is given by a simply connected Riemannian

manifold with sectional curvature pinched by two negative numbers, this Dirich-

let problem is solvable (see [1] and the references therein). For more general

rank 1 Hadamard manifolds which admit compact quotients, the Dirichlet prob-

lem is also solvable [3] (see also [5] for the identification of the Poisson bound-

ary of X with X(∞)). (Note that in this case, the rank of a Hadamard manifold

M is defined to the minimum of the dimension of vector spaces of parallel Ja-

cobi fields along geodesics in M .)

On the other hand, if X is a symmetric space of noncompact type and of rank

at least 2, then the above Dirichlet problem is not solvable. The basic reason is

that the Poisson boundary of X can be identified with a proper subset of X(∞).

For example, consider X = H2 ×H2, where H2 is the Poincaré upper half plane.

Then the rank of X is equal to 2. Suppose that the Dirichlet problem is solvable

on X ∪ X(∞). Then, for every continuous function f on X(∞), we obtain a

bounded harmonic function uf on X with the boundary value f . Now every

bounded harmonic function uf (x, y) on the product H2 ×H2 splits as a product

u1(x)u2(y), where u1, u2 are bounded harmonic functions on H2. (Note that this

splitting follows from the result that the Poisson boundary of X is given by the

distinguished boundary H2(∞)×H2(∞). See [18] for references on the Poisson

boundary of symmetric spaces of noncompact type.) If a sequence xj goes to a

boundary point in H2(∞) but y is fixed, then (xj , y) will converge to a boundary

point in X(∞) independent of y. Then the assumption that the boundary value

of uf (x, y) = u1(x)u2(y) is equal to f implies that u2(y) must be independent

of y if limj→+∞ u1(xj) 6= 0. Similarly, we can conclude that if a sequence yj

goes to a boundary point and limj→+∞ u2(yj) 6= 0, then u1(x) is constant. This

implies that u(x, y) is a constant function. This clearly contradicts the condition

that the boundary value of uf is equal to f if f is not constant. Therefore, in

this case, the Dirichlet problem is not solvable for any non-constant continuous

function f on X(∞).

It is perhaps also worthwhile to point out that it is still an open problem if a

general Hadamard manifold of higher rank that is not a product is a symmetric

space, though the answer is positive if it admits a finite volume quotient. See

[41, 2] for summaries and references of this rank rigidity result and related

generalizations and open problems.
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3 Tits buildings and their geometric realizations

In this section, we recall briefly the notion of spherical buildings and the con-

struction of spherical Tits buildings associated with semisimple real Lie groups.

Then we explain a geometric realization of the Tits buildings in terms of the

simplicial structures on the boundaries of the geodesic compactifications and

their applications to the Mostow strong rigidity of locally symmetric spaces. We

also explain how to use Tits buildings to parametrize boundary components of

other compactifications of symmetric spaces. Then we recall the Tits building

of a semisimple algebraic group G defined over Q and its relationship with the

Tits building of the Lie group G = G(R).

In the study of a semisimple real Lie group G, an important role is played

by a finite group, the Weyl group W . Briefly, let G = NAK be the Iwasawa

decomposition of G, let NK(A) be the normalizer of A in K and let ZK(A) be

the centralizer of A in K. Then the quotient NK(A)/ZK(A) is the Weyl group W

of G. It is known that W is generated by elements of order 2 , which correspond

to reflections in flats in X with respect to the so-called root hyperplanes.

Let a be the Lie algebra of A. Then NK(A) and ZK(A) can be canonically

identified with the normalizer and centralizer of a in K respectively.

The Killing form of g restricts to an inner product on a, and W acts isomet-

rically on a. The roots of the Lie algebra g of G with respect to a are linear

functionals on a. Each root defines a root hyperplane, and the collection of

these hyperplanes is invariant under W .

It is known that the reflections with respect to these root hyperplanes gen-

erate the Weyl group W . The Weyl group is an important example of a finite

Coxeter group.

There is a finite complex naturally associated to the action of W on a. In

fact, the root hyperplanes and their intersections give a decomposition of a into

simplicial cones, i.e., the Weyl chambers and Weyl chamber faces. This decom-

position is called the Weyl chamber decomposition of a. The intersection of these

simplicial cones with the unit sphere of a gives a finite simplicial complex, which

is called the Coxeter complex associated with the Weyl group and its underlying

topological space is the unit sphere.

In general, for every finite group Coxeter group, there is associated a finite

simplicial complex, called the Coxeter complex of the Coxeter group.

With these preparations, we are ready to define spherical Tits buildings.

Definition 3.1. A simplicial complex ∆ is called a spherical Tits building if it con-

tains a family of sub-complexes called apartments, which satisfies the following

conditions:
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(1) Every apartment is a finite Coxeter complex.

(2) Any two simplices are contained in some apartment.

(3) Given two apartments Σ and Σ′ and simplices σ, σ′ ∈ Σ ∩ Σ′, there exists

an isomorphism of Σ onto Σ′ which keeps σ, σ′ pointwise fixed.

The condition (3) implies that there is a common finite Coxeter group whose

complex is isomorphic to every apartment. Since the Coxeter complex and

hence the apartments are triangulations of spheres, the building is called spher-

ical.

To construct a Tits building ∆, we can proceed as follows:

(1) Construct a simplicial complex.

(2) Pick out a collection of subcomplexes and show that they satisfy the con-

ditions for apartments.

Tits building of a semisimple Lie group

Let G be a semisimple Lie group. Define a simplicial complex ∆(G) as follows:

(1) The simplices of ∆(G) are parametrized by the proper parabolic subgroups

of G. For each parabolic subgroup P , denote the corresponding simplex

by σP .

(2) The vertices (or rather simplices of dimension 0) of ∆(G) are parametrized

by the maximal proper parabolic subgroups of G.

(3) Let P1, . . . , Pk be distinct maximal proper parabolic subgroups of G. Then

their corresponding simplices form the vertices of a (k − 1)-simplex σP if

and only if the intersection P1 ∩ · · · ∩ Pk is the parabolic subgroup P .

Since G has uncountably infinitely many parabolic subgroups, ∆(G) is an

infinite simplicial complex. If the rank of G is equal to 1, then every proper

parabolic subgroup of G is maximal, and hence ∆(G) is a disjoint union of

uncountably many points. For example, when G = SL(2, R), the building ∆(G)

can be identified with the circle S1 with the discrete topology, in which every

apartment consists of a pair of distinct points.

On the other hand, if the rank of G is at least 2, then once ∆(G) is shown to

be a spherical building, it is connected. In fact, every apartment is connected

and every two simplices of ∆(G) are contained in an apartment, so in particular,

every two vertices are connected by an apartment.
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A natural collection of apartments of ∆(G) can be constructed as follows. For

every maximal compact subgroup K of G, let g = k⊕p be the associated Cartan

decomposition. For every maximal abelian subalgebra a of p, let A = exp a be

the corresponding subgroup.

It is known that there are only finitely many parabolic subgroups P1, . . . , Pl

containing A, and they correspond to the Weyl chambers in the decomposition

of a described above. Therefore, the subcomplex of ∆(G) consisting of the

simplices σP1
, . . . , σPl

is isomorphic to the Coxeter complex of the Weyl group

W of G. This subcomplex is defined to be an apartment of ∆(G).

By changing the choices of K and A, we obtain the desired collection of

apartments. Since all such subgroups K and A are conjugate in G, all these

apartments are isomorphic.

By using the Bruhat decomposition, it can be shown that, for every two

parabolic subgroups P1, P2, there exists a maximal compact subgroup K and

a corresponding subgroup A = exp a as above such that A ⊂ P1, P2. It is impor-

tant to note that the maximal compact subgroup K will change and depend on

the pair of parabolic subgroups P1, P2.

Combining the above discusssions, it can be shown that these apartments

satisfy the conditions in Definition 3.1 above and that ∆(G) is a spherical Tits

building. See [14, 18, 42] for more details.

A geometric realization of Tits buildings and its applications

After defining the Tits building ∆(G) of G, we now relate it to the geometry of

the symmetric space X.

For K ⊂ G, let x ∈ X be the corresponding point. First, it is known that,

for every maximal abelian subalgebra a ⊂ p as above, the orbit of A = exp a

through the point x, A · x, is a flat of X. Conversely, every flat of X containing

the basepoint x is of this form A · x. To get other flats of X, we need to vary the

maximal compact subgroup K.

The closure A · x of the flat A·x in the geodesic compactification X∪X(∞) is

homeomorphic to the closed unit ball in a, and the Weyl chamber decomposition

of a induces a simplicial complex decomposition of the boundary ∂A · x which

can be naturally identified with the Coxeter complex of the Weyl group W of G.

Using this we can obtain the following geometric realization of ∆(G) (see

[18, Proposition 3.20]).

Proposition 3.2. The simplicial complex coming from the decomposition of X(∞)

into cells σP in Proposition 2.2 is isomorphic to the spherical Tits building ∆(G)
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of G. In particular, the underlying topological space of ∆(G) can be identified with

the sphere at infinity X(∞).

In the above proposition, the simplex σP is exactly the set of points X(∞)

fixed by the parabolic subgroup P .

One major application of this identification is the celebrated Mostow strong

rigidity theorem for locally symmetric spaces in [36].

Theorem 3.3. Let Γ\X and Γ′\X ′ be two compact irreducible locally symmetric

spaces of noncompact type. (A locally symmetric space is said to be irreducible if it

does not admit any finite cover which splits as a product.) Assume that X is not

equal to the Poincaré upper half plane H2. If Γ\X and Γ′\X ′ are homotopic, or

equivalently, they have the same fundamental group, i.e., Γ ∼= Γ′, then Γ\X and

Γ′\X ′ are isometric after scaling the metrics on irreducible factors of X and X ′.

The proof is divided into two cases depending on whether the rank of G is

equal to 1 or not. The proof of the higher rank case makes use of Tits buildings,

and the basic idea is as follows.

A homotopy equivalence ϕ : Γ\X → Γ′\X ′ induces an equivariant quasi-

isometry between X and X ′. Since the actions of Γ and Γ′ on the geodesic

compactifications X ∪ X(∞) and X ′ ∪ X ′(∞) respectively are small at in-

finity, it is reasonable to expect that the map ϕ induces a well-defined map

ϕ∞ : X(∞) → X ′(∞). (Note that though ϕ is not uniquely defined, the small-

ness of the action allows us to remove the ambiguity.) In fact, this is true but

is the most difficult part of the whole proof, and the proof makes essential use

of the realization in Proposition 3.2 of the spherical Tits building ∆(G) in terms

of the simplicial structure on the sphere at infinity X(∞). As a consequence, it

follows that the map ϕ∞ induces an isomorphism of the spherical Tits buildings

∆(G) and ∆(G′). Using the rigidity of spherical Tits buildings in [42], it follows

that Γ\X and Γ′\X ′ are isometric to each other after scaling. See [25] for a

more detailed outline.

