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Abstract

In this article, it is shown that every flock of a hyperbolic quadric H and

every flock of a quadratic cone C in PG(3,K), for K a field, is in a transitive

parallelism of H or C, respectively. Furthermore, it is shown it is possible to

have parallelisms of quadratic cones by maximal partial flocks. The theory

of parallelisms of quadratic cones is generalized to analogous results for

parallelisms of α-cones.
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1 Introduction

Let K be a field and consider a flock of a quadratic cone, an elliptic quadric

or a hyperbolic quadric in PG(3,K). This article considers whether there are

“parallelisms” of these quadric sets, which in each case means a set of mutually

disjoint flocks, whose union is a complete cover of the set of conics of plane

intersections of the quadric set in question.

Consider first a “hyperbolic parallelism” as a union of mutually disjoint hyper-

bolic flocks, whose union is the set of all conics that are sections of a hyperbolic

quadric.

When K is isomorphic to GF(q), there are (q4 − 1)/(q− 1) planes in PG(3, q),

and there are 2(q+1) lines that lie in the hyperbolic quadric. Each of these lines

lies in q+1 planes, none of which can be associated with a hyperbolic flock and

each plane that contains a line of a ruling also contains a line of the opposite

ruling. Hence, there are q3+q2+q+1−(q+1)2 = q(q2−1) planes that intersect

a hyperbolic quadric in a conic. Since a hyperbolic flock contains q + 1 planes,

we would need q(q − 1) hyperbolic flocks in a finite hyperbolic parallelism.
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Consider the putative associated translation planes. The Thas/Bader–Lunardon

Classification Theorem [9, 2] gives a complete classification of the correspond-

ing spreads, and it turns out that all are nearfield spreads. Of course, we have

the Desarguesian spread, and the regular nearfield spreads, but there are three

irregular nearfield spreads that appear on the list of possibilities as well. These

three irregular nearfield planes are of orders 112, 232 and 592 and they admit

homology groups of order q − 1. This fact was independently discovered by

Bader [1] and Johnson [7], and for orders 112 and 232 by Baker and Ebert [3].

1.1 The Thas/Bader–Lunardon Theorem

Theorem 1.1. A flock of a hyperbolic quadric in PG(3, q) is either

(1) linear, corresponding to the Desarguesian affine plane,

(2) a Thas flock, corresponding to the regular nearfield planes, or

(3) a Bader–Baker–Ebert–Johnson flock of order p2, corresponding to the irregular

nearfield planes of orders 112, 232 or 592.

As noted by Bonisoli [5], using the Thas/Bader–Lunardon Theorem, it is pos-

sible to see that every flock of a finite hyperbolic quadric lies in a transitive par-

allelism, as every sharply 1-transitive set constructing an associated nearfield

translation plane is a coset of a sharply 1-transitive group. Furthermore, Bon-

isoli also noted that if K is a field that admits a quadratic extension, there are

parallelisms of the hyperbolic quadric in PG(3,K), whose corresponding trans-

lation planes are Pappian.

So, the question in the infinite or general case is whether there are non-

nearfield translation planes corresponding to flocks of hyperbolic quadrics (in

fact, there are, see Johnson [7]) but the bigger question is whether all flocks

lead to parallelisms as they do in the finite case.

Now consider an elliptic quadric in PG(3, q). Since there are 1 + q + q2 + q3

planes and there are exactly 1 + q2 tangent planes, there are q3 + q conics of

plane intersection, and an elliptic flock requires q − 1 conics. So, there cannot

be finite parallelisms of elliptic quadrics. However, Betten and Riesinger [4],

have developed the concept of a covering of the elliptic quadric Q by a set of

2-secants. A “generalized line star” is a set S of lines of PG(3,K) that each inter-

sect Q in exactly two points, such that the non-interior points of Q are covered

by the set S. Using the duality ⊥ induced on PG(3,K) by the quadric, every

2-secant ℓ maps to an exterior line ℓ⊥ to Q. Now take the set of planes contain-

ing ℓ⊥, which defines a linear elliptic flock. Using the Klein mapping, we obtain

