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1 Introduction

We start essentially but not exclusively from:

• Leemans [26] giving the complete partially ordered set ΛO′N of conjugacy

classes of subgroups of the O’Nan group O′N. This includes 581 classes

and provides a structure name common for all subgroups in a given class;

• the Ivanov–Shpectorov [24] rank 5 diagram geometry for the group O′N,

especially its diagram ∆ as in Figure 1;

• the rank 3 diagram geometry ΓCo for O′N due to Connor [15];

• detailed data on the diagram geometries for the groups M11 and J1 [13,

6, 27].
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Figure 1: The diagram ∆IvSh of the geometry ΓIvSh

Our results are the following:

• we get the Connor geometry ΓCo as a truncation of the Ivanov–Shpectorov

geometry ΓIvSh (see Theorem 7.1);

• using the paper of Ivanov and Shpectorov [24], we establish the full struc-

ture of the boolean lattice LIvSh of their geometry as in Figure 17 (See

Section 8);

• conversely, within ΛO′N we prove the existence and uniqueness up to fu-

sion in Aut(O′N) of a boolean lattice isomorphic to LIvSh. This step is

independent of [24] (see Theorem 8.1);

• we prove that this boolean lattice yields a rank 5 diagram geometry ΓIvSh

and so establish the existence of the Ivanov–Shpectorov geometry (see

Theorem 9.4);

• using the 0-elements of ΓIvSh as in Figure 1 and calling them points,

we show that every h-element deserves the name hyperline (see Theo-

rem 10.5).

In 1986 Ivanov and Shpectorov gave the construction of a geometry ΓIvSh of

rank 5 on which the O’Nan group acts flag-transitively [24]. It belongs to the

diagram given in Figure 1 in which our set of types is {0, 1, 3, 4, h}. Motivation

for this seemingly strange set of types will be given in Section 5. Their work

provided the existence proof of two conjugacy classes of subgroups isomorphic

to M11 in O′N. The paper is not easy to read and it does not seem to have given

rise to more detailed versions. In several steps we provide a new approach to

this geometry which is broadly independent from the original paper. In a re-

cent paper Connor [15] constructed a new coset geometry ΓCo for the O’Nan
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sporadic simple group which is of rank 3 over the diagram of Figure 2. The con-

struction is based on a convenient amalgam of known rank 2 coset geometries

for the sporadic groups J1 and M11. His finding was based on the subgroup

lattice for O′N as provided by Leemans [26]. Connor’s idea was to extend the

boolean lattices of the rank 2 geometries for J1 and M11 in a rank 3 boolean

lattice of subgroups of O′N. It turned out that there is a unique solution to this

problem up to conjugacy. Applying a theorem due to Aschbacher [1], he got the

existence of this new flag-transitive coset geometry and additional properties.

Using the diagram of ΓIvSh alone we show that ΓCo is a truncation of ΓIvSh

(Theorem 7.1). It matters to state that ΓCo was constructed and studied without

making use of ΓIvSh. From this fact it is conceivable to extend the Connor

geometry with elements so as to produce the Ivanov–Shpectorov geometry. In

order to do so we show that ΓCo and the diagram of Figure 1 determine uniquely

ΓIvSh (Theorems 8.1 and 9.4 combined). A major step of this characterization

makes use of Leemans’s subgroup lattice of O′N [26]. We use it to show that the

diagram of Figure 1 and the boolean lattice of ΓCo determine a unique boolean

lattice of rank 5 in O′N. The final step is to use this boolean lattice in order to

construct a geometry whose diagram is exactly the one of Figure 1. We provide

all of this in full detail. In this way we produce an alternative existence proof

for the Ivanov–Shpectorov geometry. Our main result is stated as follows.

Theorem 1.1. Up to conjugacy in Aut(O′N), there exists a unique boolean lattice

of rank 5 in the subgroup lattice of O′N as in Figure 17. This boolean lattice

defines a unique firm, residually connected, flag-transitive geometry of rank 5 over

the diagram of Figure 1.

The first part of this theorem is Theorem 8.1 and the second part is Theo-

rem 9.4.

The paper is organized as follows. In Section 2 we provide the definitions

needed to understand this paper. In Section 4 we give the constructions of

two rank 4 geometries that are residues of ΓIvSh. In Section 7 we prove that

the Connor geometry ΓCo is a truncation of the Ivanov–Shpectorov geometry

ΓIvSh. In Section 8 we extend uniquely the boolean lattice of ΓCo to a rank

5 boolean lattice in the subgroup lattice of O′N. In Section 9 we show that

this extended boolean lattice provides a unique flag-transitive geometry that is

ΓIvSh. In Section 10 we thoroughly detail structural properties of the h-elements

of ΓIvSh that we call hyperlines.
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Figure 2: The diagram of the geometry ΓCo

2 Definitions and notations about graphs and inci-

dence (resp. coset, diagram) geometries

In this section we define the notions that are needed to understand our paper.

It includes explanations about the meaning of diagrams and their symbols. Our

reference for this section is [10].

2.1 Graphs

We formalize the notion of a graph and we fix notation as well as terminology.

