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Abstract

A semioval in a projective plane π is a collection of points O with the

property that for every point P of O, there exists exactly one line of π

meeting O precisely in the point P . There are many known constructions of

and theoretical results about semiovals, especially those that contain large

collinear subsets.

In a Desarguesian plane π a conic, the set of zeroes of some nondegener-

ate quadratic form, is an example of a semioval of size q+1 that also forms

an arc (i.e., no three points are collinear). As conics are minimal semiovals,

it is natural to use them as building blocks for larger semiovals. Our goal

in this work is to classify completely the sets of conics whose union forms a

semioval.

Keywords: semioval, conic

MSC 2000: 51E20

1 Introduction

Let GF(q) denote the finite field of order q, and let GF(q)∗ denote the set of

nonzero elements in this field. Let PG(2, q) denote the finite Desarguesian pro-

jective plane over GF(q). A semioval in PG(2, q) is a collection of points O with

the property that for every point P of O, there exists exactly one line meeting O
precisely in the point P . A well-known construction for semiovals is the vertex-

less triangle, the set of points formed by the union of three non-concurrent lines

with the intersection points removed. Many other constructions of semiovals

can be formed by taking the vertexless triangle and then adding and removing
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certain points in some clever fashion so as to maintain the semioval property. A

nice survey of results on semiovals can be found in Kiss [5].

In the context of minimal blocking sets, Szőnyi [8] looked at collections of

conics lying in a common conic pencil, such that their union forms a blocking

set, i.e. a set disjoint from no line but also containing no line. Kiss, et. al. [6],

later discovered that Szőnyi’s sets are in fact semiovals. Extending the work

found in these two papers, our goal here is to characterize all sets of conics in

PG(2, q) whose union is a semioval in the plane. We summarize our principal

result here.

Theorem 1.1. Let O be a semioval in PG(2, q) that is the union of conics. Then O
is a conic, or q is odd and O is either the union of at most

√
q conics all lying in a

common pencil, or the union of three or four conics, no three in a common pencil.

We prove this result with a thorough case analysis in the following sections.

Our analysis, using both algebraic and synthetic techniques, shows that both the

existence of and spectrum of sizes for each of these types of semiovals depends

on the value of q.

2 Semiovals, conics and interior points

Consider PG(2, q) as a three-dimensional vector space over the finite field GF(q)

using homogenous coordinates. Letting P be any quadratic form in these ho-

mogenous coordinates, it is well known that the set of zeroes of P , denoted

V (P ), is isomorphic to one of four sets: a point, a line, or a line pair, which oc-

cur when P is degenerate; or a conic when P is nondegenerate. Conics contain

q + 1 points forming an arc, i.e., no three points collinear, so that lines meet a

conic C in at most two distinct points. We call lines secant, tangent or disjoint if

they meet C in 2, 1, or 0 points, respectively. We also use this notation to refer

to how other conics meet C. Note that there is a unique tangent line to a conic

at each of its points, meaning that every conic is itself a semioval.

When q is even every conic C in PG(2, q) has a unique point K not on C called

the knot (some use the term nucleus) which lies on all of the tangent lines to C,

implying every point not on C, other than K, lies on a unique tangent line to C.

When q is odd, every point outside of a conic C in PG(2, q) lies on either 0 or

2 tangent lines. Points lying on two tangent lines are called exterior to C, while

those lying on no tangent lines are called interior to C.

Noting that the definition of an interior point depends only on the concept of

tangent lines, we can extend the definition to semiovals.
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Definition 2.1. Let O be any semioval. We call a point P off O interior to O if

it lies on no tangent line of O.

The importance of interior points to the problem at hand is shown in the

following Lemma:

Lemma 2.2. Let O1 and O2 be semiovals in PG(2, q) such that O1 ⊂ O2. Then

every point of O2 \ O1 is interior to O1.

Proof. Let O1 and O2 be as stated and let Q be a point of O1. Since O1 is a

semioval, every line through Q except a unique O1-tangent line ℓ contains at

least two points of O1 ⊂ O2. Since O2 is a semioval this implies ℓ must be the

O2-tangent at Q as well, implying that ℓ ∩ (O2 \ O1) = ∅. Thus no point of

O2 \ O1 lies on an O1-tangent, the definition of being interior to O1. �

An immediate consequence of this lemma is a characterization of semiovals

that contain conics in PG(2, q) when q is even.

Proposition 2.3. Any semioval in PG(2, q), q even, containing a conic is itself a

conic. Specifically any semioval that is the union of conics is itself a conic.

Proof. It was noted earlier that a conic in PG(2, q), q even, has the property

that every point outside the conic is on at least one tangent line, implying that

a conic has no interior points. By Lemma 2.2 any semioval containing a conic,

which is itself a semioval, must have any additional points interior to the conic.

As no such points exist, the semioval must itself be a conic. �

Another application of Lemma 2.2 gives us a characterization of when the

union of two semiovals is a semioval.

Proposition 2.4. Let O1 and O2 be semiovals. Then O = O1 ∪ O2 is a semioval

if and only if every point of O1 \ O2 is interior to O2, and vice versa.

Proof. If O = O1∪O2 is a semioval, then application of Lemma 2.2 immediately

yields the forward direction. For the reverse assume O1 and O2 are semiovals

such that every point of O1 \ O2 (resp. O2 \ O1) is interior to O2 (resp. O1). If

P ∈ O1, then every line through P except its O1-tangent ℓ meets O1 and thus

O in at least two points. But ℓ has to be tangent to O, since ℓ meets O1 in

one point and is disjoint from O2 \ O1 as those points are interior to O1. The

symmetric argument shows that O has a unique tangent at points of O2 as well,

completing the result. �
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For semiovals O1 and O2 meeting the conditions of this Proposition, one

consequence of the proof is that at a point P ∈ O1 ∩ O2, both the O1-tangent

and the O2-tangent at P are tangent lines to O = O1 ∪ O2 at P . But O being a

semioval forces these two tangent lines to be equal, proving the following

Corollary 2.5. Let O1 and O2 be semiovals such that every point of O1 \ O2 is

interior to O2, and vice versa. If P ∈ O1 ∩ O2, then the tangent lines to O1 and

O2 at P are identical.

Propostion 2.4 gives a critical tool we need to investigate unions of conics

that are semiovals, leading us to make the

Definition 2.6. Let C1 and C2 be conics in PG(2, q), q odd. We say C1 and C2 are

mutually interior if C1 \ C2 consists of interior points to C2 and C2 \ C1 consists

of interior points to C1. Alternatively, two conics are mutually interior if neither

contains an exterior point of the other.