Remark 3.4. As emphasized in [25], the identification in Proposition 3.2 natu-

rally gives an enhanced Tits building, the so-called topological Tits building. In

the proof of the Mostow strong rigidity, this notion of topological Tits buildings

is used implicitly and plays an important role.

Remark 3.5. In [36], the Mostow strong rigidity theorem was only proved

for compact locally symmetric spaces as stated above. It also holds for non-

compact but finite volume locally symmetric spaces and was proved later by

Margulis when the rank of the symmetric spaces is at least 2, and by Prasad

when the rank of the locally symmetric spaces is equal to 1. For a summary of
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the history of rigidity properties of locally symmetric spaces and other related

results, see [28].

Remark 3.6. A closely related Mostow strong rigidity result for lattices in non-

archimedean (i.e., p-adic) linear semisimple algebraic groups was proved by

Prasad in [39]. The proof also uses similar ideas by replacing the symmet-

ric spaces of real semisimple Lie groups with the Bruhat-Tits buildings of lin-

ear semisimple algebraic groups over non-archimedean fields. It might be also

worthwhile to point out that rigidity of lattices of p-adic semisimple Lie groups

was first considered in [39]. A significant generalization of the Mostow strong

rigidity was given by Kleiner and Leeb in [32] on quasi-isometry rigidity of sym-

metric spaces and Euclidean buildings. In both these papers, the Tits buildings

appearing at the infinity have also played an important role.

For other generalizations of the Mostow strong rigidity and a characterization

of irreducible symmetric spaces and Euclidean buildings of higher rank by their

asymptotic (or Tits) geometry, see the paper of Leeb [34].

Relationships similar to that in Proposition 3.2 between Tits buildings (or

equivalently parabolic subgroups) and boundaries of compactifications can also

be established for other compactifications of symmetric spaces. The importance

of such relationships is that parabolic subgroups can be used to understand the

structure at infinity of X. For a systematical discussion, see the books [10, 18].

For a symmetric space X of non-compact type, there are finitely many non-

isomorphic Satake compactifications. They are partially ordered, and there is a

unique maximal one, called the maximal Satake compactification and denoted

by X
S

max.

The maximal Satake compactification X
S

max is important for many applica-

tions. For example, it contains the maximal Furstenberg boundary G/Pmin,

where Pmin is a minimal parabolic subgroup of G, in its boundary ∂X
S

max, which

parametrizes the set of chambers, i.e., simplices of top dimension, of ∆(G). In

the proof of the Mostow strong rigidity theorem outlined above, to show that

the map ϕ∞ induces an isomorphism between ∆(G) and ∆(G′), the starting

pointing is to prove that ϕ∞ maps the maximal Furstenberg boundary of X to

the maximal Furstenberg boundary of X ′.

The compactification X
S

max is also important in determining the Martin com-

pactification of X, which deals with structures of the cone of positive eigenfunc-

tions on X, for example, how to represent a general positive eigenfunction as a

superposition of extremal ones of the cone (see [18]).

The boundary of X
S

max can be described as follows. With respect to a fixed

maximal compact subgroup K, every proper parabolic subgroup P of G admits
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a Langlands decomposition:

P = NP AP MP
∼= NP × AP × MP . (1)

Then KP = MP ∩ K is a maximal compact subgroup of MP , and

XP = MP /KP

is a symmetric space of lower dimension and is called the boundary symmetric

space at infinity associated with P . Then the Langlands decomposition of P

induces the horospherical decomposition of X with respect to P :

X = NP × AP × XP ,

which generalizes the familiar x, y coordinates of the Poincaré upper half plane

H2.

For every proper parabolic subgroup P , its boundary symmetric space XP is

canonically contained in the boundary ∂X
S

max, and the following disjoint de-

composition holds:

∂X
S

max =
∐

P

XP ,

where P runs over all proper parabolic subgroups of G.

In the compactification X
S

max, for every two parabolic subgroups P1, P2, XP1

is contained in the closure of XP2
if and only if P1 is contained in P2. Since

each XP is diffeomorphic to some Euclidean space, the boundary ∂X
S

max is a

cell complex dual to the Tits building ∆(G). See [18] for more discussion about

this duality.

For both the geodesic compactification X ∪ X(∞) and the maximal Satake

compactification X
S

max, the boundary can be decomposed into boundary compo-

nents parametrized by parabolic subgroups. It is naturally expected that similar

relations hold for other compactifications of X. See [10] for more details.

The Tits building of a semisimple linear algebraic group defined over Q

As mentioned before, given a semisimple linear algebraic group G defined

over Q, its real locus G = G(R) is a semisimple Lie group with finitely many

connected components and finite center. Therefore, there is naturally a spheri-

cal Tits building ∆(G) associated with G.

This building is important for understanding the geometry at infinity of the

symmetric space X associated with G. However, to study the geometry at in-

finity of quotients of X by arithmetic subgroups of G(Q), we need another
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spherical Tits building ∆Q(G) associated with G which also encodes the fact

that G is defined over Q.

Assume that G contains at least one proper parabolic subgroup defined over

Q, which is equivalent to assuming that the Q-rank of G is positive, which is

in turn equivalent to assuming that quotients of X by arithmetic subgroups of

G(Q) are noncompact (see Proposition 4.4 below). Otherwise, the building

∆Q(G) is empty. Under this assumption, the definition of ∆Q(G) is similar to

that of ∆(G) by considering only parabolic subgroups of G defined over Q,

which are often called Q-parabolic subgroups.

Specifically, ∆Q(G) is an infinite simplicial complex satisfying the following

properties:

(1) The simplices of ∆Q(G) are parametrized by the set of all proper Q-para-

bolic subgroups of G. For each Q-parabolic subgroup P, denote the cor-

responding simplex by σP.

(2) The vertices (i.e. simplices of dimension 0) of ∆Q(G) are parametrized

by the maximal proper Q-parabolic subgroups of G.

(3) Let P1, . . . ,Pk be distinct maximal proper parabolic subgroups of G. Then

their corresponding zero dimensional simplices form the vertices of a (k−
1)-simplex σP if and only if the intersection P1 ∩ · · · ∩ Pk is equal to the

parabolic subgroup P.

In addition, a natural collection of apartments in ∆Q(G) can be described

in a manner similar to the description of the apartments of ∆(G). Briefly, for

every maximal Q-split torus T of G, there are only finitely many Q-parabolic

subgroups P1, . . . ,Pm containing T, and their simplices σP1
, . . . , σPm

form an

apartment of ∆Q(G).

Remark 3.7. It might be helpful to point out some differences between the two

buildings ∆Q(G) and ∆(G) associated with G. It is true that for every proper

Q-parabolic subgroup P of G, its real locus P = P(R) is a proper parabolic

subgroup of G, and hence there a simplex σP in ∆(G) corresponding to P. On

the other hand, by the definition of ∆Q(G), there is also a simplex σP of ∆Q(G)

associated with P. In general, these two simplices σP and σP are not equal

to each other. In particular, dim σP ≥ dim σP, and the equality holds if and

only if the Q-rank of P is equal to its R-rank, which holds when P is Q-split.

Therefore, if G is Q-split, then ∆Q(G) can be naturally contained in ∆(G) as a

sub-building. Otherwise, there is in general no inclusion between them.

Though these two buildings ∆(G) and ∆Q(G) are different, they have the

following property, the so-called Solomon-Tits Theorem (see [14]).
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Proposition 3.8. Let r be the rank of a semisimple Lie group G. Then the Tits

building ∆(G) is homotopic to a bouquet of uncountably many spheres of dimen-

sion r − 1. Let rQ be the Q-rank of a semisimple linear algebraic group G defined

over Q. Then the Tits building ∆Q(G) is homotopic to a bouquet of infinitely but

countably many spheres of dimension rQ − 1.

4 Arithmetic groups, Borel-Serre compactifications,

and Tits buildings

In this section we first recall the definitions of arithmetic subgroups Γ of linear

algebraic groups G and of classifying (or universal) spaces for Γ. Then we recall

the Borel-Serre partial compactification X
BS

of a symmetric space X and an ap-

plication of this compactification to understanding the ends of locally symmetric

spaces Γ\X. Finally we summarize duality properties of arithmetic subgroups

and explain that X
BS

is a Γ-cofinite universal space for proper actions of Γ.

Let G ⊂ GL(n, C) be a semisimple linear algebraic group defined over Q.

Then a subgroup Γ ⊂ G(Q) is called an arithmetic subgroup if it is commensu-

rable with G(Z) = G(Q) ∩ GL(n, Z), i.e., the intersection Γ ∩ G(Z) is of finite

index in both Γ and G(Z).

As above, let G = G(R), and let K ⊂ G be a maximal compact subgroup.

Then X = G/K with an invariant metric is a Riemannian symmetric space of

non-compact type.

It is easy to see that an arithmetic subgroup Γ is a discrete subgroup of G

and hence acts properly on X. If Γ is torsion-free, then the action of Γ on X is

proper and fixed point free, and Γ\X is a manifold.

Proposition 4.1. If Γ is a torsion-free arithmetic subgroup, then the locally sym-

metric space Γ\X is a K(Γ, 1)-space.

Proof. By definition, a K(Γ, 1)-space is a topological space B with π1(B) = Γ

and πi(B) = {1} for i ≥ 2. Since X is contractible and the action of Γ is proper

and fixed point free, π1(Γ\X) = Γ and for i ≥ 2, πi(Γ\X) = πi(X) = {1}. �

The existence of a good model of K(Γ, 1) has important consequences on

cohomological properties of Γ. An immediately corollary is the following result.

Corollary 4.2. If Γ is a torsion-free arithmetic subgroup, then the cohomologi-

cal dimension of Γ is less than or equal to dim X, i.e., for every Γ-module M ,

Hi(Γ,M) = 0 for i > dim X.
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To get other finiteness properties such as FP∞ or FL (see [14]), we need

some finiteness conditions on models of K(Γ, 1). A strong finiteness condition

is that there exists a finite K(Γ, 1)-space in the following sense.

Definition 4.3. A K(Γ, 1)-space is called finite if it is given by a finite CW-com-

plex.

If Γ is torsion-free and the quotient Γ\X is compact, then Γ\X is a compact

manifold and hence admits a finite triangulation. This implies that Γ admits a

finite K(Γ, 1)-space.

Therefore, a natural and important problem is to determine when the quo-

tient Γ\X is compact, i.e., when Γ is a uniform lattice subgroup of G.

Proposition 4.4. Let G be a semisimple linear algebraic group defined over Q.

Then for every arithmetic subgroup Γ ⊂ G(Q), Γ\X is compact if and only if

the Q-rank of G is equal to zero, or equivalently there is no proper Q-parabolic

subgroup of G.