A graph G is a pair (V,E) where V is a set whose elements are called vertices

and E is a set of pairs of distinct elements of V . Elements of E are called edges.

A graph in this sense is commonly called simple, i.e. with no loop nor multi-

edge. However we only deal with simple graphs and there is no possible ambi-

guity by omitting the adjective ‘simple’.

We call V the vertex-set of G and E the edge-set of G. The edge-set E of a

graph G defines a symmetric relation on ∼ : V × V . We call such a relation an

adjacency relation. The data of V and E to define G is equivalent to the data

of V together with the adjacency relation ∼. For the sake of simplification, we

make the following abuse of terminology: we say that a vertex v of V belongs

to G, and we write v ∈ G for that.

Given a vertex v ∈ G, we call the set NG(v) := {w ∈ G | v ∼ w} the

neighborhood of v (where the subscript G can be omitted if there is no possible

confusion). The elements of this set are the neighbors of v. We also denote

NG(v) by v⊥ and we may write v ⊥ w to denote that v and w are adjacent.

A subgraph of a graph G = (V,E) is a graph H = (W,F ) such that W ⊆ V

and F ⊆ E. We call H induced if for any v, w ∈ W the following holds: {v, w}
is an edge of H if and only if {v, w} is an edge of G. In that case F is completely
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determined by W and E.

A path in G is a sequence of vertices in which any two consecutive vertices

are adjacent. The length of a path is the number of elements in the sequence

minus one. We call G connected provided that, given any two vertices v and w of

G, there exists a path from v to w. Define a binary relation ≡ on V as follows:

v ≡ w if and only if v and w are connected by a path. The relation ≡ is obviously

an equivalence relation. The connected components of G are the equivalence

classes under the relation ≡. The notion of path yields a natural notion of

distance on G: given v, w two vertices of G, the distance dG(v, w) = d(v, w) of

v and w is the shortest integer d such that there exists a path of length d from

v to w. If v and w belong to different connected components of G we say that

d(v, w) = ∞. The diameter of G from a vertex v is the largest distance from v to

a vertex of G. The diameter of G (without further reference to a vertex) is the

largest diameter of G from some vertex.

An s-arc of G is an ordered (s+1)-tuple (v0, v1, . . . , vs) such that {vi−1, vi} is

an edge of G for all i ∈ {1, 2, . . . , s} and vj−1 6= vj+1 for all j ∈ {1, . . . , s− 1}.

A circuit in a graph G is a path c = (v0, . . . , vn, v0) from a vertex to itself. The

girth of G is the smallest integer g such that there exists a circuit of length g in

G. If there is no circuit in G, we say that the girth of G is ∞.

We say that G = (V,E) is a complete graph provided that E is the set of all

pairs of distinct elements of V . It is common to denote a complete graph of n

vertices with Kn. A synonym of complete graph is clique. If K is a subgraph of

G and K is a complete graph, we prefer to say that K is a clique of G rather than

a complete subgraph of G.

We say that a property P of a graph G is local provided that the induced

subgraph on the neighborhood of every vertex has the property P . In particu-

lar, if H is a graph, we say that G is locally H if the subgraph induced on the

neighborhood of any vertex of G is isomorphic to H.

Let G = (V,E) be a graph and let G be a group acting on V . This ac-

tion induces an action of G on pairs of elements of V given by g({v, w}) =

{g(v), g(w)}. We say that G acts on G provided that G preserves the adjacency

relation of G, i.e. g(e) ∈ E for any e ∈ E. In that case, a permutation of G is

called an automorphism of G. The set of all automorphisms of G is endowed

with a group structure and is called the automorphism group of G, denoted by

Aut(G). We say that G is vertex-transitive provided that Aut(G) has one orbit

on the set of vertices of G. We call G edge-transitive provided that Aut(G) acts

transitively on the set of edges of G. Observe however that vertex-transitivity

and edge-transitivity do not imply each other.

Suppose that Aut(G) acts 2-transitively on the set of vertices of G. Then
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obviously E is empty or is the set of all pairs of distinct elements of V . In the

latter case G is a complete graph. Hence n-transitivity is a concept that is not

well suited to graphs. The concept of arc-transitivity may be preferred.

Let G be a group of automorphisms of a graph G and let s ≥ 1 be an integer.

We say that G is (G, s)-arc-transitive provided that G acts transitively on the arcs

of G of length s. We say that G is s-arc-transitive provided that it is (Aut(G), s)-
arc-transitive.

A 1-arc-transitive graph is also called arc-transitive for the sake of brevity.

Observe that arc-transitivity does not force the graph to be empty nor complete.

2.2 Incidence geometries

Let I be a finite set whose elements are called types while I itself is called a set

of types. A triple Γ = (X, ∗, τ) is called a pregeometry over I if

1. X is a set whose elements are called elements of Γ;

2. ∗ is a symmetric and reflexive relation on X called the incidence relation

of Γ;

3. τ is a mapping from X to I, called the type function of Γ, such that distinct

elements x, y ∈ X with x ∗ y satisfy τ(x) 6= τ(y).

If τ is surjective and if any maximal set of mutually incident elements of Γ

contains one element of each type then Γ is called a geometry. The rank of Γ is

the cardinality of the set of types I.