With this new terminology we can inductively apply Proposition 2.4 to show

that the union of a set of conics forms a semioval if and only if every pair of

conics in the set is mutually interior. Thus our original problem of classifying

semiovals that are the unions of conics is equivalent to classifying all sets of

pairwise mutually interior conics.

Before moving on, we wish to treat the case q = 3 separately, as the notion

of a conic degenerates somewhat to any set of four points in general position.

When q = 3 there are only two inequivalent semiovals in PG(2, 3) (see Kiss

[5]), namely the conic itself and the vertexless triangle. The former obviously

contains one conic while the latter contains three conics, namely the four points

off any one side, for each side. These facts are not inconsistent with our results,

but would require special handling. Thus in what follows we will assume q ≥ 5.

3 Algebraic description of mutually interior conics

In this section we provide a classification of all pairs of mutually interior conics

in PG(2, q) based on the conic pencil they generate. Any two conics V (P ) and

V (Q), with P , Q nondegenerate quadratic forms, generate a conic pencil defined

via the quadratic forms 〈P,Q〉 = {P + λQ : λ ∈ GF(q)} ∪ {Q}. Note that the

pencil generated by two conics may very well contain points, lines or line pairs.

Abatangelo, et. al., [1] took an important step in this direction, wherein the

authors determined the spectrum of sizes of the intersection of one conic with

the set of exterior points of another. From their results it is possible to derive

a result similar to what follows in PG(2, q) for q ≥ 17, but we provide a direct
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proof for all odd q. We first require a result limiting the size of the intersection

of two mutually interior conics. In what follows we make use of some classical

results from projective geometry, all of which can be found in Chapter 8 of

the book by Coxeter [2], for instance. These results describe when a conic is

uniquely determined. In particular, five points in general position, four points in

general position together with a tangent line through one of these points, and

three points in general position together with two tangent lines at these points

all uniquely determine a conic.

Proposition 3.1. Let C1 and C2 be distinct mutually interior conics in PG(2, q),
q odd. Then, |C1 ∩ C2| ≤ 2.

Proof. Since C1 and C2 are mutually interior, by Corollary 2.5 they share tangent

lines at any common points. Hence if C1 and C2 share three points they must

also share the three tangent lines at those points, contradicting the fact that

three points and two tangent lines at these points uniquely determine a conic.

Thus C1 and C2 can share at most two points. �

Being able to determine whether a point is interior or exterior to a given

conic will be an important tool in what follows. Denoting the homogeneous

coordinates of the points of PG(2, q) with (x0, x1, x2), we define the coefficient

matrix of a conic C as A = (aij), i, j ∈ {0, 1, 2}, a symmetric nonsingular matrix

such that the points of C satisfy

2
∑

i,j=0

aij xixj = 0.

We have the following (see [4, Theorem 8.17] or [7, Section 6]).

Lemma 3.2. Let C be a conic in PG(2, q), q odd, with coefficient matrix A. The

point (y0, y1, y2) is on C, exterior to C, or interior to C, as

Υ = − det(A) ·
2

∑

i,j=0

aijyiyj

is zero, a nonzero square, or a nonsquare in GF(q), respectively.

Abatangelo, et.al. [1] describe three types of conic pencils such that for any

two distinct conics C1 and C2 in the pencil, either all of the points of C2 \ C1 are

exterior to C1, or they are all interior to C1. These three conic pencils play a

critical role in our classification, making it worthwhile to describe them here.

The pencil 〈xy, z2〉 which we call the secant pencil contains q − 1 conics, a line

and a line pair. All of the conics in the pencil contain two common points, and
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share the tangent lines at those two points. The line is the unique line that

passes through the two common secant points, and the line pair contains the

common tangent lines.

The pencil 〈x2−yz, z2〉, called the tangent pencil, contains q conics and a line.

All of the conics in the pencil share a single point and the tangent line at that

point, which is the line of the pencil. The disjoint pencil 〈x2 − sy2, z2〉, s a fixed

nonsquare, contains q − 1 conics, a point and a line, with all elements pairwise

disjoint.

The following theorem shows that these are the only possible conic pencils

generated by a pair of mutually interior conics. Note that we are not yet assert-

ing that these pencils actually do contain mutually interior conics, though we

will see in Section 4 that they often do.

Theorem 3.3. Let C1 and C2 be two mutually interior conics in PG(2, q), q odd.

Then the pencil generated by C1 and C2 is isomorphic to one of

1. 〈xy, z2〉, if |C1 ∩ C2| = 2;

2. 〈x2 − yz, z2〉, if |C1 ∩ C2| = 1; or

3. 〈x2 − sy2, z2〉, for fixed nonsquare s, if |C1 ∩ C2| = 0.

Proof. We split into cases depending on the size of C1 ∩ C2, for which the spec-

trum of values is {0, 1, 2} by Proposition 3.1.

C1 and C2 secant: Without loss of generality, we may assume that C1 =

V (xy + z2), and further that C2 meets C1 in the points (1, 0, 0) and (0, 1, 0),

hence by Corollary 2.5, C1 and C2 also share the tangent lines [0, 1, 0] and [1, 0, 0]

at these points. However every conic in the pencil 〈xy, z2〉 also shares these

common points and tangents. C2 must meet some conic Ck = V (xy + kz2) of

the pencil other than C1 in a further point, forcing C2 to be identical to Ck as

they share three points and tangent lines at two of these points. Hence C1 and

C2 generate the pencil 〈xy, z2〉.

C1 and C2 tangent: Again without loss of generality we can assume that C1 =

V (x2−yz) and that C1∩C2 = {(0, 1, 0)}. Using Corollary 2.5, C2 must also share

the tangent line [1, 0, 0] with C1, and as before C2 shares the point (0, 1, 0) and

the tangent line [1, 0, 0] with every conic in the pencil 〈x2 − yz, z2〉. Since any

conic of that pencil has its noncommon points either wholly exterior or wholly

interior to C1, the 1

2
q(q− 1) interior points to C1 are distributed among 1

2
(q− 1)

conics of the pencil, and the points of C2 other than (0, 1, 0) must be contained

in the union of these conics. Using the pigeonhole principle, C2 must meet one

of these conics Ck = V (x2 − yz − kz2) in at least four points, including (0, 1, 0).
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But then C2 and Ck have four common points and a common tangent at one

of those points, which forces them to be equal. Hence C1 and C2 generate the

pencil 〈x2 − yz, z2〉.

C1 and C2 disjoint: To prove this case we appeal to a result of Dickson [3],

as reported via Hirschfeld [4, Theorem 7.31], regarding the classification of

pencils of conics in PG(2, q). From this classification there are three projectively

inequivalent pencils that contain disjoint conics. One (〈x2, y2+yz+ez2〉, where

1− 4e is a nonsquare, as reported by Hirschfeld) is isomorphic to 〈x2 − sy2, z2〉,
for fixed nonsquare s; we exclude the other two pencils here.