This was conjectured by Godement and proved by Borel and Harish-Chandra

[9], and by Mostow and Tamagawa [37].

If Γ\X is non-compact, then G admits proper Q-parabolic subgroups, or

equivalently the Tits building ∆Q(G) is nontrivial, which turns out to be crucial

in describing the boundary at infinity of Γ\X.

When Γ\X is non-compact, it certainly is not a finite CW-complex. One

natural way to overcome this problem is to find a compactification Γ\X such

that

(1) the compactification Γ\X has the structure of a finite CW-complex,

(2) and the inclusion Γ\X → Γ\X is a homotopy equivalence.

The first condition is satisfied if Γ\X is a compact manifold with boundary

or with corners, and with interior equal to Γ\X.

When X is the Poincaré upper halfplane H2, a non-compact quotient Γ\X is

a Riemann surface with finitely many cusp neighborhoods. Each cusp neighbor-

hood is diffeomorphic to a cylinder [0,+∞)×S1 and hence can be compactified

by adding a circle S1 at infinity. The resulting compactification Γ\X of Γ\X is

a compact surface with boundary, and the inclusion Γ\X → Γ\X is clearly a

homotopy equivalence.

For a general non-compact locally symmetric space Γ\X associated to an

arithmetic subgroup Γ, Borel and Serre [11] defined a compactification Γ\X
BS

of Γ\X which has similar properties as follows.
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Theorem 4.5. Let G be a semisimple linear algebraic group defined over Q and

let Γ ⊂ G(Q) be an arithmetic subgroup such that Γ\X is non-compact, i.e., Γ is

a non-uniform lattice of G. Then there exists a partial compactification X
BS

of X

such that the following conditions are satisfied:

(1) X
BS

is a real analytic manifold with corners and can be deformation re-

tracted into the interior X, and hence is contractible, since X is diffeomor-

phic to Rn, n = dimX, and contractible.

(2) The boundary ∂X
BS

is decomposed into boundary components eP param-

etrized by proper Q-parabolic subgroups P of G such that each bound-

ary component is contractible, and for every two proper Q-parabolic sub-

groups P1 and P2, eP1
is contained in the closure of eP2

if and only if

P1 ⊆ P2. Consequently, ∂X
BS

has the same homotopy type as the Tits

building ∆Q(G).

(3) The Γ-action on X extends to a proper, real analytic action on X
BS

with a

compact quotient Γ\X
BS

. In particular, Γ\X
BS

defines a compactification

of Γ\X, which is called the Borel-Serre compactification and is also denoted

by Γ\X
BS

.

(4) If Γ is torsion free, then Γ acts fixed-point freely on X
BS

, the quotient Γ\X
BS

is a compact real analytic manifold with corners, and the inclusion Γ\X →

Γ\X
BS

is a homotopy equivalence.

A corollary to the above result is the following result.

Corollary 4.6. If Γ is a torsion-free arithmetic subgroup as above, then Γ admits

a finite K(Γ, 1)-space, and hence Γ is of type FL.

Note that the torsion-free condition on Γ is necessary for the existence of

a finite dimensional BΓ. Proposition 4.7 also follows from Theorem 4.5. It

concerns the ends of Γ\X and is well-known but probably has not been written

down explicitly before.

Proposition 4.7. Let G be a semisimple linear algebraic group defined over Q,

and let Γ be an arithmetic subgroup of G(Q) as above. Denote the Q-rank of G

by rQ. Assume that rQ ≥ 1, which is equivalent to Γ\X being noncompact. The

structure of the ends of Γ\X is as follows:

(1) If rQ = 1, then the ends of Γ\X are parametrized by Γ-conjugacy classes of

proper Q-parabolic subgroups of G.
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(2) If rQ > 1, then Γ\X has only one end, i.e., the infinity of Γ\X is connected.

Proof. By definition, the ends of a complete connected noncompact Riemannian

manifold M are basically the unbounded connected components of the comple-

ment of compact subsets. Specifically, for any compact subset C ⊂ M , denote

by n(C) the number of unbounded connected components of the complement

M − C. Clearly n(C) < +∞. For any two compact subsets C1, C2 of M with

C1 ⊂ C2, it is also clear that n(C1) ≤ n(C2). The number e(M) of ends of M is

defined by

e(M) = sup
C

n(C) ,

where C ranges over compact subsets of M .

Assume that e(M) < +∞. Then there exists a compact subset C0 such that

n(C0) = e(M), and the unbounded connected components of M −C0 are called

the ends of M . Clearly we can replace C0 by any larger compact subset and

hence ends of M are well-defined up to compact subsets.

First we assume that rQ ≥ 2 and that Γ is torsion-free. In this case, the

Tits building ∆Q(G) is connected. It suffices to show that for every compact

subset C of Γ\X, the complement Γ\X −C has only one unbounded connected

component. Since Γ\X
BS

is a manifold with corners with the interior equal

to Γ\X, for every compact subset C of Γ\X, there is a neighborhood U of the

boundary ∂Γ\X
BS

such that the complement Γ\X
BS

− U contains C and U is

homotopic to the boundary ∂Γ\X
BS

by deformation retraction. Since ∂X
BS

has the same homotopy type as the building ∆Q(G), and ∆Q(G) is connected,

it follows that ∂Γ\X
BS

= Γ\∂X
BS

and hence U is connected. Since U ∩ Γ\X
and U are also homotopic to each other, U∩Γ\X is also connected. Note that the

complement Γ\X−C of C in Γ\X is contained in U∩Γ\X, and the complement

of U ∩ Γ\X in Γ\X is compact. It follows that the complement Γ\X − C has

only one unbounded connected component. By the arbitrary choice of C, this

implies that Γ\X has only one end.

If Γ contains some nontrivial torsion elements, then there is always a torsion-

free normal subgroup Γ′ of finite index. By the previous paragraph, the locally

symmetric space Γ′\X has only one end. Since Γ′\X is a finite cover of Γ\X,

any compact subset of Γ\X is lifted to a compact subset of Γ′\X. This implies

that Γ\X has also only one end.

Before treating the case when the rank rQ = 1, we recall the rational Lang-

lands decomposition and Siegel sets. For every Q-parabolic subgroup P of G,

there is also a rational Laglands decomposition of the real locus P = P(R)

with respect to the maximal compact subgroup K ⊂ G obtained by taking the
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Q-structure of P into account:

P = NP APMP
∼= NP × AP × MP , (2)

where AP is isomorphic to the identity component of the real locus of a maximal

Q-split torus of P. Note that unless the Q-rank of P agrees with the R-rank

of P, this decomposition is different from the real Langlands decomposition in

equation (1).

Assume now that r = 1. Then every proper Q-parabolic subgroup P is both

a minimal and maximal Q-parabolic subgroup, and in particular, the split com-

ponent AP has dimension 1. Identify AP with R1 so that the positive chamber

corresponds to (0,+∞). For any t ∈ R1, denote the subset of AP corresponding

to [t,+∞) by AP,t. For any compact subset ω of NP MP, the subset ωAP,tx ⊂ X

is called a Siegel set of X associated with P, where x ∈ X is the fixed point

of K.

The reduction theory for arithmetic groups implies the following results (see

[10]):

(1) There are only finitely many conjugate classes of proper Q-parabolic sub-

groups P of G.

(2) Let P1, . . . ,Pm be representatives of Γ-conjugacy classes of the proper

Q-parabolic subgroups, and let ω1AP1,t1x, . . . , ωmAPm,tm
x be the Siegel

sets associated with them. When ω1, . . . , ωm are sufficiently large, the

complement of the images of these Siegel sets in Γ\X is a bounded subset.

Furthermore, when ti ≫ 0, the image of these Siegel sets are disjoint in

Γ\X.

Choose the compact sets ωi to be sufficiently large and also connected. Pick

any compact subset C of Γ\X. It follows easily from the horospherical decom-

position of X induced from the Langlands decomposition of Pi that for ti ≫ 0,

the image of ωiAPi,ti
x in Γ\X for i = 1, . . . ,m is contained in Γ\X − C. Since

these images are disjoint, this implies that the image of each ωiAPi,ti
x in Γ\X

is an end of Γ\X, and the ends of Γ\X are parametrized by P1, . . . ,Pm, i.e.,

the Γ-conjugacy classes of the proper Q-parabolic subgroups. (Note that the

complement of the union of these images in Γ\X is bounded under the above

largeness assumption on ωi.) �

Realization of X
BS

by a truncated subspace XT

As pointed out above, one of the motivations for constructing the Borel-Serre

compactification Γ\X
BS

in [11] is to get a finite K(Γ, 1)-space using the fact
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that the inclusion Γ\X → Γ\X
BS

is a homotopy equivalence and Γ\X
BS

is a

manifold with corners.

Another natural method is to construct a compact submanifold with corners,

denoted by (Γ\X)T , where T is the truncation parameter, such that the inclu-

sion

(Γ\X)T → Γ\X

is a homotopy equivalence. Then the submanifold (Γ\X)T can be used for this

same purpose.

When Γ\X is a Riemann surface, i.e., when X is the Poincaré upper half-

plane H2, then (Γ\X)T is a compact surface with boundary obtained by trun-

cating sufficiently small cusp neighborhoods, where T measures the depth of

the neighborhoods. The inverse image of (Γ\X)T in X = H2, denoted by XT , is

the complement of Γ-equivariant horodiscs at the rational boundary points, i.e.,

XT is obtained from X by removing horodiscs from rational boundary points in

an equivariant way. See [40] for a picture.

For a general Γ\X, such a truncated submanifold (Γ\X)T has also been con-

structed. See the papers [35, 40] for the history and references. Briefly, X

contains a Γ-equivariant submanifold with corners, denoted by XT , such that

the quotient Γ\XT is compact and both the partial compactification X
BS

and

X can be Γ-equivariantly deformation retracted onto XT . In fact, X
BS

is also

equivariantly diffeomorphic to XT .

The arithmetic subgroup Γ leaves XT invariant, and the quotient Γ\XT gives

the desired submanifold (Γ\X)T of Γ\X which is diffeomorphic to Γ\X and

hence gives a finite K(Γ, 1)-space if Γ is torsion-free.

Duality properties of arithmetic subgroups

Besides giving a finite K(Γ, 1)-space, the partial Borel-Serre compactification

X
BS

can also be used to show that non-uniform arithmetic subgroups Γ are not

virtual Poincaré duality groups.