A set of mutually incident elements is called a flag; if it contains one element

of each type, it is called a chamber. A geometry is called flag-transitive if its

automorphism group is transitive on the set of its chambers. The type of a flag

is the set of types of the elements of the flag.

Let Γ denote a geometry. The residue of a flag F of Γ is the set of all elements

in X \ F incident to every element in F together with the incidence relation. It

is an easy exercise to check that the residue of F is a geometry.

For every flag F of Γ, the J -shadow of F is the set of all elements of type in

J ⊆ I that are incident with F . It inherits the incidence of Γ.

The truncation of Γ on the set of types J ⊆ I is the pregeometry JΓ =

(JX,J ∗,J τ) over J such that JX is the preimage τ−1(J), and such that J∗
(resp. Jτ) is the restriction of ∗ (resp. τ) to JX. In other words, JΓ is the

restriction of Γ on the elements of type is in J .
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A geometry is called residually connected provided that the incidence graph of

the residue of any flag of rank at most n− 2 is connected. A geometry is called

firm provided that any flag of rank n− 1 is contained in at least two chambers.

The incidence graph (X, ∗) of Γ is the graph whose vertices are elements of X

and adjacency is provided by incidence. By convention, if the graph is drawn,

loops are deleted.

2.3 Coset geometries

According to Tits [34], given a group G and a family of its subgroups {G0, . . . ,

Gn−1}, we define a pregeometry Γ(G, {G0, . . . , Gn−1}) as follows. The type set

of Γ is the set I = {0, . . . , n− 1}; the elements of Γ are the right cosets Gig for

i = 0, . . . , n − 1 and g ∈ G; incidence is defined by nonempty intersection, i.e.

Gig∗Gjh ⇐⇒ Gig∩Gjh 6= ∅. If the pregeometry Γ is flag-transitive then it is a

geometry. The subgroups G0, . . . , Gn−1 are called maximal parabolic subgroups

of Γ. Any intersection of maximal parabolic subgroups ∩j∈JGj with J ⊂ I

is called a parabolic subgroup; the subgroups ∩j∈I\{i}Gj are called minimal

parabolic subgroups; the subgroup ∩i∈IGi is called the Borel subgroup of Γ. A

geometry arising in this way is called a coset geometry. A coset geometry Γ is

residually connected provided that each nonminimal parabolic subgroup of Γ is

generated by its proper parabolic subgroups.

2.4 Diagram geometries

A diagram of a (pre)geometry is a labelled graph providing information on its

residues of rank 2. Let Γ = (X, ∗, t) be a pregeometry over some set of types I.

The digon diagram associated to Γ consists of a nonoriented graph of |I| vertices

named after the elements of I. Two vertices corresponding to the elements

i, j ∈ I are joined by an edge in the graph if the following two conditions hold:

1. there exists a flag F of type I \ {i, j} in Γ; and

2. there exist two elements of type i and j in ΓF which are not incident in

ΓF .

We say that a pregeometry belongs to its diagram.

Suppose from now on that Γ = (X, ∗, τ) is a firm, residually connected, flag-

transitive geometry of rank 2 over the set of type I = {i, j}. It is possible

to refine the digon diagram of Γ with some parameters that provides further

information about the residues and the flags of Γ. We say that x, y ∈ X are at

distance k if they are at distance k in the incidence graph (X, ∗). For j ∈ I, the
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Figure 3: The Buekenhout diagram of a (coset) geometry

j-diameter dj of Γ is the greatest number occuring as a diameter of (X, ∗) for

some element of type j. The diameter of Γ is defined as d := max{di | i ∈ I}.

The gonality is the smallest ∞ ≥ g > 0 such that (X, ∗) has a circuit of length

2g. Observe that every circuit in (X, ∗) has even length. The order of an element

x of type j is sj := |Γx| − 1. That information is summed up in the diagram of

Figure 3 where nk is the number of elements of type k with k = i, j.

The Buekenhout diagram of Γ is its digon diagram together with the param-

eters given in Figure 3. If Γ is a coset geometry, we moreover provide stabi-

lizers Gi for all i ∈ I. More generally, if Γ is a firm, residually connected,

flag-transitive geometry of arbitrary rank, its Buekenhout diagram is its digon

diagram together with parameters given as in Figure 3.

Sometimes Gi acts with a kernel Ki ⊳ Gi, in which case we write Gi =

Ki .(Gi/Ki) to emphasize the kernel of this action.

We use the following conventions: in case the labels of an edge are di = g =

dj = n, we write only n above the edge for any i, j ∈ I; in case n = 2, we

do not draw any edge at all; if n = 3, we draw the edge without any label.

More conventions are useful in some circumstances. Let us mention only two

more. If (dij , gij , dji) = (3, 3, 4), si = 1 and sj = n ≥ 2 then we write c over

the stroke. In this case Γ is a complete graph of n + 2 vertices. The notation

c is used to suggest the word ‘circle’ or ‘complete graph’. If (dij , gij , dji) =

(5, 5, 6) and (si, sj) = (1, 2), we write P over the stroke instead because the

corresponding residue is isomorphic to the rank 2 geometry of vertices and

edges of the Petersen graph.