First assume that C1 and C2 generate a pencil isomorphic to 〈x2 − νy2, z2 −
ry2 + 2sxy〉, where ν and r2 − 4νs2 are nonsquares. Without loss of generality

we may assume that C1 = V (z2 − ry2 + 2sxy) and C2 = V (z2 − ry2 + 2sxy +

λ(x2 − νy2)) for some λ ∈ GF(q)∗. Using Lemma 3.2 we can calculate that

a point (y0, y1, y2) ∈ C1 is on, exterior to, or interior to C2 as Υ = −µ(y2
2
−

ry2
1
+ 2sy0y1 + λ(y2

0
− νy2

1
)) is zero, nonzero square or nonsquare, where µ =

−
[

λ(λν + r) + s2
]

, the determinant of the coefficient matrix for C2, is nonzero.

Noting that (y0, y1, y2) ∈ C1 forces y2
2
−ry2

1
+2sy0y1 = 0, we have Υ = −µλ(y2

0
−

νy2
1
).

Note that the two points (1, 0, 0) and (r, 2s, 0) both lie in C1. Calculating the

value of Υ for both of these points we obtain −µλ for (1, 0, 0) and −µλ(r2−4νs2)

for (r, 2s, 0). Since r2−4νs2 is a nonsquare and −µλ is nonzero, these two values

have opposite quadratic character, meaning that one of (1, 0, 0), (r, 2s, 0) ∈ C1 is

exterior to C2, which is a contradiction.

Now assume that C1 and C2 generate a pencil isomorphic to 〈xy, ex2 + e′y2 +

xz + yz + z2〉, where 1 − 4e and 1 − 4e′ are nonsquares. In this case we may

assume that C1 = V (ex2 + 1

2
xy + e′y2 + xz + yz + z2) and C2 = V (ex2 + λxy +

e′y2 + xz + yz + z2) for some λ ∈ GF(q). Since the line pair V (xy) is in the

pencil and the elements of the pencil are pairwise disjoint, the q + 1 points of

C1 must all be of the form (1, y1, y2) for some y1, y2 ∈ GF(q) where y1, y2 6= 0.

Using Lemma 3.2 in the same way as before we can calculate that a point

(1, y1, y2) ∈ C1 is on, exterior to, or interior to C2 as Υ = −κ(λ − 1

2
)y1 is zero,

a nonzero square or a nonsquare, where κ, the determinant of the coefficient

matrix for C2, is nonzero. Since C1 and C2 are mutually interior, this means that

y1 must have a fixed quadratic character as (1, y1, y2) varies over all points of C1,

hence y1 can take on at most 1

2
(q− 1) values. But for a fixed y1, all points of the

form (1, y1, y2) are collinear on [−y1, 1, 0], meaning that for any value y1 there

are at most two points of the form (1, y1, y2) in C1. This forces C1 to contain at

most q − 1 points, a contradiction. �

The following important corollary gives us an algebraic relationship between
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the forms of two arbitrary mutually interior conics.

Corollary 3.4. Let C1 = V (P ) and C2 = V (Q) be distinct mutually interior conics

in PG(2, q), q odd. Then there exists λ ∈ GF(q)∗ and a linear polynomial L such

that C2 = V (P + λL2).

Proof. By Theorem 3.3, regardless of how C1 and C2 intersect the pencil they

generate contains a line (V (z2) for the forms in the theorem statement). Thus

there is a linear polynomial L such that the line V (L2) is in the pencil generated

by C1 and C2. Since any two distinct forms in the pencil generate the pencil, we

can write Q = µP + χL2 for some nonzero µ, χ ∈ GF(q). Setting λ = χ
µ

, this

implies C2 = V (P + λL2), proving the result. �

4 Semiovals from copencilar conics

In [6], Kiss, et. al. show that the blocking sets constructed by Szőnyi [8] are

semiovals. Viewed in context of the previous section, the method used is to

construct a set of mutually interior conics which are contained in the tangent

pencil 〈x2 − yz, z2〉. In this section we generalize that result to disjoint and

secant pencils and also prove a characterization of all semiovals that can be

obtained from the union of copencilar conics.

Theorem 4.1. M = {C1, . . . , Ck} is a set of mutually interior, copencilar conics in

PG(2, q), q odd, if and only if M is isomorphic to one of the sets

1. {V (xy + aiz
2)}, where {a1, . . . , ak} ⊂ GF(q)∗ such that ai(ai − aj) is a

nonsquare for all i 6= j; or

2. {V (x2 − yz − aiz
2)} where {a1, . . . , ak} ⊂ GF(q) such that ai − aj is a

nonsquare for all i 6= j; or

3. {V (x2−sy2+aiz
2)} where s is a fixed nonsquare and {a1, . . . , ak} ⊂ GF(q)∗

such that ai(ai − aj) is a nonzero square for all i 6= j.

Proof. By Theorem 3.3 we may assume without loss of generality that the conics

C1, . . . , Ck lie in one of these three conic pencils. We split into cases:

Secant pencil 〈xy, z2〉: For all i ∈ {1, . . . , k}, Ci = V (xy + aiz
2) for some

ai ∈ GF(q)∗, as V (xy) and V (z2) are the line pair and line of the pencil. For

any conics Ci, Cj ∈ M, Ci and Cj are mutually interior, meaning that neither

contains an exterior point of the other. Using Lemma 3.2, we find that a point

(y0, y1, y2) ∈ Cj is exterior to Ci if and only if 1

4
ai(y0y1 + aiy

2

2
) is a nonzero
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square. Since (y0, y1, y2) ∈ Cj we have y0y1 = −ajy
2

2
, so (y0, y1, y2) ∈ Cj is

exterior to Ci if and only if ai(ai − aj)y
2

2
is a nonzero square. Since Cj contains

no exterior points of Ci, the expression ai(ai − aj) must be a nonsquare, a

relationship which holds for all pairs of distinct conics in Ci, Cj ∈ M.

Conversely suppose {a1, . . . , ak} ⊂ GF(q)∗ satisfies ai(ai − aj) nonsquare for

all distinct ai, aj , and let M = {Ci} where Ci = V (xy + aiz
2). Let Ci and Cj

be two conics in M. If (y0, y1, y2) ∈ Cj then as above (y0, y1, y2) is exterior

to Ci if and only if ai(ai − aj)y
2

2
is a nonzero square, implying Cj contains no

exterior point of Ci. Interchanging the roles of Ci and Cj shows that Ci and Cj
are mutually interior.