Recall from [15] that a group Γ is called a duality group of dimension d if

there is an integer d ≥ 0 and a Γ-module D such that, for every Γ-module M

and i ≥ 0, there is the following isomorphism:

Hi(Γ,M) ∼= Hd−i(Γ,D ⊗ M) . (3)

The module D is called the dualizing module of Γ. If D can be taken to Z,

then Γ is called a Poincaré duality group, i.e., the following isomorphism holds:

Hi(Γ,M) ∼= Hd−i(Γ,M) . (4)
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If Γ is the fundamental group of a closed nonpositively curved Riemannian

manifold M , then it follows from the Poincaré duality of M that Γ is a Poincaré

duality group (see [15]). As pointed out before, a symmetric space of noncom-

pact type is nonpositively curved. In particular, if Γ is a torsion-free arithmetic

subgroup and Γ\X is compact, then Γ\X is a closed nonpositively curved Rie-

mannian manifold and hence Γ is a Poincaré duality group.

Another important result of [11] is the following:

Theorem 4.8. Assume that the Q-rank r of G is positive. Let Γ ⊂ G(Q) be a

torsion-free arithmetic subgroup. Then Γ is a duality group of dimension dim X−r,

and the dualizing module D is equal to Hr−1(∆Q(G)). In particular, D is of

infinite rank and Γ is not a Poincaré duality group.

The Solomon-Tits theorem (Proposition 3.8) implies that Hi(∆Q(G)) is not

equal to zero if and only if i = r−1, and when i = r−1, Hi(∆Q(G)) is infinitely

generated. This result and the fact that the boundary of the partial Borel-Serre

compactification X
BS

is homotopic to ∆Q(G) are crucial in the proof of the

above theorem.

Universal spaces for proper actions of Γ and X
BS

Another important property of X
BS

is that it is a universal space for proper

actions of arithmetic subgroups.

Recall that when we discussed Γ\X as a K(Γ, 1)-space, we assumed that Γ

was torsion-free. This is important since if Γ contains nontrivial torsion ele-

ments, then it does not admit finite dimensional K(Γ, 1)-spaces. On the other

hand, many natural arithmetic subgroups contain nontrivial torsion elements,

for example, SL(n, Z) and Sp(n, Z).

A K(Γ, 1)-space is the classifying space for Γ and is also denoted by BΓ.

Its universal covering space EΓ = B̃Γ is the universal space for proper and

fixed point free actions of Γ and is characterized up to homotopy equivalence

as follows:

(1) EΓ is contractible.

(2) The Γ action on EΓ is proper and fixed point free.

Clearly, given EΓ, we can take the quotient Γ\EΓ as BΓ.

For groups Γ containing torsion elements, a natural replacement for EΓ is

the universal space for proper actions, usually denoted by EΓ, which is charac-

terized up to homotopy equivalence as follows:
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(1) For every finite subgroup F of Γ, the set of fixed points (EΓ)F is nonempty

and contractible. In particular, EΓ is contractible.

(2) Γ acts properly on EΓ.

If EΓ is a Γ-CW complex and the quotient Γ\EΓ is a finite CW-complex, then

EΓ is called Γ-cofinite. As in the earlier case where we had to find a finite

K(Γ, 1)-space, it is also an important problem for various applications to find

Γ-cofinite EΓ-spaces.

Assume that Γ is an arithmetic subgroup of G(Q) as above, and that X =

G/K is the associated symmetric space.

Since X is a symmetric space of non-compact type, it follows from the fa-

mous Cartan fixed point theorem that X is an EΓ-space. In fact, for any finite

subgroup F of Γ, the fixed point set XF is a totally geodesic submanifold and

hence contractible.

If Γ\X is compact, then the existence of a Γ-equivariant triangulation shows

that X is a EΓ-space.

If Γ\X is non-compact, then we have the following result [26, Theorem 3.2].

Theorem 4.9. Assume that Γ is a non-uniform lattice of G as above. Then the

partial Borel-Serre compactification X
BS

is a Γ-cofinite EΓ-space.

Instead of using the partial Borel-Serre compactification X
BS

, we can also

show more directly that the truncated submanifold XT of X is a Γ-cofinite

EΓ-space.

5 S-arithmetic groups and Bruhat-Tits buildings

In this section, we first explain two natural generalizations of arithmetic sub-

groups: finitely generated linear groups and S-arithmetic subgroups. Then we

show that p-adic Lie groups and Bruhat-Tits buildings are needed to understand

them. After this, we introduce the Bruhat-Tits building by observing that we

can realize a symmetric space X = G/K as the space of maximal compact sub-

groups of G. For various applications, for example, to construct cofinite univer-

sal spaces of proper actions for S-arithmetic subgroups, the fact that Bruhat-Tits

buildings are CAT(0)-spaces plays an important role. Then we discuss duality

properties of S-arithmetic subgroups. It also turns out that as a CAT(0)-space,

the set of equivalence classes of rays in a Bruhat-Tits building can naturally be

identified with a spherical Tits building, which appears naturally as the bound-

ary of a compactification of the former building.
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Arithmetic subgroups Γ of a linear algebraic group G ⊂ GL(n, C) are special

finitely generated subgroups of the Lie group G = G(R).

There are two methods to produce more general classes of subgroups. The

first method is to take finitely many elements γ1, . . . , γm of G(Q) and consider

the subgroup Γ = 〈γ1, . . . , γm〉 generated by them. In general, Γ is not a discrete

subgroup of G and is not related to G(Q) ∩ GL(n, Z).

For example, take G = GL(n, C), and γ1, . . . , γm ∈ GL(n, Q). If all the ma-

trix entries of γ1, . . . , γm are integral, then Γ is contained in GL(n, Z), and in

particular, Γ is a discrete subgroup of GL(n, R). Otherwise, it is not a discrete

subgroup of GL(n, R) in general.

On the other hand, let p1, . . . , pk be all the prime numbers which appear

in the denominators of the entries of γ1, . . . , γm, and let Z[ 1
p1

, . . . , 1
pk

] be the

ring of rational numbers of the form p/q, where p, q ∈ Z and q is a product

of primes only from p1, . . . , pk. Then Γ is contained in GL(n, Z[ 1
p1

, . . . , 1
pk

]).

Since Z[ 1
p1

, . . . , 1
pk

] is not a discrete subgroup of R, GL(n, Z[ 1
p1

, . . . , 1
pk

]) is not a

discrete subgroup of GL(n, R).

This motivates the second method. For any finite set S of primes, S =

{p1, . . . , pk}, a subgroup Γ of G(Q) is called an S-arithmetic subgroup if it is

commensurable with G(Q) ∩ GL(n, Z[ 1
p1

, . . . , 1
pk

]).

If G is semisimple, then S-arithmetic subgroups of G(Q) are finitely gener-

ated. Therefore, the first method produces a larger class of groups.

Let Qp be the field of p-adic numbers, and G(Qp) the associated p-adic Lie

group. Then an important fact is that under the diagonal embedding

Γ ⊂ G(Q) → G(R) ×
∏

p∈S

G(Qp) , (5)

Γ is a discrete subgroup of G(R) ×
∏

p∈S G(Qp).

Since R and Qp are both completions of Q with respect to different norms,

this shows the importance of treating all of them, both archimedean norms and

non-archimedean norms, simultaneously.

As the previous sections showed, symmetric spaces and spherical Tits build-

ings are useful for many questions about Lie groups G and their arithmetic sub-

groups. It is a natural and important problem to find analogues of symmetric

spaces for p-adic Lie groups G(Qp).

First we note that the spherical Tits buildings can be defined in a manner sim-

ilar to what we did in the case of semisimple Lie groups and algebraic groups.

In fact, the algebraic group G can be considered as an algebraic group defined

over Qp, and the notion of parabolic subgroups of G defined over Qp can be

introduced. The Tits building of G(Qp), denoted by ∆(G(Qp)), is an infinite
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simplicial complex whose simplices are parametrized by parabolic subgroups of

G defined over Qp and satisfy properties similar to those for the Tits building

∆(G) of a semisimple real Lie group G in §3. Since G(Qp) acts on the set of

Qp-parabolic subgroups by conjugation, it also acts on the building ∆(G(Qp)).

The analogue of the symmetric space X = G/K for G(Qp) is the Bruhat-Tits

building, denoted by ∆BT(G(Qp)) in this paper, which is a Euclidean building

(also called an affine building).

The definition and construction of ∆BT(G(Qp)) is much more complicated

than that of the spherical Tits building ∆(G(Qp). To motivate the Bruhat-Tits

building ∆BT(G(Qp)), we note that for the semisimple Lie group G = G(R), its

symmetric space X = G/K can be identified with the space of maximal compact

subgroups of G. An important fact here is that all maximal compact subgroups

of G are conjugate. But this statement is not true for G(Qp). In general, there

is more than one conjugacy class of maximal compact subgroups of G(Qp).

For simplicity, we assume that G is a simply connected semisimple linear al-

gebraic group defined over Q. Let r be the Qp-rank of G. In this case, there

are exactly (r + 1)-conjugacy classes of maximal compact open subgroups of

G(Qp). Let P1, . . . , Pr+1 be representatives of such conjugacy classes. Then

it is natural to consider the homogeneous spaces G(Qp)/P1, . . . ,G(Qp)/Pr+1,

each of which is a disjoint union of points. For various purposes, it is desirable

to enhance them into simplicial complexes so that they remain as vertices and

then to combine these finitely many simplicial complexes suitably into one sin-

gle simplicial complex. Basically, the Bruhat-Tits building ∆BT(G(Qp)) can be

visualized this way.

One original way to construct the Bruhat-Tits building ∆BT(G(Qp)) is to use

the method of BN-pairs and, instead of using parabolic subgroups of G(R) as

was done for the spherical Tits building ∆(G), to use the so-called parahoric

groups. This depends crucially on the fact that Qp has a nontrivial discrete

valuation.

Under the assumption that G is simply connected, maximal compact open

subgroups of G(Qp) are maximal parahoric subgroups, and maximal parahoric

subgroups are also maximal compact open subgroups of G(Qp). More impor-

tantly, the structure of parahoric subgroups G(Qp) is similar to the structure of

parabolic subgroups of G(R). For example, the following result reminds one of

the structure of parabolic subgroups of G and the notion of standard parabolic

subgroups (see [25] and references there for more details).

Proposition 5.1. Under the above assumptions on G, all minimal parahoric sub-

groups of G(Qp) are conjugate. Fix any minimal parahoric subgroup B. Then

there are exactly r + 1 maximal parahoric subgroups P1, . . . , Pr+1 which contain

B, and {Pi1 ∩· · ·∩Pij
} are exactly the parahoric subgroups which contain B when
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{i1, . . . , ij} runs through non-empty subsets of {1, . . . , r + 1}. They are called the

standard parahoric subgroups. Furthermore, any parahoric subgroup of G(Qp) is

conjugate to such a standard parahoric subgroup.

Bruhat-Tits buildings are important examples of Euclidean buildings. We

recall some of their basic properties. See [15] for more details.