In an Atlas [27], Leemans provides diagram geometries for the nine smallest

sporadic simple groups. In particular, he gives rank 4 geometries for the groups

M11 and J1 over the diagrams of Figures 4 and 5. We prove in Theorem 9.4 that

these two geometries are rank 4 residues of ΓIvSh.

Convention. When the context is not ambiguous, it is useful to adopt the con-

vention that ‘geometry’ means ‘firm, residually connected geometry’.
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3 Lattices of subgroups

In our paper, we make abundant use of lattices of subgroups in order to pro-

duce and describe coset geometries. Let Γ = Γ(G, (Gi)i∈I) be a firm, residually

connected, flag-transitive coset geometry. The Borel subgroup B = ∩i∈IGi of

Γ is the stabilizer of some chamber C of Γ. The maximal parabolic subgroup

Gi, i ∈ I of Γ is the stabilizer of the i-element of C. Accordingly, GJ , J ⊆ I

is the stabilizer of the flag F ⊆ C of type J . The collection of all parabolic

subgroups GJ , J ⊆ I of Γ structured by inclusion yields a boolean lattice L of

subgroups of G. However, notice that not every boolean lattice of subgroups of

a group G yields a geometry. Lemma 3.1 provides a characterization of residual

connectedness in coset geometries.

Lemma 3.1. A coset geometry Γ is residually connected if and only if every non-

minimal parabolic subgroup of Γ is generated by the parabolic subgroups it con-

tains properly.

Proof. See [10, Lemma 1.8.9]. �

Lemma 3.1 motivates the introduction of the following terminology. A boole-

an lattice of subgroups L of some group G is called generating provided that

every nonminimal subgroup in L is generated by the subgroups in L that it
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contains properly. Obviously a residually connected coset geometry yields a

generating boolean lattice of parabolic subgroups.

As a matter of fact, we rely deeply on the maximal subgroups of O′N. The

classification of those is due to Wilson [36], Yoshiara [37] (computer-free proof)

and Ivanov, Tsaranov & Shpectorov [25] independently. See also Soicher [32].

In [26], Leemans built an algorithm that computes the subgroup lattice of a

permutation group G based on the following ideas. Given a permutation group

(G,Ω) and a construction of the classes of the maximal subgroups of G with

representatives M1,M2, . . . ,Mn, Leemans looks for a faithful permutation rep-

resentation of minimal degree for every Mi, i ∈ {1, . . . , n} which is an ordered

pair (Mi,Mij) where Mij is a proper subgroup of Mi of largest order containing

no normal proper subgroup of Mi. From this on it is assumed (and all right for

G = O′N) that the maximal subgroups of each maximal subgroup of G are com-

putable. Afterwards a delicate analysis of overlappings between Σi and every

other Σj occurs.

Leemans implemented this algorithm in MAGMA and managed to compute

the subgroup lattice of O′N. This paper has been extended in a work by Connor

and Leemans which now contains subgroup lattices of many finite almost simple

groups, including O′N and O′N : 2 [16].

Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

1 A5 60 1 2 (5), 3 (6), 4 (10)

2 A4 12 5 6, 7 (4) 1

3 D10 10 6 5, 8 (5) 1

4 S3 6 10 7, 8 (3) 1

5 5 5 6 9 3

6 2
2 4 5 8 (3) 2

7 3 3 10 9 2 (2), 4

8 2 2 15 9 3 (2), 4 (2), 6

9 1 1 1 5 (6), 7 (10), 8 (15)

Table 1: The subgroup lattice of A5

Table 1 gives an example for the alternating group A5. Each conjugacy class

of subgroups is listed with a number c, a structure describing the subgroups of

the class, the order of the groups in this class, the length of the class and the

labels of the conjugacy classes of subgroups where the maximal subgroups and

minimal overgroups are. In the antepenultimate (resp. last) column, when a

class number x is followed by a number between parentheses, this number n

means that there are n subgroups (resp. overgroups) of conjugacy class #x

contained (resp. containing) a given group of the class #c. For instance, class
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labelled #6 contains 5 Klein 4-groups in Table 1. Each Klein 4-group of that class

has exactly 3 maximal subgroups in class #8, that are cyclic groups of order 2.

Moreover, each of these cyclic groups of order 2 is a maximal subgroup of two

groups of class #3, two groups of class #4 and one group of class #6.

The proof of our main result is based on the identification of boolean lattices

in the subgroup lattice of various groups, including M11, J1 and O′N, that yield

coset geometries, as well as on observations in the subgroup lattice of O′N : 2.

We denote the subgroup lattice available in [26] of O′N by ΛO′N; the subgroup

lattice of O′N : 2 available in [16] is ΛO′N:2. When we refer to ‘a subgroup of

class #x in ΛO′N:2’, we mean some subgroup of the conjugacy class of subgroups

labelled #x, as given in our references. We always make clear whether we deal

with ΛO′N or ΛO′N:2. We often draw boolean lattices or partial subgroup lattices

that are extracted from ΛO′N or ΛO′N:2 in order to help the reader. We do not

prove their correctness because it consists only of an observation of the lattices

ΛO′N and ΛO′N:2.