Tangent pencil 〈x2−yz, z
2〉: The flow of the proof is the same as the previous

case; the only differences are that V (x2 − yz) is a conic in this case, so ai can

be zero for some i; and the expression used to determine when Ci and Cj are

mutually interior. For all i ∈ {1, . . . , k}, Ci = V (x2 − yz − aiz
2) for some

ai ∈ GF(q). As above for conics Ci and Cj , (y0, y1, y2) ∈ Ci is exterior to Cj if and

only if 1

4
(y2

0
− y1y2−ajy

2

2
) is a nonzero square, or equivalently if (ai−aj)y

2

2
is a

nonzero square since (y0, y1, y2) ∈ Ci. This forces ai − aj to be a nonsquare for

all distinct ai, aj .

Disjoint pencil 〈x2−sy
2
, z

2〉, s nonsquare: In this case for all i ∈ {1, . . . , k},

Ci = V (x2 − sy2 + aiz
2) for some ai ∈ GF(q)∗, as V (x2 − sy2) and V (z2) are

the point and line of the pencil. As above for conics Ci and Cj , (y0, y1, y2) ∈
Cj is exterior to Ci if and only if sai(y

2

0
− sy2

1
+ aiy

2

2
) is a nonzero square, or

equivalently if and only if ai(ai − aj) is a nonsquare, since (y0, y1, y2) ∈ Cj and

s is a nonsquare. This forces ai(ai − aj) to be a nonzero square for all distinct

ai, aj . �

Given these field theoretic conditions on the set S = {a1, . . . , ak} of parame-

ters for each of these cases, it is a natural question to ask how large these sets

can be. Noting that the upper bound for the size of a semioval is q
√
q + 1, the

maximum size for the secant and tangent cases is
√
q, while for the disjoint case

the maximum size is
√
q − 1. Szőnyi [8] shows that in the tangent case, this

upper bound is met when q is a square by taking S = {sk : k ∈ GF(
√
q)∗}

for a fixed nonsquare s, and that in fact the resulting set is a unital that is the

union of conics. Similarly in the disjoint case, it is not hard to see that taking

S = GF(
√
q)∗ yields a maximum set of

√
q − 1 mutually interior conics in the

disjoint pencil.

The secant case does not easily generate such maximum examples. Exam-

ining the condition on the parameters for the secant case, it is easy to see that

when q ≡ 1 (mod 4) any set of squares whose pairwise differences are non-

squares satisfies the parameter conditions. We give one such construction in
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Proposition 4.2. Let q be an odd square, and let s be a fixed nonsquare in GF(q).

Then for each x ∈ GF(
√
q)∗ the set Tx = {x + ys : y ∈ GF(

√
q)} contains

1

2
(
√
q + 1) nonzero squares, denoted by Sx , whose pairwise differences are non-

squares. Moreover, the set Sx is maximal subject to these conditions.

Proof. It is clear that the pairwise differences of elements in Tx are nonsquares

for all x ∈ GF(
√
q); indeed T0 is precisely the set used to generate the maximal

set of mutually interior tangent conics.

Note that {1, s} forms a basis for GF(q) over GF(
√
q) so that GF(q) is par-

titioned by the sets Tx as x varies over GF(
√
q). If x = 0, Tx clearly consists

entirely of nonsquares, hence the 1

2
(q − 1) nonzero squares in GF(q) must be in

the sets Tx for nonzero x ∈ GF(
√
q).

We claim that these are distributed equally; to show this let x1, x2 ∈ GF(
√
q)∗,

and let κ be such that x2 = κx1. For all z = x1 + ys ∈ Tx1
, κz = x2 + yκs ∈

Tx2
, so multiplication by κ is a bijection from Tx1

onto Tx2
. Moreover κ ∈

GF(
√
q)∗ implies κ is a square in GF(q), meaning that multiplication by κ maps

the squares Sx1
bijectively onto the squares Sx2

. Hence Sx1
and Sx2

have the

same cardinality, and simple division then yields that each Sx contains 1

2
(
√
q+1)

squares for all x ∈ GF(
√
q)∗. Note that this also implies Tx contains 1

2
(
√
q − 1)

nonsquares for all x ∈ GF(
√
q)∗

To show the maximality of Sx, let the elements of Sx be denoted ki for i ∈
{1, . . . , 1

2
(q + 1)}, and let z be a square in GF(q) such that z − ki is a nonsquare

for all i. We can write z uniquely as α + βs for some α, β ∈ GF(
√
q), and for

each i we can also write ki = x+ yis for some yi ∈ GF(
√
q).

By our assertion, {z − ki} is a set of 1

2
(
√
q + 1) distinct nonsquares. But we

can write z − ki = (α − x) + (β − yi)s, which implies that {z − ki} is a set

of 1

2
(
√
q + 1) distinct nonsquares in Tα−x. By the previous result, the only Tc

which contains 1

2
(
√
q + 1) distinct nonsquares is T0, which forces α = x. But

this implies z ∈ Sx, which proves Sx is maximal. �

When q ≡ 3 (mod 4), we can use Theorem 4.1 to prove much tighter bounds

on the size of sets of mutually interior conics in a pencil, because −1 is a non-

square in this case.

Corollary 4.3. Let M = {C1, . . . , Ck} be a set of mutually interior, copencilar

conics in PG(2, q), q ≡ 3 (mod 4). Then k ≤ 2, and if there are two conics in M,

they are either disjoint or secant.

Proof. For the secant case suppose C1 and C2 are two distinct mutually interior

conics in M. Then by Theorem 4.1 we may assume Ci = V (xy + aiz
2) for

i = 1, 2 where a1(a1 − a2) and a2(a2 − a1) are both nonsquares. Since a1 − a2
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and a2 − a1 have opposite quadratic character, a1 and a2 must have opposite

quadratic character as well. This property holds true for all pairs of conics in M
and there are only two choices for the quadratic character, thus M contains at

most two conics. The proof for the disjoint case is similar.

For the tangent case suppose C1 and C2 are two distinct mutually interior

conics in M. Then by Theorem 4.1 we may assume Ci = V (x2 − yz − aiz
2) for

i = 1, 2 where a1−a2 and a2−a1 are both nonsquares. But these two quantities

have opposite quadratic character, meaning no such pair of mutually interior

conics can exist in the tangent case. �

5 Semiovals from non-copencilar conics

In this section we address the possibility that a semioval can be the union of

conics that do not all lie in the same conic pencil. Our first results in this direc-

tion show that if such a semioval exists, all of the conics in the semioval must

be mutually secant. We begin with a simple counting argument that calculates

the number of points interior to both of a pair of mutually interior conics. For

both Propositions 5.1 and 5.2, note that there are no disjoint mutually interior

conics when q < 7, so the seemingly nonsensical negative counts that result

never occur.

Proposition 5.1. Let C1 and C2 be mutually interior conics in PG(2, q), q ≥ 5 odd.