a Pappian spread Σ corresponding to Q and the linear flock corresponds to the

Pappian spread obtained from Σ by the replacement of a set of mutually disjoint
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reguli that covers Σ with the exception of two components. Furthermore, Bet-

ten and Riesinger show that generalized line stars produce regular parallelisms

of PG(3,K), which are coverings of the line set of PG(3,K) by Pappian (regu-

lar) spreads. Now choose any conic C of intersection of Q and let πC denote the

corresponding plane containing C and form π⊥
C
= PC . Since PC is exterior to Q,

there is a unique 2-secant ℓPC
containing PC of the generalized line star. Then

ℓ⊥PC
⊂ πC so that C corresponds to one of the lines of a spread of the parallelism.

All of this is noted in Betten and Riesinger [4], but not using the language of

parallelisms, assuming that the characteristic of K is not 2. Also, note that the

existence of Pappian spreads in PG(3,K), require the existence of a quadratic

extension F of K. We restate this theorem using our language.

Theorem 1.2 (Betten and Riesinger [4]). Let K be field of characteristic not 2

that admits a quadratic extension F . Every regular parallelism of PG(3,K) aris-

ing from a generalized line star of an elliptic quadric Q also produces an elliptic

parallelism of Q.

Finally, consider a quadratic cone C in PG(3,K), for K a field. First consider

K isomorphic to GF(q). As the number of planes that contain the vertex is

1 + q + q2, there are 1 + q + q2 + q3 − (1 + q + q2) = q3 conics of intersection.

Since a flock of a quadratic cone (covering all points with the exception of the

vertex) has q planes of intersection, we would require q2 mutually disjoint flocks

to produce a parallelism.

Surprisingly, we are able to show that all hyperbolic flocks and all conical

flocks of PG(3,K), for K a field admitting a quadratic extension F may be em-

bedded into a set of flocks that define a parallelism. In both cases, there are

groups involved that essentially imply that there is a “transitive parallelism” in

either case. We also show that it is possible to have parallelisms of quadratic

cones by maximal partial flocks. Finally, we will extend the theory of paral-

lelisms of quadratic cones to α-cones.

2 Conical parallelisms

The reader is directed to Johnson [8] for background on conical flocks and

hyperbolic flocks.

Let K be a field and let a quadratic cone C be defined by x0x1 = x2
2 with

vertex (0, 0, 0, 1).

Definition 2.1. A “parallelism” of C is a partition of the conics of intersection

with planes not containing the vertex by conical flocks.
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While it may seem that parallelisms would be difficult to obtain, we show,

in fact, that these are readily available. First we make a few remarks. A flock

of a quadratic cone is a partition of the non-vertex points by a set of plane

intersections and since each of these intersections is determined by a unique

plane, we may view the flock as the set of these planes. We know that to each

flock of a quadratic cone there is a corresponding translation plane. Hence, a

parallelism of a quadratic cone can be determined by a set of spreads of the

form

x = 0, y = x

[

u+ g(t) f(t)

t u

]

;u, t ∈ K,

if and only if the flock is

x0t− x1f(t) + x2g(t) + x3 = 0 for all t ∈ K,

when representing the cone as x0x1 = x2
2, with vertex (0, 0, 0, 1), where initially

we may assume that f(0) = g(0) = 0. However, we see that we have a flock

covering the points (z22 , 1, z2, δ), (1, 0, 0, ρ) for δ, ρ ∈ K, if and only if tz22−f(t)+

z2g(t) is bijective for all z2. Now notice that a function

φu : t 7→ tu2 − f(t) + ug(t)

is bijective if and only if

φa,b
u : t 7→ tu2 − (f(t) + a) + u(g(t) + b),

is bijective for all a, b ∈ K. Hence, if the functions (f(t), g(t)), produce a conical

flock where we have taken f(0) = g(0) = 0, then the functions (f(t)+a, g(t)+b),

produce a conical flock for all a, b ∈ K.