4 Two geometries for M11 and J1

Among the maximal subgroups of O′N there are two sporadic groups (up to

automorphism) namely the Janko group J1 and the Mathieu group M11. All

subgroups of O′N isomorphic to J1 are conjugate while there are two conju-

gacy classes of subgroups isomorphic to M11. Those two classes are fused in

Aut(O′N). These groups and the related geometries of rank 4 that we are about

to describe are crucial for the rest of this paper. Both of them possess a residue

which is a rank 3 geometry with L2(11) acting flag-transitively. We start with

the description of the latter geometry.

4.1 A locally Petersen geometry with L2(11) acting flag-transi-

tively

The classification of locally Petersen graphs is due to Jonathan Hall [20]. There

are exactly three such graphs. They are flag-transitive and actually distance-

transitive. We describe them briefly with a further reference to Weisstein [35]

and to Brouwer–Cohen–Neumaier [4].

1. The Conway-Smith graph of 63 vertices and 315 edges whose group of

automorphisms is 3 · S7. It is a triple cover of the next graph.

2. The graph of the 21 pairs of elements in {1, . . . , 7} such that two dis-

tinct pairs are adjacent provided they have nonempty intersection. It is
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1 1 2

P

Figure 6: Diagram A2P of a locally Petersen geometry

the unique distance regular graph with 21 vertices and intersection array

[10, 6; 1, 6]. Its automorphism group is S7. It is the (7, 2)-Kneser graph.

3. The Doro–Hall graph of 65 vertices and 325 edges whose automorphism

group is PΣL(2, 25).

It is immediate to see that each of those three graphs provides a geometry

over the diagram A2P of Figure 6 whose 2-elements (planes) are the 3-cliques

in the graph.

Conversely, Shpectorov [31] proved that there are exactly four flag-transitive

geometries that belong to the diagram of Figure 6: the three locally Petersen

graphs and a geometry built from the action of L2(11) on the short Galois line

(see also [7, Section 9, geometry 3]). This terminology was used in [9] to

denote the 2-transitive action of L2(11) on 11 points, as observed by Galois.

We denote this geometry with ΓL2(11) and we describe it further. Let us call

elements of ΓL2(11) points, lines and planes, by reading the diagram of Figure 6

from left to right. The diagram shows that there are 10 lines through each point

and 2 points on each line. Therefore the truncation of ΓL2(11) on its points and

lines is a complete graph. The group L2(11) has two orbits on the trios of points:

one of length 55 and the other of length 110. The planes of ΓL2(11) are the trios

of the smallest orbit. Incidence is provided by inclusion.

4.2 A rank 4 geometry for M11

Let us consider the problem of determining the flag-transitive geometries that

are ‘locally ΓL2(11)’. In other words, what are the firm, residually connected,

flag-transitive geometries over the diagram A3P where we assume that the sta-

bilizer of a point is isomorphic to L2(11) (see Figure 7)? Let Υ be such a geom-

etry with flag-transitive automorphism group G. We call elements of Υ points,

lines, planes and hyperplanes by reading the diagram from left to right. The

residue in Υ of every point is isomorphic to the geometry ΓL2(11) described in

Section 4.1, i.e. every point is on 11 lines. The diagram A3P shows that every

line contains 2 points, hence the truncation of Υ on its points and lines is a

graph G in which every point has 11 neighbors. The stabilizer of a point acts 2-

transitively on those 11 points, by assumption. Therefore the induced subgraph



Alternative existence proof of the geometry of Ivanov–Shpectorov 85
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Figure 7: Diagram A3P with a residue isomorphic to ΓL2(11)

on the neighborhood p⊥ of a point p in G is either a complete graph or an empty

graph. Moreover we read from the diagram that the residue of a plane of Υ con-

tains 3 points and 3 lines forming a triangle. Since there are cycles of length 3 in

G, we conclude that p⊥ is a complete graph. Therefore a point p of G together

with its neighborhood p⊥ is a clique of 12 points (in which we observe trivially

that every point has 11 neighbors). By residual connectedness of Υ, G cannot be

a disjoint union of 12-cliques. In conclusion Υ has 12 points on which G must

act transitively and on which the stabilizer of a point acts 2-transitively, i.e. G is

3-transitive. This group must be of order 12 × 660 = 7 920, i.e. G is a primitive

group on 12 points of order 7 920. We conclude that G ∼= M11 (see [17] and [18,

Chapter 6]).

We will denote the geometry Υ by ΓM11
and we describe it further. Define

the triple (XM11
, ∗M11

, τM11
) as follows. The set XM11

of varieties is the union

of four sets of subsets of vertices of a 12-clique K12: the set of vertices of K12,

the set of pairs of vertices of K12, the set of trios of vertices of K12 and a set

of 4-cliques of K12. The latter set consists of one of the two orbits of 4-cliques

occuring under the action of M11 on K12, namely the orbit of cardinality 165

(while the second orbit has cardinality 330). The incidence ∗M11
is defined by

symmetrized inclusion in K12 and the type function τM11
associates the type

0, 1, 2, 3 to a vertex, pair of vertices, triple of vertices and 4-cliques of XM11

respectively. Then ΓM11
= (XM11

, ∗M11
, τM11

) is a firm, residually connected,

flag-transitive geometry over {0, 1, 2, 3} under the action of M11.