Then the number of points interior to both C1 and C2 is 1

4
(q2− 4q+3), 1

4
(q2− 5q),

or 1

4
(q2 − 6q − 3) as C1 and C2 are secant, tangent or disjoint, respectively.

Proof. Even though the results differ, the proof is practically identical for the

secant, tangent and disjoint cases. Thus we treat all three cases simultaneously.

Let C1 and C2 be mutually interior conics in PG(2, q) for q odd. We first count

the number of points that are exterior to both conics. Let X be this desired

number and consider the set of flags

F = {(P,m) : P exterior to both C1 and C2,m tangent to C1}.

Starting with the point P , there are X ways to pick the point, and then two

choices for the tangent m to form a flag in F , so |F| = 2X.

Now we count the number of flags in F by picking the tangent line first.

There are two types of tangent lines to C1: tangents at points in C1 ∩C2 (type I),

and tangents at points in C1 \ C2 (type II). For a type I tangent, by Corollary 2.5

the tangent line m to C1 at a point of C1 ∩ C2 must also be tangent to C2 at this

point, meaning that the q points of m not in C1 are exterior to both C1 and C2.

Thus a type I tangent line is contained in q flags in F .
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For the type II tangent, let m be a tangent to C1 at a point P of C1 \ C2. Since

C1 and C2 are mutually interior, m must be disjoint from C2, meaning that there

are 1

2
(q + 1) points on m exterior to C2. P is not one of these points, since

P ∈ C1 forcing P to be interior to C2. Hence these 1

2
(q+1) exterior points to C2

are also exterior to C1. Thus each type II tangent is contained in 1

2
(q + 1) flags

in F .

To complete our count, we must break into cases depending on how C1 and

C2 meet. If C1 and C2 are secant, then there are two type I tangents and q − 1

type II tangents, meaning |F| = 2q + 1

2
(q + 1)(q − 1) = 1

2
(q2 + 4q − 1) from

which we conclude that X, the number of points exterior to both C1 and C2 is
1

4
(q2 + 4q − 1). If C1 and C2 are tangent then there is one type I tangent, and q

type II tangents, yielding 1

4
(q2 + 3q) points exterior to C1 and C2. If C1 and C2

are disjoint all tangents are type II, and the number of points exterior to both

C1 and C2 is 1

4
(q2 + 2q + 1).

There are 1

2
q(q+1) exterior points to C1. None of these points lie on C2 by the

mutually interior property, and we just counted the number of these points that

are also exterior to C2. In the secant case this implies that 1

2
q(q + 1) − 1

4
(q2 +

4q − 1) = 1

4
(q2 − 2q + 1) points must be exterior to C1 but interior to C2. The

same calculation yields 1

4
(q2− q) and 1

4
(q2− 1) points exterior to C1 but interior

to C2 in the tangent and disjoint cases respectively.

Similarly there are 1

2
q(q− 1) points interior to C2, and these points are either

exterior to, on, or interior to C1. We have just counted the number of interior

points to C2 that are exterior to C1, and the points of C1\C2 are on C1 but interior

to C2. Thus in the secant case the number of points interior to both C1 and C2 is
1

2
q(q−1)− 1

4
(q2−2q+1)− (q−1) = 1

4
(q2−4q+3). The same calculation yields

1

4
(q2 − 5q) and 1

4
(q2 − 6q − 3) points interior to both C1 and C2 in the tangent

and disjoint cases respectively. �

Now that we know the number of common interior points to two mutually

interior conics, we can look at how these points are distributed amongst the

elements of the pencils they generate.

Proposition 5.2. Let C1 and C2 be mutually interior conics in PG(2, q), q ≥ 5

odd.

(i) If C1 and C2 are disjoint, then the set of points interior to both C1 and C2
is exactly the union of the point, 1

2
(q + 1) points on the line, and 1

4
(q − 9)

conics of the pencil generated by C1 and C2, if q ≡ 1 (mod 4); and the union

of the point and 1

4
(q− 7) conics of the pencil generated by C1 and C2, if q ≡ 3

(mod 4).
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(ii) If C1 and C2 are tangent, then the set of points interior to both C1 and C2 is

exactly the union of the points in 1

4
(q − 5) conics of the pencil generated by

C1 and C2, less their common point of intersection.

(iii) If C1 and C2 are secant, then the set of points interior to both C1 and C2 is

exactly the union of 1

2
(q − 1) points on the line and 1

4
(q − 5) conics of the

pencil generated by C1 and C2, less their common points of intersection, if

q ≡ 1 (mod 4); and the union of 1

4
(q − 3) conics of the pencil generated by

C1 and C2, less their common points of intersection, if q ≡ 3 (mod 4).

Proof. In the disjoint case, by Theorem 3.3 we may assume without loss of

generality that the pencil generated by C1 and C2 is 〈x2− sy2, z2〉 for some fixed

nonsquare s ∈ GF(q). Note that the quadratic form x2 − sy2 corresponds to the

point (0, 0, 1), and the form z2 corresponds to the line [0, 0, 1], so we may take

C1 = V (x2 − sy2 + z2) and C2 = V (x2 − sy2 + kz2) for some k ∈ GF(q)∗, k 6= 1.

Theorem 4.1 shows that 1−k must be a nonzero square for all odd q, but that k

is nonzero square when q ≡ 1 (mod 4), and k is a nonsquare for q ≡ 3 (mod 4).

Using the condition of Lemma 3.2, the point (0, 0, 1) is interior to the conic

V (x2 − sy2 + tz2) of our pencil if and only if st2 is a nonsquare. Since s is

a nonsquare this condition is met for all conics in the pencil, hence the point

(0, 0, 1) is interior to all of them. Now consider the line [0, 0, 1]. Again using

Lemma 3.2 point (1, a, 0) on this line is interior to C1 if s(1−sa2) is a nonsquare,

and (0, 1, 0) is interior to C1 if −s2 is a nonsquare. Similarly (1, a, 0) is interior

to C2 if sk(1 − sa2) is a nonsquare, and (0, 1, 0) is interior to C2 if −ks2 is a

nonsquare. In particular the 1

2
(q + 1) interior points to C1 on [0, 0, 1] are also

interior to C2 if and only if k is a square. Hence when q ≡ 1 (mod 4) there are
1

2
(q+1) interior points to C1 and C2 on [0, 0, 1], while when q ≡ 3 (mod 4) there

are none.

As shown in Abatangelo, et. al. [1] every conic in the pencil is either wholly

interior to or wholly exterior to any other conic in the pencil. When q ≡ 1

(mod 4), the point and 1

2
(q+1) points of the line are interior to both C1 and C2.