Therefore, if F is a flock, we consider the associated translation plane πF and

a parallelism is equivalent to a set of q2 translation planes that do not share any

of their regulus nets. We note that any linear mapping of the associated 4-di-

mensional vector space will map a conical translation plane to another conical

translation plane, isomorphic to it. Thus,

τa,b =

[

I [ b a
0 0 ]

0 I

]

will map

x = 0, y = x

[

u+ g(t) f(t)

t u

]

;u, t ∈ K,

to

x = 0, y = x

[

u+ g(t) + b f(t) + a

t u

]

;u, t ∈ K,
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so the functions (f(t), g(t)) defining the flock become (f(t) + a, g(t) + b). We

note translation planes map to translation planes under τa,b, which means that

flocks map to flocks under τa,b.

Theorem 2.2. Every conical flock is in a transitive parallelism.

Proof. We represent the planes πa,b,c, for a, b, c ∈ K, that do not contain the

vertex in the form

x0c+ x1b+ x2a+ x3 = 0.

The planes of a conical flock are then represented in the form

x0t− x1f(t) + x2g(t) + x3 = 0,

for all t ∈ K. We also have an associated conical translation plane π with spread

x = 0, y = x

[

u+ g(t) f(t)

t u

]

;u, t ∈ K.

Now consider the group

G =

〈

τa,b =

[

I [ a b
0 0 ]

0 I

]

; a, b ∈ K

〉

.

We note that πτa,b is a conical plane isomorphic to π. Therefore, there is a

corresponding conical flock. Note that πτa,b has the following spread

x = 0, y = x

[

u+ g(t) + a f(t) + b

t u

]

;u, t ∈ K.

Clearly, none of the associated derivable nets in πτa,b can be equal to the deriv-

able nets of π. Therefore, none of the planes

x0t− x1(f(t) + b) + x2(g(t) + a) + x3 = 0,

are equal to any of the planes of the flock, and also the associated image is also

a flock. Since all planes that do not contain the vertex have the form

x0c+ x1b+ x2a+ x3 = 0,

we see that we have partitioned the conics by the flocks associated with πG.

Hence, each conical flock belongs to a transitive parallelism. �

Remark 2.3. The group considered in the transitive parallelism is not a group

of the cone. However, since we are considering flocks as a set of planes, whose

intersections with the cone partition the non-vertex points, the flocks as sets

of planes can map to other flocks and therefore conics of intersection map to

conics of intersection, but not necessarily of the same quadratic cone.
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3 Parallelisms of hyperbolic quadrics

The reader is again directed to Johnson [8] for background on the translation

planes corresponding to flocks of hyperbolic quadrics.

The feature that connects flocks of hyperbolic quadrics with the associated

spreads in PG(3, q) is that they all admit a regulus-inducing affine homology

group of order q − 1. More generally, over an arbitrary field K, the associated

spreads admit a regulus-inducing affine homology group that fixes two compo-

nents of some regulus and acts regularly on the remaining components.

Let F be a flock of the hyperbolic quadric x0x3 = x1x2 in PG(3,K), whose

points are represented by homogeneous coordinates (x0, x1, x2, x3) where K is

a field. Then the set of planes which contain the conics in F may be represented

as follows:

ρ : x1 = x2,

πt : x0 − tx1 + f(t)x2 − g(t)x3 = 0

for all t in K where f and g are functions of K such that f is bijective. We first

point out that there is a natural collineation group of the hyperbolic quadric

G =

〈

τa,b =

[

1 b 0 0
0 a 0 0
0 0 1 b
0 0 1 a

]

; a 6= 0, b ∈ K

〉

.