Recall from §3 that an important notion in the definition of a spherical Tits

buildings is that of apartments, which are finite Coxeter complexes. Recall that

their underlying topological spaces are spheres, and that buildings are obtained

by gluing these apartments together suitably. For Euclidean buildings, finite

Coxeter complexes are replaced by infinite Euclidean Coxeter complexes, whose

underlying spaces are Euclidean spaces.

Briefly, let V be a Euclidean space. An affine reflection group W on V is a

group of affine isometries generated by reflections with respect to affine hyper-

planes such that the set H of affine hyperplanes fixed by reflections in W is

locally finite.

The linear parts of the affine transformations in W define a finite (linear)

reflection group W , or a finite Coxeter group. An infinite affine reflection group

is called a Euclidean reflection group.

The hyperplanes in H divide V into chambers, and W acts simply transitively

on the set of chambers. If the reflection group W is irreducible, then the cham-

bers and their faces form a simplicial complex. Otherwise, they form a polysim-

plicial complex which is a product of simplicial complexes. Such a polysimplicial

complex is called a Euclidean Coxeter complex. For simplicity, in the following

we assume that the affine reflection groups W and the Euclidean Bruhat-Tits

buildings introduced below are irreducible. Otherwise, we get polysimplicial

complexes instead of simplicial complexes.

Definition 5.2. A polysimplicial complex ∆ is called a Euclidean building if it

contains a family of subsets called apartments, which satisfies the following

conditions:

(1) Every apartment is an infinite Euclidean Coxeter complex.

(2) Any two simplices are contained in some apartment.

(3) Given two apartments Σ and Σ′ and simplices σ, σ′ ∈ Σ ∩ Σ′, there exists

an isomorphism of Σ onto Σ′ which keeps σ, σ′ pointwise fixed.

The Bruhat-Tits building ∆BT(G(Qp)) is a Euclidean building, and its sim-

plices are parametrized by parahoric subgroups of G(Qp) such that maximal

parahoric subgroups correspond to vertices, i.e., simplices of zero dimension,
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and minimal parahoric subgroups correspond to chambers, i.e., top dimensional

simplices. Since G(Qp) acts on the set of parahoric subgroups by conjugation,

it acts on ∆BT(G(Qp)).

Since the underlying space of each Euclidean Coxeter complex is a Euclidean

space, it has a metric, or a distance function. Fix a Euclidean metric on ev-

ery apartment such that all apartments are isometric and their induced metrics

agree on their intersections. Then these metrics can be glued to give a met-

ric on the building ∆BT(G(Qp)) which becomes a geodesic space (recall that a

geodesic space is a metric space such that the distance between any two points

is realized by a geodesic connecting them) [14, Chap. VI, §3].

The group G(Qp) acts on the Bruhat-Tits building ∆BT(G(Qp)) by isome-

tries. Furthermore, the action is proper. (Note that the stabilizers of the sim-

plices coincide with their corresponding parahoric subgroups up to finite index,

and are hence compact.)

Proposition 5.3. Any Euclidean building ∆ as a metric space is a CAT(0)-space,

and hence has nonpositive curvature and is contractible. In particular, it is simply

connected.

Recall that a CAT(0)-space M is a geodesic length space such that every tri-

angle in M is thinner than a corresponding triangle in R2 of the same side

lengths [13]. This proposition implies that if a compact group acts isometrically

on ∆, then it has at least one fixed point, which has important applications to

understanding structures of compact open subgroups of G(Qp) as mentioned in

Proposition 5.1.

The Bruhat-Tits building ∆BT(G(Qp)) is non-compact. Since it is a proper

CAT(0)-space, it admits a compactification by adding the set of equivalence

classes of geodesics as was discussed for Hadamard manifolds in §2. It turns

out that this set can be canonically identified with the spherical Tits building

∆(G(Qp)). It should be emphasized that the topology on ∆(G(Qp)) induced

from the compactification is not the simplicial one. See [12, 14].

Remark 5.4. As pointed out before, maximal totally geodesic flat subspaces of

a symmetric space X play a fundamental role in understanding the geometry

of X, and X is the union of such flats. Apartments in a Euclidean building,

in particular, the Bruhat-Tits building ∆BT(G(Qp)), are also maximal totally

geodesic subspaces, and the building is also the union of such flats. Further-

more, both X and ∆BT(G(Qp)) are CAT(0)-spaces and the Cartan fixed point

theorem holds for them. In this sense, the Bruhat-Tits building ∆BT(G(Qp))

is a good replacement for the symmetric space X. The fact that they can be

compactified by adding the spherical buildings of G(R) and G(Qp) respectively

is another indication of their similarity.
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Finiteness properties and duality properties of S-arithmetic groups

Let Γ ⊂ G(Q) be an S-arithmetic subgroup, i.e., a subgroup commensurable

with G(Q) ∩ GL(n, Z[ 1
p1

, . . . , 1
pk

]) as in the previous section.

By equation (5), Γ is a discrete subgroup of G(R) ×
∏

p∈S G(Qp). Since

each G(Qp) acts isometrically and properly on the building ∆BT(G(Qp)), Γ

acts isometrically and properly on the product

XS = X ×
∏

p∈S

∆BT(G(Qp)) .

Since each of the factors is a proper CAT(0)-space, the product XS is also a

proper CAT(0)-space. An immediately corollary of this action is the following.

Proposition 5.5. The space XS is an EΓ-space; in particular, if Γ is torsion-free,

then the quotient Γ\XS is a K(Γ, 1)-space and hence the cohomological dimension

of Γ is less than or equal to dim XS . If the Q-rank of G is 0, then Γ\XS is compact,

and XS is a Γ-cofinite EΓ-space.

On the other hand, if the Q-rank of G is positive, then Γ\XS is non-compact.

As recalled earlier, X admits the Borel-Serre partial compactification X
BS

. De-

fine a partial compactification of XS by

XS
BS

= X
BS

×
∏

p∈S

∆BT(G(Qp)) .

Then the Γ action on XS extends to XS
BS

and the quotient Γ\XS
BS

is compact

[12]. The following result of Borel and Serre [12] is an important application

of XS
BS

together with the homotopy equivalence between the boundary ∂X
BS

and the Tits building ∆Q(G) (§4) and the compactification of the Bruhat-Tits

building ∆BT(G(Qp)) by attaching a spherical building ∆(G(Qp)) (§5).

Theorem 5.6. If Γ is a torsion-free S-arithmetic subgroup of G(Q) as above, then

Γ is a duality group. If the Q-rank of G is positive, then Γ is not a Poincaré duality

group.

If Γ is torsion-free and the Q-rank of G is positive, then Γ\XS
BS

is a finite

K(Γ, 1)-space. As in the case of arithmetic subgroups, many natural S-arith-

metic subgroups contain torsion elements, for example, SL(n, Z[ 1
p1

, . . . , 1
pk

]).

A natural problem is to find good models of Γ-cofinite EΓ-spaces. By meth-

ods similar to the proof of [26, Theorem 3.2] (see Theorem 4.9), we can prove

the following.

Proposition 5.7. For a non-uniform S-arithmetic subgroup Γ as above, XS
BS

is

a Γ-cofinite EΓ-space.
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6 Integral Novikov conjectures and the Borel

conjecture

Besides applications to cohomological properties mentioned in the previous sec-

tion, the action of S-arithmetic subgroups on XS is also important for other re-

sults such as the integral Novikov conjecture for S-arithmetic subgroups and the

stable Borel conjecture.

In this section, we first recall the Borel conjecture in geometric topology and

a weaker version, the stable Borel conjecture. Then we explain both the original

version of the Novikov conjecture on homotopy invariance of higher signatures

and the integral Novikov conjecture in terms of the modern formulation by the

assembly map. Then we explain the integral Novikov conjecture for S-arithmetic

subgroups and finitely generated linear groups by making use of their actions

on Bruhat-Tits buildings.

An important conjecture in geometric topology is the Borel conjecture, which

states that if M and N are two aspherical closed manifolds with the same funda-

mental group, i.e., they are homotopic, then M and N are homeomorphic.

In the above statement, a manifold M is called aspherical if πi(M) = {1} for

i ≥ 2. If a K(Γ, 1)-space can be realized by a closed manifold M , then M is an

aspherical manifold.

It is an important problem to find conditions under which a K(Γ, 1)-space

can be realized by a closed manifold. The Borel conjecture is basically about

the uniqueness up to homeomorphism for such realizations.

Clearly the Borel conjecture only depends on the fundamental group π1(M).

It is still open and has motivated a lot of work in geometric topology.

A weaker version of the Borel conjecture is the stable Borel conjecture which

states that if M and N are two aspherical closed manifolds with the same funda-

mental group, then M × R3 and N × R3 are homeomorphic.

Another closely related conjecture is the integral Novikov conjecture. We

briefly recall the motivations and different versions of Novikov conjecture.

The original Novikov conjecture concerns homotopy invariance of higher sig-

natures. Briefly, let M be an oriented closed manifold, and Γ = π1(M) its

fundamental group. Let BΓ be the classifying space of Γ, i.e., a K(Γ, 1)-space.

Let f : M → BΓ be the classifying map corresponding to the universal covering

space M̃ → M . For any α ∈ H∗(M, Q), define a higher signature

Sgnα(M) = 〈L(M) ∪ f∗(α), [M ]〉

associated with α, where L(M) is the Hirzebruch class of M . When α = 1,

Sgnα(M) is equal to the usual signature, by the Hirzebruch index theorem.
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The original Novikov conjecture says that for any α, Sgnα(M) is an oriented

homotopy invariant of M .

This Novikov conjecture is equivalent to the rational injectivity of the assem-

bly map in L-theory (or surgery theory)

A : H∗(BΓ, L(Z)) → L∗(ZΓ) , (6)

i.e., that the map A ⊗ Q : H∗(BΓ, L(Z)) ⊗ Q → L∗(ZΓ) ⊗ Q is injective, where

H∗(BΓ, L(Z)) is a generalized homology theory with coefficients in the spectra

L(Z), and L∗(ZΓ) are surgery groups. The stronger statement that A is injective

is called the integral Novikov conjecture. It is known that the integral Novikov

conjecture for Γ implies the stable Borel conjecture [29]. The Borel conjecture

is related to the conjecture that the assembly map A is an isomorphism.

Besides the assembly map in surgery theory as recalled here, there are also

assembly maps in other theories such as algebraic K-theory. See [29] and the

references there for more precise statements.

If a group Γ contains nontrivial torsion elements, then the integral Novikov

conjecture does not hold in general. In this case, we need to use the universal

space EΓ for proper actions of Γ, and to replace the above assembly map by

A : HΓ
∗
(EΓ, L(Z)) → L∗(ZΓ) , (7)

which is reduced to the previous case in equation (6) when Γ is torsion free, in

which case EΓ is equal to EΓ. If A is injective in equation (7), we say that the

generalized Novikov conjecture holds for Γ.