Using Proposition 5.1 we find that this leaves 1

4
(q2 − 6q − 3) − 1 − 1

2
(q + 1) =

1

4
(q − 9)(q + 1) points remaining, which must be covered by 1

4
(q − 9) conics of

the pencil generated by C1 and C2. Thus the set of points interior to both C1 and

C2 is the union of the point, 1

2
(q + 1) points on the line, and 1

4
(q − 9) conics of

the pencil, as claimed. The calculation for q ≡ 3 (mod 4) is similar.

The tangent case is substantially easier since the line of the pencil is tangent

to all conics in the pencil, meaning it contains no interior points to any conics

in the pencil. Excepting the common point of intersection we again have that

the points of every conic in the pencil are either wholly exterior to or wholly

interior to any other conic in the pencil. Thus the 1

2
(q2 − 5q) points interior to
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C1 and C2 must be covered by the q noncommon points of 1

2
(q− 5) conics in the

pencil.

In the secant case we again use Theorem 3.3 to assume without loss of gen-

erality that C1 = V (xy + z2) and C2 = V (xy + kz2), k ∈ GF(q)∗ are mutually

interior conics. As above Theorem 4.1 shows that k is a nonzero square when

q ≡ 1 (mod 4), and a nonsquare when q ≡ 3 (mod 4).

Since the line pair is a pair of common tangent lines to all conics in the pencil,

every point on the line pair is either on or exterior to every conic of the pencil.

Looking at the line [0, 0, 1] we use Lemma 3.2 to see that (1, a, 0) on this line is

interior to C1 if a is a nonsquare (note that (0, 1, 0) is contained in each conic

of the pencil). Similarly (1, a, 0) is interior to C2 is ka is a nonsquare. Thus

the 1

2
(q − 1) interior points to C1 on [0, 0, 1] are also interior to C2 only if k is a

square, i.e., when q ≡ 1 (mod 4).

When q ≡ 1 (mod 4) the 1

4
(q2 − 4q + 3) − 1

2
(q − 1) = 1

4
(q2 − 6q + 5) points

interior to both C1 and C2 but not on [0, 0, 1] must be covered by the q − 1

noncommon points of 1

4
(q − 5) conics of the pencil. When q ≡ 3 (mod 4), all

1

4
(q2 − 4q + 3) points interior to both C1 and C2 must be covered by 1

4
(q − 3)

conics of the pencil. �

With these two propositions in hand, we are in position to prove our key

nonexistence result.

Theorem 5.3. Let M = {C1, . . . , Ck} be a set of mutually interior conics in

PG(2, q), q odd. If any pair of conics Ci and Cj in M is either disjoint or tangent,

then all of the conics contained in M are in the pencil generated by Ci and Cj .

Proof. Suppose first that we have two disjoint conics in M, which we can as-

sume are C1 and C2. If there are no additional conics in M we are done, so let

Ci be any other conic in M. By definition Ci is mutually interior to both C1 and

C2. By Proposition 3.1 Ci could meet both C1 and C2 in up to two points each,

implying that at least q − 3 points of Ci must be interior to both C1 and C2.

We wish to use Proposition 5.2, but must split into cases depending on q.

If q ≡ 1 (mod 4) at least q − 3 points of Ci must be contained in the disjoint

union of the point, 1

2
(q + 1) points on the line, and 1

4
(q− 9) conics of the pencil

generated by C1 and C2. If Ci is one of the conics in the pencil we are done, so

assume not. Then Ci could contain the point, at most 2 points of the line, and

at most 4 points of each of the 1

4
(q − 9) conics above. But this means Ci has at

most 4+1+2+(q−9) = q−2 points, a contradiction. Hence Ci must be a conic

of the pencil generated by C1 and C2. The argument when q ≡ 3 (mod 4) is

similar, where C1 could possibly contain the point and at most four points from
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each of 1

4
(q − 7) , again yielding a maximum possible size of q − 2 points, and

forcing Ci to be a conic of the pencil generated by C1 and C2.

Suppose now that C1 and C2 are tangent, and again suppose Ci is another

conic in M. As above Ci could contain up to two points each of C1 and C2,

meaning at least q − 3 points of Ci must be interior to both C1 and C2. Using

Proposition 5.2 we see that at least q − 3 points of Ci must be contained in the

union of 1

4
(q − 5) conics. Thus either Ci is one of these conics, or Ci contains at

most 4+ (q− 5) = q− 1 points, again a contradiction. This again forces Ci to be

a conic in the pencil generated by C1 and C2. �

So to this point we have shown that any semioval that is the union of non-

copencilar conics must have the property that any two conics in the semioval

are pairwise secant, which is about as far as combinatorics can get us. We

now move toward a more algebraic approach, which allows to classify all of the

conics that are mutually interior to a pair of mutually interior secant conics, but

not in the pencil they generate.

Theorem 5.4. Let C1 and C2 be distinct mutually interior secant conics in PG(2, q),
q odd. By Theorem 4.1, we may assume without loss of generality that C1 =

V (xy + z2) and C2 = V (xy + kz2) for some fixed k ∈ GF(q)∗ where k is a square,

k− 1 is a nonsquare when q ≡ 1 (mod 4), or k is a nonsquare with k− 1 a square

when q ≡ 3 (mod 4). Then the set of conics mutually interior to both C1 and C2
but not in the pencil 〈xy, z2〉 they generate is

{

V (xy + z2 + λ(ax+ y)2)
}

where λa = 1−k
4k

with −λ a nonsquare.

Proof. Let C1 and C2 be as in the theorem statement, and suppose D is mutually

interior to both, but not in the pencil they generate. Using Corollary 3.4, since

D is mutually interior with C1 we have D = V (xy + z2 + λ1(a1x+ b1y + c1z)
2)

for some λ1 ∈ GF(q)∗ and a1, b1, c1 ∈ GF(q). But D is also mutually interior

with C2, implying D = V (xy+kz2+λ2(a2x+ b2y+ c2z)
2) for some λ2 ∈ GF(q)∗

and a2, b2, c2 ∈ GF(q). These two quadratic forms defining D must be scalar

multiples of each other, hence the two polynomials

xy + z2 + λ1(a1x+ b1y + c1z)
2 (1)

and

xy + kz2 + λ2(a2x+ b2y + c2z)
2 (2)

are proportional.

We first wish to show that c1, and thus c2 must be zero. Proceeding by

contradiction assume that c1 6= 0, allowing us to normalize c1 = 1 by absorbing
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the value into λ1. If c1 = 1, then we cannot have a1 = b1 = 0 since that would

give (by Polynomial (1)) D = V (xy + (1 + λ1)z
2), which forces D to be in the

pencil generated by C1 and C2. Hence Polynomial (1) has at least one of the

xz and yz cross-terms nonzero. This forces Polynomial (2) to have at least one

of its xz and yz cross-terms nonzero, which implies c2 6= 0 and at least one of

a2 and b2 is nonzero. As above, since c2 6= 0, we may assume without loss of

generality that c2 = 1.