Note that a point (x0, x1, x2, x3) maps to (x0, x1a + x0b, x2, x3a + x2b) so if the

point is on the hyperbolic quadric then x0x3 = x1x2, and the image point is on

the hyperbolic quadric if and only if x0(x3a + x2b) = (x1a + x0b)x2, which is

clearly valid. In the finite case, we note that G is a group of order q(q−1), which

if the hyperbolic quadric is considered a regulus net, would fix a Baer subplane

of this regulus net pointwise. Therefore, τa,b will map the flock F onto another

flock Fτa,b and {Fτa,b; τa,b ∈ G} is a parallelism of the hyperbolic quadric if and

only if F and Fτa,b share no plane. Now the Baer subplane Σ0 fixed pointwise

by G is a ruling line of the hyperbolic quadric and hence each plane of the flock

intersects Σ0 in exactly one point. Now consider any plane η of F and assume

that η contains the point P of Σ0, then the image of η also contains the point P ,

which means that ητa,b cannot belong to F , unless ητa,b = η.

The plane ρτa,b is generated as follows: 〈(1, b, 0, 0), (0, a, 1, a), (0, 0, 0, 1)〉,
which is clearly not πt, for any t, and is ρ if and only if a = 1 and b = 0, so

that τ1,0 is the identity mapping. A basis for πt is

{(−f(t), 0, 1, 0), (t, 1, 0, 0), (g(t), 0, 0, 1)} ,
which maps under τa,b to

{(−f(t),−f(t)b, 1, b), (t, tb+ a, 0, 0), (g(t), g(t)b, 0, a)} .
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If πtτa,b is ρ then b cannot be 0, which implies that g(t) = 0. Now consider

the associated spread

y = x

[

f(t)u g(t)u

u tu

]

, y = x

[

v 0

0 v

]

, x = 0, for all t, v, u 6= 0 ∈ K.

If g(t) = 0, then the difference
[

f(t) 0

1 t

]

−
[

t 0

0 t

]

=

[

f(t)− t 0

1 0

]

,

which cannot be the case.

Finally, assume that πtτa,b is πs and by the above note, we may assume that

s = t. Hence, we obtain the following requirements:

−f(t)− sf(t)b+ f(s)− g(s)b = 0,

t− s(tb+ a) = 0,

g(t)− sg(t)b− g(s)a = 0.

If tb + a = 0 then t = 0 but then (t, tb + a, 0, 0) is the zero vector. Hence,

s = t/(tb + a) = t, so that tb + a = 1. Therefore, f(t)(tb) = g(t)b. If b 6= 0

then f(t)t − g(t) = 0, a contradiction to the fact that
[

f(t) g(t)
1 t

]

is non-singular.

Hence, {Fτa,b; τa,b ∈ G} is a parallelism in the finite case and (minimally) is a

partial parallelism in the infinite case. However, given a ruling line ℓ, which is

fixed by G, but not pointwise, the group G acts transitively on the non-fixed

points of ℓ (actually, doubly transitively). Hence, each point of each ruling line

of the hyperbolic quadric is covered by {Fτa,b; τa,b ∈ G}.

Choose two conics C1 and C2 and assume that C1 is the conic of intersection

of a plane of F and assume without loss of generality that C1 and C2 share point

P1 on Σ0. Let Q1 and R1 be points on ruling lines ℓ1 and ℓ2 of C1 and let Q2 and

R2 be points on lines ℓ1 and ℓ2 of C2, where P1, Q1, R1 uniquely defines C1 and

P1, Q2, R2 uniquely defines C2. Let τ ∈ G map Q1 to Q2 (even if Q1 = Q2). If

R1τ = R2, then τ maps C1 to C2. We note that R1τ and Q2 cannot be in the

same Baer subplane, since P1, R1τ and Q2 lie on a conic. Similarly, C2 is a conic,

then R2 is not incident with P1Q2. Therefore, there is a collineation subgroup

of G that fixes Σ0, and fixes the point Q2 and acts transitively on the points on

ℓ1−{Q2, ℓ1∩Σ0}. This means that τ ′ may be considered a Baer collineation that

fixes the 1-dimensional subspace generated by P1, fixes Q2 and maps R1τ to R2.

Then ττ ′ will map C1 to C2. Hence, given any conic C2, there is a conic C1 of

F (of the conics of intersection), and a group element g of G so that C1g = C2.