To understand the assembly map A, a good model of EΓ is important. As

explained above, the Borel-Serre partial compactification XS
BS

can be used to

construct a Γ-cofinite EΓ-space.

Using actions of S-arithmetic subgroups Γ on XS , in particular the fact that

XS is a CAT(0)-space, together with finiteness of the asymptotic dimension of Γ,

a large scale geometric invariant of Γ, the following result was proved in [29].

Theorem 6.1. If Γ is an S-arithmetic subgroup of a linear algebraic G defined

over Q, then the generalized integral Novikov conjecture holds for Γ. Consequently,

if Γ is further assumed to be torsion-free, then the stable Borel conjecture holds also

for Γ.

It is worthwhile to emphasize that XS is the product of Riemannian symmet-

ric spaces and Bruhat-Tits buildings. Therefore, buildings play a crucial role in

the above theorem.

As mentioned at the beginning of this section, a class of groups larger than

the class of S-arithmetic subgroups is the class of finitely generated subgroups
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of GL(n, Q). Assume that Γ is such a group. Then there exists a finite set of

primes, S = {p1, . . . , pk}, such that Γ ⊂ GL(n, Z[ 1
p1

, . . . , 1
pk

]).

By using the action of Γ on a similar space XS associated with GL(n) and

the finite set of prime numbers S, the following more general result was also

proved in [29].

Theorem 6.2. For every finitely generated subgroup of GL(n, Q), the generalized

integral Novikov conjecture holds.

7 Mapping class groups and Teichmüller spaces

In this section we recall the definition of mapping class groups and Teichmüller

spaces of surfaces. Then we explain that the Teichmüller spaces are universal

spaces for proper actions of mapping class groups.

In the previous sections, we have studied arithmetic subgroups and some

close analogues. Another class of groups closely related to arithmetic subgroups

is that of mapping class groups of surfaces.

Let M be an oriented manifold. Denote by Diff(M) the group of all diffeo-

morphisms of M , by Diff(M)+ the subgroup of all orientation preserving dif-

feomorphisms of M , and by Diff0(M) the identity component of Diff(M). Then

Diff0(M) is a normal subgroup of both Diff(M) and Diff+(M). The quotient

Mod(M) = Diff(M)/Diff0(M)

is called the extended mapping class group of M , and

Mod+(M) = Diff+(M)/Diff0(M)

is the mapping class group of M .

We are mainly interested in the case when M is a surface. Assume that M is

a closed oriented surface S of genus g. Then we denote Mod(S) by Modg, and

Mod+(S) by Mod+
g . When g = 1, i.e., M = R2/Z2, then

Mod(R2/Z2) ∼= GL(2, Z), and Mod+(R2/Z2) ∼= SL(2, Z) .

Therefore, Modg and Mod+
g are natural generalizations of the basic arithmetic

subgroups GL(2, Z) and SL(2, Z). It is known that for g ≥ 2, Modg is not iso-

morphic to arithmetic subgroups of semisimple Lie groups [23].

For the mapping class groups Modg, the analogue of the symmetric spaces is

the Teichmüller space Tg of closed surfaces.
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Briefly, let S = Sg be a closed orientable surface of genus g. A marked hyper-

bolic metric on S is a hyperbolic surface (Σ, ds) together with a homotopy class

of diffeomorphisms ϕ : S → Σ. A diffeomorphism ϕ induces an isomorphism

between π1(S) and π1(Σ) and only depends on the homotopy class of ϕ. In

fact, the converse is also true. The reason for this is that S and Σ are aspherical

two dimensional manifolds, and every isomorphism between π1(S) and π1(Σ)

can be realized by a diffeomorphism from S to Σ. Therefore, a marking on a

hyperbolic surface is to fix an isomorphism from π1(S) to π1(Σ).

By definition, two marked hyperbolic metrics (Σ1, ds1;ϕ1) and (Σ2, ds2;ϕ2)

on S are equivalent if there exists an isometry Φ: (Σ1, ds1) → (Σ2, ds2) such

that Φ ◦ ϕ1 and ϕ2 are homotopic to each other.

Then the set of equivalence class of all marked hyperbolic metrics on S is

called the Teichmüller space of S and is denoted by Tg.

Another way to define Tg is as follows. Let H be the set of all hyperbolic

metrics on S. Clearly Diff(S) and Diff0(S) act on H. Then Tg can be identified

with the quotient H/Diff0(S).

Clearly Modg acts on Tg by changing the marking via composition. In terms

of the realization Tg = H/Diff0(S), this action comes from the action of Diff(S)

on H. Furthermore, this action is proper. See [23] and the references there for

more about Teichmüller spaces and mapping class groups.

An important property of Tg is that it has a natural complex structure with

respect to which it can be realized as bounded contractible domain in C3g−3, in

particular it is diffeomorphic to R6g−6 and contractible. (In fact, the Fenchel-

Nielson coordinates give explicit identifications of Tg with R6g−6.) The group

Mod+
g acts on Tg by holomorphic automorphisms.

The Teichmüller space Tg admits several natural metrics, for example, the

Weil-Peterson metric. With respect to the Weil-Peterson metric, Tg is a CAT(0)-

space. See [46] for a summary and references. The positive solution to the

Nielson realization problem gives that every finite subgroup of Modg has at

least one fixed point in Tg. Then one can prove the following result.

Proposition 7.1. The Teichmüller space Tg is an E Modg-space, i.e., a universal

space for proper actions of Modg.

The quotient Mod+
g \Tg is equal to the moduli space Mg of all closed hyper-

bolic surfaces of genus g, i.e., the moduli space of projective curves of genus g.

Note that taking the quotient by Mod+
g divides out the marking in the space Tg

of marked hyperbolic metrics and only isometry classes of hyperbolic surfaces

remain.
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8 Truncated Teichmüller spaces, Borel-Serre com-

pactifications, and curve complexes

In this section, we define the curve complex C(S) of a surface S and explain how

it is related to the boundary of the Borel-Serre partial compactification Tg
BS

of the Teichmüller space Tg. We give a realization of the Borel-Serre partial

compactification Tg
BS

by a truncated subspace Tg(ε), and this gives a model

of a cofinite universal space for proper actions of Modg. Then we explain an

analogue of the Solomon-Tits theorem for curve complexes and use it together

with the truncated subspace Tg(ε) to obtain duality properties of mapping class

groups.

It is known that the moduli space Mg is non-compact, and hence the action

of Mod+
g on Tg is similar to the action of a non-umiform arithmetic subgroup

Γ on the associated symmetric space X. This implies that Tg is not a Mod+
g -

cofinite E Mod+
g -space.

In fact, starting with any closed hyperbolic metric, we can pinch along a

simple closed geodesic and produce a family of hyperbolic surfaces in Mg which

does not have any accumulation point in Mg. More specifically, fix any simple

closed curve c in S. For each marked hyperbolic surface (Σ, ds;ϕ), ϕ(c) gives a

homotopy class of simple closed curves in Σ. Since (Σ, ds) has strictly negative

sectional curvature, there is a unique closed geodesic in this homotopy class.

Denote the length of this geodesic by ℓΣ(c).

Then for any ε sufficiently small, the marked hyperbolic (Σ, ds;ϕ) can be

deformed to a marked hyperbolic metric (Σε, dsε;ϕ) such that ℓΣε
(c) = ε. Cer-

tainly, the image in Mg of this family of hyperbolic surfaces (Σε, dsε;ϕ) has no

accumulation point in Mg.

Similarly, we can also pinch along several disjoint simple closed geodesics.

It turns out that pinching along geodesics is the only reason for the noncom-

pactness of the quotient Mod+
g \Tg. Specifically, for any small fixed positive

constant ε, define a subspace Tg(ε) by

Tg(ε) = {(Σ, ds;ϕ) | ℓΣ(c) ≥ ε, for every simple closed curve c}. (8)

Clearly Tg(ε) is invariant under Modg. It is known that the quotient Modg \Tg(ε)

is compact [38].

Motivated by symmetric and locally symmetric spaces, a natural question

is that of how to compactify Tg and its quotients for various applications, for

example, to get an analogue of the Borel-Serre compactification, which will

give a cofinite E Modg-space.
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In fact, an analogue of the Borel-Serre compactification was constructed by

Harvey [21]. He outlined a construction of a partial compactification of Tg

which is a real analytic manifold with corners, denoted by Tg
BS

, such that the

quotient Modg \Tg
BS

is compact.

The boundary ∂Tg
BS

consists of contractible pieces that are parametrized

by an infinite simplicial complex, called the curve complex of S, and denoted

by C(S).

Briefly, for each simple closed curve c in S, denote by [c] the homotopy class

of c. Then the vertices of C(S) correspond to homotopy classes [c] of simple

closed curves. Any collection of distinct homtopy classes [c1], . . . , [ck], forms the

vertices of a (k − 1)-simplex if and only if they contain disjoint representatives.

Since we can pinch along disjoint simple closed geodesics to go to the bound-

ary at infinity of Modg \Tg and this is basically the only way to go to infinity, it is

reasonable that the curve complex C(S) describes the structure at infinity of Tg

and its quotients such as Mg. For example, the curve complex was used in the

original application of [21] to parametrize the boundary components of Tg
BS

.

In this sense, it is an analogue of the spherical Tits buildings for symmetric

spaces.

As in the case of the Borel-Serre compactification X
BS

for symmetric spaces,

Tg
BS

can also be realized by the truncated subspace Tg(ε). See [23] for details

and references. In fact, it is easy to see that Tg(ε) is a manifold with corners,

and its boundary faces are parametrized by simplices of C(S).

The following result can also be proved [31].

Theorem 8.1. The truncated space Tg(ε) is a Modg-cofinite E Modg-space.

As mentioned earlier, in some applications, the Solomon-Tits theorem on the

homotopy type of spherical Tits buildings is important. An analogue of this is

also true.

Theorem 8.2. The curve complex C(S) has the homotopy type of bouquet spheres

of dimension 2g−2. Furthermore, there are infinitely many spheres in the bouquet.

The first statement was proved by Harvey (see [20]), and the statement that

the bouquet contains at least one sphere and the statement that its contains

infinitely many spheres were proved recently in [24].

By combining the above theorem and the relation between Tg
BS

(or rather

Tg(ε)) and C(S), the following result can be proved (see [20, 23, 24]).