Expanding Polynomials (1) and (2) and equating the coefficients with a con-

stant of proportionality µ, we obtain the following six equations:

λ1a
2

1
= µ(λ2a

2

2
), (3)

1 + 2λ1a1b1 = µ(1 + 2λ2a2b2), (4)

λ1b
2

1
= µ(λ2b

2

2
), (5)

2λ1a1 = µ(2λ2a2), (6)

2λ1b1 = µ(2λ2b2), (7)

1 + λ1 = µ(k + λ2). (8)

Equations (6) and (7) let us solve for a1 and b1 in terms of a2 and b2 respec-

tively, yielding a1 = µλ2

λ1

a2 and b1 = µλ2

λ1

b2. Plugging these into Equations (3)

and (5) respectively, shows that µλ2

λ1

a2
2
= a2

2
and µλ2

λ1

b2
2
= b2

2
. Since we cannot

have both a2 = 0 and b2 = 0 we must have µλ2 = λ1. Utilizing this fact in Equa-

tions (6) and (7) shows that a1 = a2 and b1 = b2, and in Equation (8) shows

that µk = 1. But plugging µλ2 = λ1, a1 = a2 and b1 = b2 into Equation (4)

forces µ = 1. Thus we must have k = 1 implying C1 and C2 are identical, which

is our contradiction.

Hence c1 = 0, from which it follows that c2 must also be zero. We claim b1
and b2 are both nonzero. First note that if b1 is zero then Polynomial (1) has

no y2 term, which forces b2 to be zero as well, and vice versa, so either both b1
and b2 are zero, or neither are. In the former case, the coefficients of z2 in the

Polynomials (1) and (2) are 1 and k respectively, while the coefficients of xy are

both 1; since the polynomials are proportional this forces k = 1, which yields

the same contradiction as before. Thus b1 and b2 are both nonzero and we may

normalize so that b1 = b2 = 1. We again expand our polynomials and equate

coefficients with a constant of proportionality µ to obtain four equations (since

the xz and yz cross-terms have coefficient zero):

λ1a
2

1
= µλ2a

2

2
, (9)

1 + 2λ1a1 = µ(1 + 2λ2a2), (10)

λ1 = µλ2, (11)

1 = µk. (12)
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From Equation (12) we have µ = 1

k
, which plugged into Equation (11) yields

λ2 = kλ1. Combined with Equation (9) we obtain a2
1
= a2

2
. If a1 = a2, then

Equation (10) forces µ = 1 and thus k = 1, which is again false. If a1 = −a2,

Equation (10) yields k(1 + 2λ1a1) = 1 − 2kλ1a1, which we simplify to obtain

λ1a1 = 1−k
4k

.

At this point, we have shown that if there exists a conic mutually interior

to C1 and C2 but not in the pencil they generate, it must be of the form D =

V (xy + z2 + λ(ax + y)2), or alternatively D = V (xy + kz2 + kλ(−ax + y)2),

where λa = 1−k
4k

. We now need to determine which conics D of this form are

in fact mutually interior with both C1 and C2, which involves showing that D
contains no exterior point of C1 or C2, and vice versa. Suppose (y0, y1, y2) is

a point of D = V (xy + z2 + λ(ax + y)2). Appealing to Lemma 3.2 as before

(y0, y1, y2) is exterior to C1 if − 1

4
λ(ay0 + y1)

2 is a nonzero square, which occurs

if and only if −λ is a nonzero square. Hence D contains no exterior point of C1
if and only if −λ is a nonsquare. Repeating the calculation for the other three

cases shows that

1. C1 contains no exterior point of D if and only if λ
k

is a nonsquare.

2. D contains no exterior point of C2 if and only if kλ is a nonsquare.

3. C2 contains no exterior point of D if and only if kλ is a nonsquare.

When q ≡ 1 (mod 4) both −1 and k are nonzero squares, so these conditions

are satisfied if and only if λ, and thus −λ, is a nonsquare. When q ≡ 3 (mod 4)

both −1 and k are nonsquares, implying these conditions are met if and only

if λ is a nonzero square, or equivalently −λ is a nonsquare. This proves the

result. �

Theorem 5.4 limits the number and structure of conics mutually interior to

both C1 and C2, allowing us to press on to determine if there are any sets of

four non-copencilar conics that are mutually interior. There are two possible

configurations of such conics: C1, C2 and C3 mutually interior in a pencil, with

C4 not in the pencil they generate, or no three of the conics in a common pencil.

We first show that the former case can never happen.

Theorem 5.5. Suppose C1, C2 and C3 are mutually interior secant copencilar con-

ics in PG(2, q), q odd. Then any conic C4 mutually interior to C1, C2 and C3 is in

the pencil they generate.

Proof. First we note that by Corollary 4.3 no such configuration of three copen-

cilar mutually interior conics exists when q ≡ 3 (mod 4), so we may assume

q ≡ 1 (mod 4). Let C1, C2 and C3 be as stated. By Proposition 5.2, the set of



78 J.M. Dover • K.E. Mellinger

points interior to both C1 and C2 consists of 1

2
(q − 1) points on the line in the

pencil, plus the points on 1

4
(q − 5) conics in the pencil, of which C3 is one.

C4 is mutually interior to both C1 and C2, so other than its points of intersec-

tion with C1 and C2, of which there are at most 4, the remaining at least q − 3

points of C4 must be interior to C1 and C2. Up to two of these can lie on the line

of the pencil, but then at least q − 5 points of C4 must lie in the union of the
1

4
(q − 5) conics above. One possibility is that C4 equals one of these conics, in

which case it lies in the same pencil as C1, C2 and C3. If C4 is not a conic of the

pencil, then C4 must meet each of the 1

4
(q − 5) conics in the pencil containing

the points interior to both C1 and C2 in exactly four points, since distinct conics

can meet in at most four points. But C3 is one of these conics meaning C4 meets

C3 in exactly four points, contradicting the fact that mutually interior conics can

meet in at most two points (Proposition 3.1). Thus C4 must be contained in the

same pencil as the other three conics, as claimed. �

We now address the final case, namely that we could have a set of mutually

interior conics such that no three are copencilar. We do find that this happens,

but only in one special case which shows immediately that no larger sets of

mutually interior conics can occur.

Theorem 5.6. Let C1, C2, C3 and C4 be distinct mutually interior secant conics in

PG(2, q), q odd, such that no three are copencilar. Then q ≡ 5 (mod 8) and any

such set of conics is isomorphic to

C1 = V (xy + z2),

C2 = V (xy − z2),

C3 = V
(

xy + z2 + λ
(

−1

2λ
x+ y

)2
)

and

C4 = V
(

xy + z2 − λ
(

1

2λ
x+ y

)2
)

,

where λ is a nonsquare. Moreover for fixed C1, C2 and C3 of this form, C4 is the

unique conic that is mutually interior to all three.