Hence, we obtain a parallelism in PG(3,K), for any field K.

Theorem 3.1. Let F be any flock of a hyperbolic quadric in PG(3,K), for K a

field. Then there is a transitive parallelism P F = {Fτa,b; τa,b ∈ G}.
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4 Parallelisms with maximal partial flocks

Is it possible to have a parallelism of maximal partial spreads? This question

was asked to the second author by Arrigo Bonisoli in the context of parallelisms

of the lines of PG(3, q) and his initial response was that the answer was no!

But, ask the question more generally: Is it possible to have a parallelism of the

blocks of a geometry by flocks? In particular, is it possible to have a parallelism

of the conics of intersection of a quadratic cone in PG(3,K) by maximal partial

flocks? The very surprising answer is, “yes”, at least when K is an infinite field.

Consider a putative conical (partial) spread

x = 0, y = x

[

u γt3

t u

]

; t, u ∈ K, γ a non-square in K.

The corresponding flock would require that the functions

φu : t 7→ tu2 − (f(t) = γt3)

are bijective for all u ∈ K, in order that we indeed obtain a flock of a quadratic

cone. Assume that some function is injective but not bijective. Then we would

obtain a partial flock which does not cover all of the points of the quadratic cone,

so could not be considered a flock. However, the partial spread listed above is

clearly maximal since otherwise there would be a 2-dimensional K-subspace

y = xT , such that
[

u γt3

t u

]

− T is a non-singular matrix for all u, t ∈ K, clearly a

contradiction. So, the question is, when is φu injective but not bijective?

We have tu2 − γt3 = su2 − γs3 if and only if for u 6= 0, we have u2 =

γ(t3 − s3)/(t− s) if and only if γ(t2 + st+ s2) = u2 and for u = 0, we must have

(t/s)3 = 1, implies that t/s = 1. We note that u2 − γt4 = 0, would imply that γ

is a square. Hence, consider

(t2 + st+ s2) = u2/γ

as a quadratic in t. The discriminant is s2− 4(s2 − u2/γ) = −3s2 + 4u2/γ.

Now let K be an ordered field and let γ be any negative element of K. Then

the discriminant is negative so can never be square. Therefore, f(t) = γt3 is

injective in any ordered field such that v3 = 1, implies v = 1. But v3 = 1, and

v not 1 means that v2 + v + 1 = 0, which has discriminant 1 − 4 = −3. Hence,

the question is then whether in an ordered field when the function f(t) = γt3 is

injective is it also bijective? Let K be a subfield of the field of real numbers that

does not contain all cube roots of each of its elements. Then, t3 = δ, for δ in K,

where
3
√
δ is not in K, is not surjective. For example, the rational field will have

this property as well as infinitely many subfields of the field of real numbers.
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Theorem 4.1. Let K be an ordered field such that the function t 7→ γt3 is injective

but not bijective, where γ is a fixed negative element in K. Then there is a maximal

partial flock F of a quadratic cone in PG(3,K) with planes

tx0 − γt3x1 + x3 = 0, t ∈ K.

Now we apply the argument of Theorem 2.2 with the group

G =

〈

τa,b =

[

I [ a b
0 0 ]

0 I

]

; a, b ∈ K

〉

,

to obtain a set FG of mutually disjoint flocks, where

Fa,b : tx0 − (γt3 + a)x1 + bx2 + x3 = 0.

Since the set of all planes of intersection have the form cx0+dx1+ex2+x3 = 0,

the set of flocks clearly cover all planes that do not contain a generator line of

the cone and hence cover all conics of intersection.

Definition 4.2. For a field K, assume that there are functions f(t) and g(t)

on K so that the functions φu : t 7→ tu2 − f(t) + g(t)u are all injective but not

all bijective on K. We then say that corresponding maximal partial flock is

“injective and not bijective”.

Thus, we have the following theorem.

Theorem 4.3. Let F be an injective and not bijective maximal partial flock of a

quadratic cone in PG(3,K). Then there is a transitive parallelism of the quadratic

cone (conics of intersection) by maximal partial flocks.