Theorem 8.3. Any torsion free, finite index subgroup of the mapping class group

Modg is a duality group, but is not a Poincaré duality group.
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Remark 8.4. The above discussions show that the curve complex C(S) is an ana-

logue of the spherical Tits buildings in many ways. The curve complexes and the

spherical Tits buildings also enjoy the common property that they are not locally

finite in general. In fact, a Tits building ∆(G) is not locally finite unless it is a

finite simplicial complex. The reason for this is that if the field k is infinite and

the group G is of rank strictly greater than 1, then every minimal k-parabolic

subgroup of G is contained in infinitely many k-parabolic subgroups. For the

curve complexes, the reason is that, given a simple closed curve c, there are in-

finitely many different simple closed curves that are disjoint from it. Therefore,

there are infinitely many edges in C(S) coming out of the vertex [c].

On the other hand, an important difference is that the buildings ∆(G) we

discussed earlier contain apartments, which form a distinguished class of finite

simplicial subcomplexes and are fundamental in buildings, but the curve com-

plexes C(S) do not contain similar finite simplicial complexes in general.

Remark 8.5. As pointed out in §3 (Theorem 3.3 and Remark 3.6), spherical Tits

buildings have played an important role in the Mostow strong rigidity of lattices

in semisimple Lie groups and quasi-rigidity properties of symmetric spaces and

Euclidean buildings. The curve complexes have also been crucial in proving

similar quasi-rigidity properties of mapping class groups. See [6, 19].

9 Outer autormorphism groups and outer spaces

In this section, we first introduce another class of groups: the outer automor-

phism groups of free groups Out(Fn), which are related to arithmetic subgroups

and mapping class groups. Then we introduce the outer spaces Xn, on which

the outer automorphism groups act.

Briefly, let Fn be the free group on n generators, let Aut(Fn) be the group

of all automorphisms of Fn, and let Inn(Fn) be the subgroup of inner automor-

phisms. Clearly, Inn(Fn) is a normal subgroup of Out(Fn). Define the group of

outer automorphisms Fn, or the outer automorphism group of Fn, by

Out(Fn) = Aut(Fn)/ Inn(Fn) .

It is known that when n = 2,

Out(F2) = GL(2, Z) .

For n ≥ 3, there is a surjective map Out(Fn) → GL(n, Z) with a large kernel.

Therefore, Out(Fn) is yet another natural generalization of the basic arithmetic

subgroup GL(2, Z).
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As pointed out earlier, the mapping class group Mod1 for the closed surface

of genus 1 is also equal to GL(2, Z). Therefore, these three classes of groups are

closely related.

A natural and important problem is to prove results for Out(Fn) that are

analogous to those for arithmetic groups and mapping class groups.

The analogue of the symmetric spaces and Teichmüller spaces for Out(Fn)

is the outer space or the reduced outer space, which were first introduced by

Culler and Vogtmann [17]. We briefly recall their definitions. See [7, 43, 44]

for surveys on various results about Out(Fn) and outer spaces, and references.

A metric graph (G, ℓ) is a graph G which assigns a nonnegative length ℓ(e) to

every edge e in G such that it is not degenerate in the sense that for every loop

in the graph, its total length, i.e., the sum of lengths of edges in it, is positive.

(Note that some edges could have length 0).

For each positive integer n, we are only interested in metric graphs (G, ℓ)

satisfying the following conditions:

(1) G is of rank n, i.e., π1(G) ∼= Fn,

(2) G is normalized, i.e., the total sum of all edge lengths is equal to 1, and

(3) G is reduced. In other words, G does not contain any separating edge

(called a bridge), or any node of valence 0, 1 or 2.

A basic reduced graph of rank n is given by the rose Rn with n petals, i.e., a

wedge of n circles S1. In this case, the valence at the unique vertex is equal to

2n and hence large.

A marked metric graph G is a normalized, reduced metric graph (G, ℓ) to-

gether with a homotopy class of maps ϕ : Rn → G such that ϕ induces an

isomorphism π1(Rn) → π1(G), i.e., ϕ is a homotopy equivalence. Two marked

metric graphs are called equivalent if there exists an isometry between them

which commutes with the markings.

Then the reduced outer space Xn is the space of equivalence classes of all

such marked, reduced metric graphs of rank n with a suitable topology. (Note

the similarity with the definition of the Teichmüller space of marked hyperbolic

metrics.)

It turns out that Xn is an infinite simplicial complex. In fact, for every mark-

ing of a graph G, ϕ : Rn → G, the set of all possible choices of normalized

metrics on G is parametrized by a simplex, which is denoted by Σϕ below.

Clearly Out(Fn) acts on Xn by changing the markings of the marked graphs.

It was shown [17] that Out(Fn) acts properly on Xn, and Xn is contractible.
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Furthermore, Xn is an E Out(Fn)-space, i.e., a universal space for proper ac-

tions of Out(Fn) [16, 45].

It can be seen easily that the quotient Out(Fn)\Xn is non-compact. In fact,

by making the total length of one loop go to zero, we get a sequence of points

in the quotient which has no accumulation point.

It was also proved in [17] that the spine Kn of Xn is a simplicial complex of

dimension 2n−3, and is an Out(Fn)-equivariant deformation retract of Xn with

compact quotient Out(Fn)\Kn. It can also be shown that Kn is an Out(Fn)-

cofinite E Out(Fn)-space [17, 33, 45]. As a corollary, the virtual cohomological

dimension of Out(Fn) is equal to 2n − 3.

For some other purposes, Kn is too small a model of an Out(Fn)-cofinite

E Out(Fn)-space. In [8], an analogue of the Borel-Serre type partial compacti-

fication X
BS

is constructed, and used to prove the following result.

Theorem 9.1. Every torsion-free subgroup of Out(Fn) of finite index is a duality

group of dimension 2n − 3.

Since the quotient Out(Fn)\Xn is non-compact, Out(Fn) is an analogue of a

non-uniform arithmetic subgroup, and the following naturally expected result

is proved in [30].

Theorem 9.2. Every torsion-free subgroup of Out(Fn) of finite index is not a

Poincaré duality group.

10 Truncated outer spaces, Borel-Serre compacti-

fications, and core graph complexes

Given the previous results on relationships between the Borel-Serre partial com-

pactification of symmetric spaces and Tits buildings, and Teichmüller spaces and

curve complexes, it is natural to look for an analogue to the spherical Tits build-

ings for the boundary of a Borel-Serre type partial compactification Xn
BS

of the

outer space Xn.

As mentioned above, an analogue of the Borel-Serre partial compactification

Xn
BS

is defined in [8]. A candidate for an analogue of Tits buildings was pro-

posed in [22] and called the complex of free factors or free factor complex, but its

relationship to the Borel-Serre partial compactification Xn
BS

of Xn in [8] is not

clear. Questions about establishing this kind of relationship have been raised in

[22, p. 459–460] and [43, p. 25, Problem 21].
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In the following, we outline the construction of a truncated subspace Xn(ε)

of X, which is similar to the truncated symmetric space XT and the truncated

Teichmüller space Tg(ε).

It was pointed out before that these truncated spaces are realizations of the

Borel-Serre partial compactifications of X and Tg respectively. It can be shown

that the space Xn(ε) is also Out(Fn)-equivariantly homeomorphic by cellular

maps to the Borel-Serre partial compactification Xn
BS

constructed in [8].

We also outline the construction of a simplicial complex, called the core graph

complex, CG(Fn), which is isomorphic to the complex of free factors of [22],

and show how this core graph complex can be used to parametrize boundary

components of Xn(ε). Therefore, this provides an analogue to the relationship

between the spherical Tits building ∆Q(G) and the boundary of the Borel-Serre

partial compactification X
BS

.

In the definition of Tg(ε), simple closed geodesics play an important role.

The key point in defining a truncated outer space Xn is to find a replacement

for collections of disjoint simple closed geodesics in surfaces for metric graphs.

A natural analogue of a simple closed geodesic in a graph G is a subgraph

of G that contains no nodes of valence 0 or 1, which is roughly speaking a loop

without spikes coming out.

But there is an important difference between closed geodesics in hyperbolic

surfaces and the above loops in graphs: If two simple closed geodesics in a

surface agree on any small segment, then they agree everywhere; but this is not

true for the loops in graphs.

In the boundary of Tg(ε), boundary faces of codimension 1 are defined by

requiring that exactly one marked simple closed geodesic has length equal to ε,

and boundary faces of higher codimension k ≥ 2 are defined by requiring that

exactly k marked disjoint simple closed geodesics have length equal to ε.

To obtain an analogue to the conditions for the boundary face of Tg(ε) in-

duced from the lengths of more than one more simple closed geodesics to get

boundary faces of higher codimension, we need to use the notion of core sub-

graphs. Following [8], a core subgraph C of a graph G is a subgraph which

contains no nodes of valence 0 or 1, or separating edges. It is not necessar-

ily connected. Roughly, C is the union of subgraphs without isolated nodes or

spikes, or more intuitively a union of loops which could have overlaps on some

edges. An important invariant of a core subgraph C is the rank, and is denoted

by r(C): if the connected components of C are joined by minimal number of

bridges to get a new connected subgraph C̃, then r(C) is defined to be the rank

of the fundamental group π1(C̃). Roughly speaking, the rank r(C) is equal to

the number of loops in it.



72 L. Ji

Note that if C1, C2 are two disjoint core subgraphs of rank r1 and r2 respec-

tively, then C = C1 ∪ C2 is a core subgraph, and r(C) = r1 + r2.

Let (G, ℓ) be a metric graph. For any core subgraph C of G, let ℓ(C) denote

the sum of lengths of all edges of C.

For a sufficiently small positive number ε, define a truncated subspace Xn(ε)

by

Xn(ε) = {(G, ℓ) ∈ Xn | ℓ(C) ≥ 3r(C)−1ε , for every core subgraph C of G}.
(9)

If C consists of one loop, then the condition is

ℓ(C) ≥ ε .

If C is of rank 2 and is the disjoint union of two rank 1 core subgraphs C1, C2,

then

ℓ(C) = ℓ(C1) + ℓ(C2) ,

and the condition

ℓ(C) ≥ 3ε

is not implied by the conditions:

ℓ(C1) ≥ ε, ℓ(C2) ≥ ε .

If C1 and C2 contain some common edges, for metrics in which the common

edges have very short lengths, the same reasoning shows that the lower bound

on ℓ(C) gives a new condition.

The above discussion explains one reason for the choice of the inequality

ℓ(C) ≥ 3r(C)−1ε. In this way, each core subgraph gives a new restriction, as in

the case of the truncated Teichmüller space Tg(ε), where simultaneous restric-

tions on the lengths of disjoint simple closed geodesics give new restrictions.

Of course, the base number 3 in the above inequality (equation (9)) can be

replaced by any number strictly greater than 2.

When n = 2, for each marking ϕ : R2 → G of graphs which contain 3 edges

and 2 loops, all possible normalized reduced metrics on G form a 2-simplex Σϕ.

It can be seen easily that the intersection

Σϕ(ε) = Σϕ ∩ Xn(ε)

is a hexagon obtained by cutting off a small triangle near every vertex.