This proves existence and uniqueness of a firm, residually connected, flag-

transitive geometry over the diagram A3P with point stabilizer L2(11).

The geometry ΓM11
is well known: it corresponds to Geometry 89 in [6] and

Geometry 4.3 in [27]. We give its Buekenhout diagram in Figure 4.

4.3 A rank 4 geometry for J1

In this section we provide an existence and uniqueness proof of a flag-tran-

sitive geometry with automorphism group isomorphic to J1 over the diagram

of Figure 8. We call this diagram H
∗
3
P because it is the linear amalgam of a
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1

L2(11)

1 1 2

5 P

Figure 8: Diagram H
∗
3
P with a residue isomorphic to ΓL2(11)

reversed Coxeter diagram H3 and the Petersen diagram P.

Let us briefly consider the Livingstone graph L = (VL, EL) defined in [28]

and further studied for instance in [4, 22, 35]. It is a distance regular graph of

degree 11 with 266 vertices and 1 463 edges. The automorphism group of L is

isomorphic to J1. The stabilizer in J1 of a vertex is isomorphic to L2(11) and

the stabilizer of an edge is isomorphic to 2× A5. We recall without proof some

properties of the Livingstone graph. The first is proven in [4], the remaining

ones are proven in [22].

Lemma 4.1 ([4, 22]). The Livingstone graph L is endowed with the following

properties.

• L is distance-transitive.

• There are two orbits of pentagons in L, say an orbit of white pentagons and

an orbit of orange pentagons. The orbit of white pentagons is of size 2 926

and the orbit of orange pentagons is of size 8 778. The stabilizer of a white

pentagon is isomorphic to S3×D10 and the stabilizer of an orange pentagon

is isomorphic to 2×D10.

• The stabilizer of a Petersen subgraph of L is isomorphic to 2×A5 and J1 has

one orbit on the set of Petersen subgraphs of L.

• Each white pentagon P belongs to three Petersen subgraphs of L. Each or-

ange pentagon belongs to one Petersen subgraph of L.

• The pointwise stabilizer of a white pentagon P is isomorphic to S3 and it

permutes transitively the three Petersen subgraphs containing P .

We make use of Lemma 4.1 to define a geometry ΓJ1
= (XJ1

, ∗J1
, τJ1

) over

the set of types IJ1
= {0, 1, 2, 3}. In Section 9.3, these types are rather named

4, 1, 3, h respectively where h stands for ‘hyperline’ as defined in Section 10.

The 0-elements are the vertices of L, the 1-elements are the edges of L, the

2-elements are the white pentagons of L and the 3-elements are the Petersen

subgraphs of L. The incidence relation is induced by inclusion.
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Theorem 4.2. There exists a unique flag-transitive geometry over the diagram of

Figure 8 with automorphism group isomorphic to J1. It is geometry ΓJ1
.

Proof. We divide the proof of this Theorem in two parts: existence is proven in

Section 4.3.1 and uniqueness in Section 4.3.2. �

This geometry was first observed by Buekenhout in 1980 but he did not pub-

lish it. In [24], Ivanov and Shpectorov implicitly assert the existence of this

geometry. It is coming as a residue of their rank 5 geometry for the group O′N.

The geometry ΓJ1
is Geometry 4.1 for J1 in Leemans [27]. Moreover Leemans

and Gottschalk obtained the uniqueness of that geometry under the further hy-

potheses that the geometry is residually weakly primitive [19]. Notice further-

more that Perkel [30] used a rank 3 geometry obtained by Buekenhout in [5]

to characterize the Livingstone graph and the Janko group J1. The geometry he

used is Geometry 28 in [6] and is a truncation of ΓJ1
on the set of types {0, 1, 2}.

4.3.1 Existence proof

The triple ΓJ1
= (XJ1

, ∗J1
, τJ1

) is a pregeometry according to Section 2.2. It

is actually a geometry because any maximal flag contains one element of each

type, by construction. Moreover J1 acts as a group of automorphisms on ΓJ1
.

We now prove that this action is flag-transitive. Let F = {v, e, p, h} and F ′ =

{v′, e′, p′, h′} be two chambers of ΓJ1
, where v and v′ are vertices, e and e′ are

edges, p and p′ are pentagons and h and h′ are Petersen subgraphs.

Since L is distance-transitive, there exists an element γ of J1 mapping {v, e}
onto {γ(v), γ(e)} = {v′, e′}. The elements γ(p), γ(h) are incident and are inci-

dent with both v′ and e′. It remains to show that there exists δ ∈ StabJ1
{v′, e′}

mapping {γ(p), γ(h)} onto {δ(γ(p)), δ(γ(h))} = {p′, h′}. The stabilizer of {v′, e′}
is the pointwise stabilizer of two adjacent vertices v′, w in L (where e′ = {v′, w}).