5 Parallelisms of α-cones

Recently in [6], the authors consider a generalization of quadratic cones, which

we shall call α-cones in this article. We consider here when there are paral-

lelisms of α-cones by α-flokki.

Let α be an automorphism of a field K and consider PG(3,K), represented in

the form (x0, x1, x2, x3); xi ∈ K, as homogeneous coordinates. Let an α-cone Cα
be defined by x0x

α
1 = xα+1

2 , with vertex (0, 0, 0, 1). The intersection of a plane

not through the vertex and an α-cone is called an “α-conic”. This terminology is

adopted in analogy with quadratic cones, but one should be aware that α-conics

are in general not even ovals.
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Definition 5.1. An “α-flokki” is a partition of the points of Cα other than the

vertex by planes of intersection that intersect in α-conics. A “parallelism” of Cα
is a partition of the set of all α-conics of intersection by α-flokki.

As with flocks of quadratic cones, it is convenient to consider the α-flokki as

the set of planes rather than the intersections of these planes with the α-cone.

While it may seem that parallelisms would be difficult to obtain, we show

that, again in this case, these are readily available. Our proof basically mirrors

the proof for the quadratic cone case. For simplicity, we consider here only the

finite case and assume that K is isomorphic to GF(q). By a result of Cherowitzo

and Johnson [6], to each α-flokki there is a corresponding translation plane.

Hence, a parallelism of an α-cone can be determined by a set of flokki spreads

of the form

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

;u, t ∈ GF(q),

if and only if the α-flokki is

x0t− x1f(t)
α + x2g(t)

α + x3 = 0 for all t ∈ K,

when representing the α-cone as x0x
α
1 = xα+1

2 with vertex (0, 0, 0, 1). And,

again, note that we may initially assume that f(0) or g(0) is 0. However, this

is not required for the connections. In particular, for points (z1+α
2 , 1, z2, δ),

(1, 0, 0, τ), for δ, τ ∈ K, we see that

tz1+α
2 − f(t)α + z2g(t)

α

is required to be bijective for all z2 in K and this is necessary and sufficient for

the existence of an α-flokki in the finite case. We note that

φu : t 7→ tu1+α − f(t)α + ug(t)α

is bijective if and only if

φu : t 7→ tu1+α − (f(t) + a)α + u(g(t) + b)α

is bijective, for all a, b ∈ K.

Therefore, if F is an α-flokki, we consider the associated translation plane

πF so a parallelism is a set of q2 flokki translation planes that do not share

any of their derivable nets. We note that any linear mapping of the associated

4-dimensional vector space will map a flokki translation plane to another flokki

translation plane, isomorphic to it. Thus, τa,b =

[

I [ a b
0 0 ]

0 I

]

will map

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

;u, t ∈ K,
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to

x = 0, y = x

[

u+ g(t) + a f(t) + b

t uα

]

;u, t ∈ K,

so the functions (f(t), g(t)) defining the α-flock become (f(t)α+aα, g(t)α+bα).

We note translation planes map to translation planes under τa,b which means

that α-flocks map to α-flocks under τa,b.

Theorem 5.2. Every α-flokki in PG(3, q) is in a transitive parallelism.

Proof. We represent the planes πa,b,c, for a, b, c ∈ K, that do not contain the

vertex in the form

x0c+ x1b+ x2a+ x3 = 0.

An α-flokki is then represented in the form

x0t− x1f(t) + x2g(t) + x3 = 0,

for all t ∈ K. We also have an associated flokki translation plane π with spread

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

;u, t ∈ K.

Now consider the group

G =

〈

τa,b =

[

I [ a b
0 0 ]

0 I

]

; a, b ∈ K

〉

.

We note that πτa,b is a flokki plane isomorphic to π. Therefore, there is a corre-

sponding α-flokki. Note that πτa,b has the following spread

x = 0, y = x

[

u+ g(t) + a f(t) + b

t uα

]

;u, t ∈ K.