In general, for n ≥ 2 and each fixed marking ϕ : Rn → G of graphs, all

possible normalized reduced metrics on G form a (k-1)-simplex Σϕ, where k is

the number of edges in G. Similarly, the intersection Σϕ(ε) = Σϕ ∩ Xn(ε) is a
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convex polytope obtained by cutting off suitable neighborhoods of some proper

faces of Σϕ. In fact, the boundary faces of Σϕ(ε) are parametrized by chains of

proper core subgraphs of G. Specifically, for every such chain

C1 ⊂ C2 ⊂ · · · ⊂ Ck , (10)

the corresponding face is determined by the equalities:

ℓ(Ci) = 3r(Ci)−1ε, i = 1, . . . , k , (11)

and for any other core subgraph C,

ℓ(C) > 3r(C)−1ε .

Note that no condition in equation (11) is a redundant, and that this is the key

observation in defining Xn(ε) as pointed out above.

Using the above description of the case n = 2, and the description of bound-

ary faces of Σϕ(ε) in terms of chains of core subgraphs, and induction on n and

the length of chains, it can be shown that the closure Σϕ of each simplex Σϕ

in the Borel-Serre partial compactification Xn
BS

defined in [8] has the same

decomposition into polyhedra as the decomposition of Σϕ(ε) into the boundary

faces which were described above. This implies that the closure Σϕ in Xn
BS

is

homeomorphic to Σϕ(ε). From this it follows that Xn(ε) has the same structure

as Xn
BS

and is equivariantly homeomorphic to Xn
BS

by cellular maps.

For both Xn(ε) and Xn
BS

, taking each face of Σϕ(ε) or Σϕ as a boundary

component will result in so many boundary components that they might not

correspond to simplices of an analogue of a spherical Tits building. The basic

point here is that we need to glue suitable collections of such faces together into

boundary components in order that they correspond to simplices of an analogue

of a spherical Tits building.

To explain and motivate this, we examine the case n = 2. It is known that X2

can be canonically identified with the Poincaré upper half plane H2 (see [43])

and the simplicial complex X2 gives a triangulation of H2 by ideal triangles with

vertices at rational boundary points, i.e., points in Q ∪ {i∞} ⊂ ∂H2.

Under this identification, the truncated space X2(ε) is a truncated subspace

of H2 obtained by removing suitable horodiscs at these rational boundary points,

whose sizes are determined by ε. In other words, X2(ε) is exactly the realization

of the Borel-Serre partial compactification X
BS

given by the truncated subspace

XT as discussed in §4 when X = H2.

The spherical Tits building for G = SL(2, C) defined over Q is equal to Q ∪
{i∞}, and the boundary components of H2

T are horocycles. In terms of X2(ε),
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each horocycle of a rational boundary point z is the union of a face of the

truncated simplices Σϕ(ε), where z is an ideal vertex of Σϕ and the face of

Σϕ(ε) corresponds to this vertex.

We next outline the construction of the core graph complex CG(Fn) men-

tioned above and indicate how it is isomorphic to the complex of free factors

in [22] and how to use it to decompose the boundary ∂Xn(ε) into boundary

components which are parametrized by simplices of CG(Fn).

By definition, the spherical Tits building ∆Q(G) is the union of finite sub-

complexes, which are finite Coxeter complexes and called called apartments.

We can construct the building ∆Q(G) by gluing these apartments together. We

will construct the core graph complex CG(Fn) by gluing a collection of some

finite complexes together.

Consider graphs G with only nodes of valence 3. Then G has 3n − 3 edges,

where we assume as before that π1(G) ∼= Fn. In this case, the graph G has the

maximal numbers of edges under the assumption that G does not contain ver-

tices of valences 0, 1 or 2. As pointed out earlier, every marked graph ϕ : Rn →
G corresponds to a simplex Σϕ in the outer space Xn which parametrizes all

possible normalized metrics on the graph G. This implies that every marking

on such a graph G with only nodes of valence 3 corresponds to a simplex Σϕ of

maximal dimension in Xn.

For every marking ϕ : Rn → G, define a finite simplicial complex Aϕ as fol-

lows:

(1) The vertices of Aϕ correspond to core subgraphs contained in G.

(2) Let C1, C2 be two core subgraphs. Then their corresponding vertices form

the vertices of a 1-simplex if and only if they form a chain, i.e., either C1 ⊂
C2 or C2 ⊂ C1. More generally, the vertices corresponding to a collection

of core subgraphs C1, . . . , Ck are the vertices of a (k − 1)-simplex if and

only if the core subgraphs {Ci} form an increasing chain after reordering

if necessary.

Define the core graph complex CG(Fn) of Fn by

CG(Fn) =
∐

ϕ

Aϕ/ ∼ , (12)

where ϕ ranges over all nonequivalent markings ϕ : Rn → G, and the identifi-

cation ∼ is defined as follows. Note that every loop of G induces an element of

Fn
∼= π1(Rn) ∼= π1(G) which can be used as one element of a set of generators

of Fn, under the map ϕ and the identification Fn
∼= π1(Rn). Thus a core sub-
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graph of G gives a free factor of Fn.1 Then a simplex of Aϕ corresponds to a

chain of free factors of Fn. For two markings ϕ and ϕ′, we identify two vertices

from Aϕ and Aϕ′ under the relation ∼ if they correspond to the same free factor

of Fn; similarly, we identify two simplices of Aϕ and Aϕ′ if their corresponding

chains of free factors agree.

Remark 10.1. A more geometric way to define and understand the equivalence

relation ∼ in defining CG(Fn) in equation (12) is as follows. Given a marked

graph ϕ : Rn → G, every core subgraph of G is pulled back to a subgraph of Rn.

Similarly a chain of core subgraphs of G is pulled back under ϕ to a chain of sub-

graphs of Rn. Given two marked graphs ϕ1 : Rn → G1 and ϕ2 : Rn → G2, and

two chains of core subgraphs in G1 and G2 respectively, then the corresponding

simplices in Aϕ1
and Aϕ2

are defined to be equivalent if their pull-backs in Rn

under ϕ1 and ϕ2 are homotopy equivalent chains of subgraphs.

This is closely related to the definition of the curve complex C(S), where a

simplex is defined to a collection of homotopy classes of disjoint simple closed

curves. It is worthwhile to point out that in the markings for the Teichmüller

space Tg, ϕ : S → Σ, the surfaces S and Σ are homeomorphic, and we can

consider simple closed curves on a common surface. On the other hand, for

marked graphs, G is usually not homeomorphic to Rn. This is the reason why

we need to pull back chains of core subgraphs of G1, G2 to Rn and require them

to be homotopic.

Since every free factor of Fn and every chain of free factors arise from core

subgraphs this way from a core subgraph and a chain of core subgraphs, it

follows that the core graph complex CG(Fn) is isomorphic to the factor complex

in [22].

Remark 10.2. For each marked graph ϕ : Rn → G with only nodes of valency 3,

the finite simplicial complex Aϕ seems to be an analogue of an apartment of a

spherical Tits building. One reason for this is that the spherical Tits building can

also be obtained from the apartments by identifying along simplices of smaller

dimension. As a consequence, the spherical Tits building has the same dimen-

sion as the apartments. Clearly, CG(Fn) also has the same dimension as Aϕ.

Now we use the simplices in CG(Fn) to decompose the boundary ∂Xn(ε) into

boundary components. For a simplex σ ∈ CG(Fn), consider all subcomplexes

Aϕ that contain σ. We pointed out earlier that the faces of the polytope Σϕ(ε)

1Geometrically, we can visualize a rose Rn obtained from G by collapsing some edges so that

a core subgraph C of G is mapped to the union of r(C) petals (each loop in C is mapped to one

petal). Note that the petals obtained in this way are usually different from the petals in Rn under

the marking ϕ : Rn → G. Therefore, the marking ϕ plays a crucial role here.
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correspond to chains of core subgraphs (see the discussion near equation (10)).

Let fϕ,σ be the face of Σϕ(ε) corresponding to the chain of core subgraphs which

determines σ. Define the boundary component of ∂σXn(ε) associated with the

simplex σ by

∂σXn(ε) =
⋃

ϕ

fϕ,σ , (13)

where ϕ ranges over all markings with Aϕ ⊃ σ. The topology on ∂σXn(ε) is

induced from the topology of the ambient space Xn.

Therefore, we have decomposed the boundary of Xn(ε) and hence of the

Borel-Serre partial compactification Xn
BS

defined in [8] into boundary compo-

nents which are parametrized by simplices of the core graph complex CG(Fn), or

equivalently of the free factor complex in [22]. This gives one answer to some

questions in [22, p. 459–460] and [43, p. 25, Problem 21] as mentioned above.

It can be easily seen that when n = 2 and X2 is identified with the Poincaré

upper half plane H2 as before, every boundary component ∂σX2(ε) is a horocy-

cle of H2 at a rational boundary point. This is exactly a boundary component

of the truncated submanifold XT , which gives a realization of the Borel-Serre

partial compactification X
BS

from §4, where X = H2.

Note that since a boundary component ∂σX2(ε) is a horocycle, it is clearly

contractible. It seems that for general n ≥ 2, every boundary component

∂σXn(ε) is also contractible. Intuitively this can be seen as follows. It seems

that in a contractible simplicial complex, the union of all simplices containing a

given ideal simplex, or rather a missing boundary simplex, is also contractible.

Now, since each simplex can be deformation retracted to the link of the ideal

simplex and the retractions are compatible, they can be glued to a deformation

retract of the union of these simplices of the link. This would imply that the link

of the missing simplex is also contractible. The boundary component ∂σXn(ε)

is such a link and is hence contractible.

Assume that all boundary components ∂σXn(ε) are contractible. This implies

that the boundary ∂Xn(ε) of the truncated subspace Xn(ε), or equivalently the

Borel-Serre partial compactification Xn
BS

in [8], has the same homotopy type

as the core graph complex CG(Fn), or equivalently, the free factor complex. By

[22, Theorem 1.1], the free factor complex and hence the core graph complex

CG(Fn) has the homotopy type of a bouquet of spheres of dimension n−2. This

is an analogue of the Solomon-Tits Theorem for buildings and curve complexes.

Then the parametrization of the boundary components of the truncated sub-

space Xn(ε) by the simplices of the core subgraph complex CG(Fn) would be a

close analogue to the parametrization of the boundary components of the Borel-

Serre partial compactification of symmetric spaces and Teichmüller spaces by

simplices of the spherical Tits buildings and curve complexes respectively. This
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gives a more satisfactory answer to the questions raised in [22, p. 459–460]

and [43, p. 25, Problem 21] and establishes yet another similarity between the

three important classes of groups: arithmetic subgroups Γ of semisimple alge-

braic groups, mapping class groups Modg of surfaces, and outer automorphism

groups Out(Fn) of free groups.
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