Proof. By Theorem 4.1, we may assume without loss of generality that C1 =

V (xy + z2) and C2 = V (xy + kz2) for some fixed k ∈ GF(q)∗ where k is a

nonzero square, k − 1 is a nonsquare when q ≡ 1 (mod 4), or k is a nonsquare

with k − 1 a nonzero square when q ≡ 3 (mod 4). Then by Theorem 5.4

C3 = V

(

xy + z2 + λ3

(

1−k
4kλ3

x+ y
)2

)

and

C4 = V

(

xy + z2 + λ4

(

1−k
4kλ4

x+ y
)2

)
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for some λ3, λ4 ∈ GF(q)∗ such that −λ3,−λ4 are nonsquares.

The conics C3 and C4 are also mutually interior, so Corollary 3.4 implies that

C4 can also be written as

V

(

xy + z2 + λ3

(

1−k
4kλ3

x+ y
)2

+ χ(ax+ by + cz)2
)

for some χ ∈ GF(q)∗ and a, b, c ∈ GF(q). Hence the polynomials

xy + z2 + λ4

(

1− k

4kλ4

x+ y

)2

(13)

and

xy + z2 + λ3

(

1− k

4kλ3

x+ y

)2

+ χ(ax+ by + cz)2 (14)

are proportional.

Note that Polynomial (13) has no xz and yz cross terms, so the proportion-

ality shows that Polynomial (14) also has zero coefficients for its xz and yz

cross-terms. Therefore either c = 0, or a = b = 0; we first show that c cannot be

zero. Assume by way of contradiction that c = 0. Expanding Polynomials (13)

and (14) and equating the coefficients with a constant of proportionality µ, we

obtain the following four equations:

(1− k)2

16k2λ4

= µ

(

(1− k)2

16k2λ3

+ χa2
)

, (15)

1− k

2k
+ 1 = µ

(

1 +
1− k

2k
+ 2χab

)

, (16)

λ4 = µ(λ3 + χb2), (17)

1 = µ. (18)

Equation (18), equating the z2 coefficients, shows immediately that µ = 1.

Equation (17) then shows that λ4 = λ3 + χb2; since λ3 and λ4 being equal

would force C3 = C4, we must have χb2 6= 0 implying b 6= 0. On the other hand

Equation (16) shows 2χab = 0, which forces a = 0. Finally we plug a = 0 and

µ = 1 into Equation (15), and use the fact that k cannot be 1 as that would

force C1 = C2, yielding λ3 = λ4, again a contradiction. Hence c is nonzero, and

a = b = 0.

Normalizing c = 1, we again expand Polynomials (13) and (14) and equate
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coefficients with a constant of proportionality µ to get the following equations:

(1− k)2

16k2λ4

= µ
(1− k)2

16k2λ3

, (19)

1− k

2k
+ 1 = µ

(

1− k

2k
+ 1

)

, (20)

λ4 = µλ3, (21)

1 = µ(χ+ 1). (22)

Examining Equation (20), we see immediately that either µ = 1 or 1−k
2k

+1 = 0.

However µ = 1 combined with Equation (21) would force λ3 = λ4, yet another

contradiction, so we must have 1−k
2k

+1 = 0 which forces k = −1. Equation (19)

then yields λ3 = µλ4, which combined with Equation (21) shows that µ = −1.

Finally from Equation (22) we determine that χ = −2.

First notice that λ3 and λ4 are opposites, which means that for q ≡ 3 (mod 4)

λ3 and λ4 have opposite quadratic character, meaning not both −λ3 and −λ4

are nonsquares. Hence no such mutually interior conics C3 and C4 can exist

when q ≡ 3 (mod 4). Assuming q ≡ 1 (mod 4), we must check the constraints

on k = −1, namely that k is a nonzero square and k − 1 is a nonsquare. The

former condition is clearly true, but the latter is only true when k − 1 = −2 is a

nonsquare, or equivalently when 2 is a nonsquare, which occurs only for q ≡ 5

(mod 8).

Thus only in the case where q ≡ 5 (mod 8) is it possible that a set of four

non-copencilar, mutually interior conics can exist, and if it exists the conics

in the set must be isomorphic to C1 = V (xy + z2), C2 = V (xy − z2), C3 =

V (xy+z2+λ(−1

2λ
x+y)2) and C4 = V (xy+z2−λ( 1

2λ
x+y)2) for some nonsquare

λ. However we need to check that these conics are actually mutually interior.

We can use Theorems 4.1 and 5.4 to show all pairs are mutually interior, except

C3 and C4. Using Lemma 3.2 as in Theorem 5.4 quickly shows that C3 and C4
are mutually interior if 1

2
is a nonsquare, which is true when q ≡ 5 (mod 8).

Thus C1, C2, C3 and C4 are a set of non-copencilar mutually interior conics when

q ≡ 5 (mod 8), and uniqueness of C4 given C1, C2 and C3 follows immediately

from the form of C4. �

6 Conclusion

We summarize the sets of mutually interior conics in PG(2, q) in Table 1.

While the semiovals discussed in this paper are interesting in their own right,

we are very interested in finding examples of blocking semiovals, i.e., semiovals

that are also blocking sets. While some of the sets we constructed here are
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blocking semiovals in small order planes, the only infinite family arises from the

tangent pencils discovered by Szőnyi [8]. However we are hopeful of using our

results here to find blocking semiovals that contain some of the sets constructed

in this paper.

The authors would like to take this opportunity to thank the reviewers and

editors for their many useful comments and constructive criticism.
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Table 1: Sets of mutually interior conics

canonical forms restrictions # of conics pencil structure intersections

xy + z2 all q 1 n/a n/a

{xy + aiz
2} q ≡ 1 (mod 4) ≤ √

q copencilar secant

q ≡ 3 (mod 4) 2 copencilar secant

{x2 − yz − aiz
2} q ≡ 1 (mod 4) ≤ √

q copencilar tangent

{x2 − sy2 + aiz
2} q ≡ 1 (mod 4) ≤ √

q − 1 copencilar disjoint

s nonsquare q ≡ 3 (mod 4) 2 copencilar disjoint

xy + z2, xy + kz2,

xy + z2 + λ( 1−k
4kλ

x+ y)2
q odd 3 non-copencilar pairwise secant

xy + z2, xy − z2,

xy + z2 + λ(−1

2λ
x+ y)2,

xy + z2 − λ( 1

2λ
x+ y)2

q ≡ 5 (mod 8) 4 non-copencilar pairwise secant
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