The 2-arc-transitivity of L implies that this stabilizer acts transitively on the

neighbors of w that are at distance 2 from v′, hence it acts transitively on the

set of white pentagons containing v′ and w. Those pentagons are precisely the

white pentagons incident to {v′, e′}. There are now three Petersen subgraphs

incident with {v′, e′, p′}. By Lemma 4.1, StabJ1
{v′, e′, p′} ∼= S3 permutes tran-

sitively those three Petersen subgraphs. This achieves the proof that J1 acts

flag-transitively on ΓJ1
: we showed that given any two chambers F and F ′

there exists an element of J1 mapping F onto F ′.

Firmness is obvious from the construction. In view of the fact that L is a

connected graph and that this also holds for the incidence graph of ΓJ1
, there

readily follows that ΓJ1
is residually connected. It is also an easy exercise to

show that the Buekenhout diagram of ΓJ1
is as depicted in Figure 5: it is enough
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to observe that the residue of a point is the geometry of Section 4.1 and that the

residue of a Petersen subgraph is the geometry of a hemidodecahedron (quo-

tient of a dodecahedron by the central symmetry).

4.3.2 Uniqueness proof

As for uniqueness, assume that Γ is a flag-transitive geometry over the dia-

gram H
∗
3
P admitting a flag-transitive action of J1. That geometry must have

266 = |J1|/|L2(11)| points. The diagram shows that the residue of a line has 2

points. Since we also know that the residue of a point is the flag-transitive A2P

geometry described in Section 4.1, every point is incident to 11 lines. Hence

there are 1 463 = 266×11
2 lines. The truncation of Γ on the 0- and 1-elements is

thus a graph G, with incidence provided by inclusion. Since we assumed that

J1 acts on Γ, this is already enough to conclude that this truncation is the Liv-

ingstone graph L. Then we can count the number of 2-elements: there are 55

2-elements in the residue of a point and there are 5 points in the residue of

a 2-element, that we now call pentagons. Therefore there are 266×55
5 = 2926

pentagons in Γ. Now the diagram of the residue of a 3-element is the diagram

of only two flag-transitive geometries, necessarily finite: they are the geome-

tries of a dodecahedron and a hemidodecahedron. If it were a dodecahedron,

there would be 266×55
20 = 1463

2 3-elements, a contradiction. Hence it is a hemido-

decahedron and there are 1 463 hemidodecahedra in Γ. There are now several

ways to conclude. Recall that the truncation on vertices and edges of a hemi-

dodecahedron is a Petersen graph. Hence hemidodecahedra of Γ are Petersen

subgraphs of L. Since there are exactly 1 463 Petersen subgraphs in L (see for

instance [22, Section 3.1]), they are the 3-elements of Γ. The same methods

show that pentagons of Γ are the white pentagons of Lemma 4.1. This amounts

to the construction of ΓJ1
and finishes the uniqueness proof.

4.4 Boolean lattices of ΓM11
and ΓJ1

In Sections 4.2 and 4.3 we established existence and uniqueness of two flag-

transitive geometries. Both of them come with a group and can be seen as coset

geometries as defined in Section 2.3. The purpose of this section is to compute

the boolean lattice of parabolic subgroups of each of them. Let us start with

ΓM11
.

The flag-transitive geometry ΓM11
constructed in Section 4.2 can be seen

as a coset geometry Γ(M11, {G0, G1, G2, G3}). We now identify the boolean

lattice of subgroups of ΓM11
in the subgroup lattice ΛM11

of M11 given in Table 4

(this lattice is borrowed from [16]). We do this by applying and describing
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Tits’s algorithm. We provide much detail because it is a description of a general

method that permits to ‘see’ a geometry inside a lattice of subgroups.

Theorem 4.3. The boolean lattice LM11
of the geometry ΓM11

is depicted in Fig-

ure 9. Moreover there exists a unique such boolean lattice of subgroups in M11 up

to conjugacy.

Proof. By construction, the stabilizer of a point is isomorphic to L2(11). The

12 subgroups of conjugacy class #3 are in bijection with the points of ΓM11
.

Since all subgroups of M11 isomorphic to L2(11) are conjugate, all choices of a

particular subgroup L2(11) are equivalent. Let G0
∼= L2(11) be a subgroup of

class #3. The stabilizer of an edge G1 is isomorphic to S5 because the residue

of an edge in ΓM11
is the direct sum of a Petersen graph and a rank 1 geometry

of 2 points. The 120 subgroups of conjugacy class #6 are also in bijection with

the edges of ΓM11
. Notice however that not all choices of subgroups of class

#6 are equivalent at this stage. Indeed a point is incident to 11 edges and an

edge is incident to two points. The stabilizer of a flag point-edge is of order

60 = 660
11 = 120

2 . Thus G01 = G0 ∩ G1 is a subgroup of class #10: the lattice

ΛM11
of Table 4 shows that every subgroup of class #10 (isomorphic to A5)

sits in two subgroups of class #3 (stabilizers of points) and one subgroup of #6

(stabilizers of edges). On the other hand, every subgroup of class #3 contains 11

subgroups of class #10 and every subgroup of class #6 contains one subgroup

of class #10. It should be clear at this point that G1 can be chosen inside class

#6 in such a way that G0 ∩G1 is a subgroup G01 of class #10. Moreover, notice

that the coset geometry Γ(M11, {G0, G1}) is the geometry of a complete graph

on 12 points, i.e. the truncation of ΓM11
on the set of types {0, 1}.