Clearly, none of the associated derivable nets in πτa,b can be equal to the deriv-

able nets of π. Therefore, none of the planes

x0t− x1(f(t)
α + bα) + x2(g(t)

α + aα) + x3 = 0,

are equal to any of the planes of the α-flokki, and so the associated image is

also an α-flokki. Since all planes that do not contain the vertex have the form

x0c+ x1b+ x2a+ x3 = 0,

we see that we have partitioned the α-conics by the α-flokki associated with πG.

Hence, each α-flokki belongs to a transitive parallelism. �
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Remark 5.3. The group considered in the transitive parallelism is not a group

of the α-cone. However, since we are considering α-flokki as a set of planes,

whose intersections with the cone partition the non-vertex points, the α-flokki

as sets of planes can map to other α-flokki and therefore α-conics of intersection

map to α-conics of intersection of an equivalent α-cone.

Remark 5.4. Since the connection with associated α-flokki translation planes

is not used in the proof, we note that any α-flokki of PG(3,K), for K any field,

lies in a transitive parallelism by the same argument.

5.1 Parallelisms of α-cones by maximal partial α-flokki

Consider again a putative α-flokki as set of planes of an α-cone;

ρt : x0t− x1f(t)
α + x2g(t)

α + x3 = 0 for all t ∈ K.

We have seen that a maximal partial α-flokki is obtained if the functions φu : t 7→
uα+1t− f(t)α + ug(t)α are injective and not all bijective.

Definition 5.5. For a field K, assume that there are functions f(t) and g(t)

on K so that the functions φu : t 7→ tuα+1 − f(t)α + g(t)αu all injective but

not all bijective on K. We then say that corresponding maximal partial flock is

“injective and not bijective”.

Returning to the idea of a parallelism of an α-cone, we see that it might be

possible to use maximal partial α-flokki instead of α-flokki. Considering the

associated maximal partial α-flokki planes, we still may use the group

G =

〈

τa,b =

[

I [ a b
0 0 ]

0 I

]

; a, b ∈ K

〉

.

If π denotes the maximal partial α-flokki spread, we note that πτa,b is a maximal

partial α-flokki spread isomorphic to π. Therefore, there is a corresponding

maximal partial α-flokki. Again, simply note that πτa,b has the following spread

x = 0, y = x

[

u+ g(t) + a f(t) + b

t uα

]

;u, t ∈ K.

Clearly, none of the associated derivable partial spreads in πτa,b can be equal to

the derivable spreads of π. Therefore, none of the planes

x0t− x1(f(t)
α + bα) + x2(g(t)

α + aα) + x3 = 0, (1)

are equal to any of those of the original maximal partial α-flokki. Consider the

set of all planes

x0t+ x1u+ x2v + x2 = 0, for all t, u, v ∈ K



Parallelisms of quadric sets 33

not containing the vertex. Clearly, these planes are all covered by the planes of

(1) and we have an “α-parallelism”. Thus, we have the following theorem.

Theorem 5.6. Let F be an injective and not bijective maximal partial α-flokki of

a quadratic cone in PG(3,K). Then there is a transitive parallelism of the α-cone

(α-conics of intersection) by maximal partial α-flokki.

The following example is similar to the one presented when α = 1 and is

valid for α-flokki.

Theorem 5.7. Let K be any ordered field and α an automorphism of K. Then

x = 0, y = x

[

u −t3α
−1

t uα

]

is a maximal partial α-flokki spread.

There are subfields K of the field of real numbers for which the maximal partial

spread is not a spread.

Finally, we list the following open problems.

Problem 1. Find parallelisms of elliptic or hyperbolic quadrics in PG(3,K), by

maximal partial flocks.

Problem 2. Extend the theory of flocks and parallelisms of quadratic cones to

Laguerre planes and/or to α-flocks (flocks of translation oval cones) or to oval-

flocks.

Problem 3. Show that there are parallelisms of elliptic quadrics of characteristic 2.

Problem 4. Are there parallelisms of quadratic cones or of hyperbolic quadrics

that are not transitive?
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