Every flag point-edge can be extended in 10 flags point-edge-trio. The parabo-

lic subgroup G01 (of class #10) contains 10 subgroups of class #31. Hence we

see that G0∩G1∩G2 = G012 is a subgroup of class #31. Now G02 and G12 must

be two distinct subgroups of class #23 (isomorphic to D12
∼= 2×S3). Indeed the

diagram shows that every flag point-trio lies in two flags point-edge-trio and that

every flag edge-trio lies in two flags point-edge-trio. Hence G02 and G12 have

to be twice larger than G012. The lattice ΛM11
shows that the only choice for

G02 and G12 is to take distinct subgroups of class #23, which is possible because

every subgroup of class #31 sits in three subgroups of class #23. Notice further-

more that G02 and G12 must be distinct for otherwise G02 ∩ G12 = G02 = G12

and the geometry would not be firm. The parabolic subgroup G2 must contain

subgroups of class #23 and there must be 110 subgroups conjugate to G2. In-

deed, there are 110 trios in ΓM11
and M11 permutes them transitively. Quick

inspection of the overgroups of a subgroup of class #23 shows that G2 is a

subgroup of class #16, isomorphic to S3 × S3.
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M11 #1

L2(11) #3 S5 #6 S3 × S3 #16 2 · S4 #13

A5 #10 D12 #23 D12 #23 D12 #23 D8 #30 D12 #23

S3 #31 22 #36 22 #36 22 #36

2 #38

Figure 9: The boolean lattice of ΓM11
identified in ΛM11

The residue of a flag point-edge is isomorphic to the geometry of a Petersen

graph. Moreover G01
∼= A5 acts flag-transitively on this residue. The stabilizer

of a point in this action is isomorphic to S3, the stabilizer of an edge is isomor-

phic to 22, and the Borel subgroup (i.e. the stabilizer of a chamber) is a cyclic

group of order 2 (see for instance [11]). Hence G012
∼= S3 must be a subgroup

of class #31 (which we already know) and G013
∼= 22 must be a subgroup of

class #36, the only conjugacy class of subgroups isomorphic to 22 in M11. The

Borel subgroup of ΓM11
is a subgroup of class #39.

At last, we come to G3. The residue of a 3-element of ΓM11
is the geometry

of a tetrahedron. Hence |G3| has order divisible by 24. There are 55 elements

of type 3 through every point, and there are 4 points through every 3-element.

Therefore there are 165 = 12×55
4 elements of type 3 in ΓM11

. Now 7920
165 = 48 is

the order of G3. It is then clear that G3 belongs to class #13. This parabolic

subgroup acts with a kernel of size 2.

It is now an easy exercise to determine the remaining unknowns. �

We provide the boolean lattice of ΓM11
in Figure 9 where thick lines represent

maximal intersection. We also provide the name of parabolic subgroups with

the label of the conjugacy class to which the corresponding parabolic subgroup

belongs in ΛM11
.

Theorem 4.4. The boolean lattice LJ1
of the geometry ΓJ1

is depicted in Fig-

ure 10. Moreover there exists a unique such boolean lattice of subgroups in J1 up

to conjugacy.
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J1 #1

L2(11) #2 2×A5 #3 S3 ×D10 #7 2×A5 #2

A5 #9 D12 #25 D12 #25 D12 #25 23 #31 D20 #20

S3 #35 22#37 22 #37 22 #37

2 #39

Figure 10: The boolean lattice of ΓJ1
identified in ΛJ1

Proof. The very same techniques described in the case of ΓM11
can be used to

compute and identify the boolean lattice of ΓJ1
in the subgroup lattice ΛJ1

of

J1 given in Table 5 (borrowed from [16]). We provide the boolean lattice in

Figure 10 (see also [19]). �

5 The rank 5 geometry of Ivanov–Shpectorov for

O′N

Ivanov and Shpectorov give evidence for the existence of a geometry of rank 5

with O′N acting in [24]. Their starting point is the original paper of O’Nan that

predicts and describes O′N [29]. Here is a sketch of their construction.

The starting point is the permutation representation of O′N on the (left)

cosets of J1. Using the fact that J1 centralizes an involution of Aut(O′N) \O′N,

they build a vertex-transitive graph GIvSh of valency 1 463 whose points are the

cosets of J1 in O′N and in which the stabilizer of an edge is isomorphic to 2×S5.

Vertices (resp. edges) of GIvSh are the 0-elements (resp. 1-elements) of the ge-

ometry (with respect to our notation as in Figure 1). By looking at normalizers

in O′N of subgroups isomorphic to S3 lying in J1, they exhibit cliques of 6 ver-

tices stabilized by subgroups of O′N isomorphic to S3 × A5. Those subgraphs

are the 3-elements. Then they consider the action of L2(11) < J1 on GIvSh and

after a few observations, they show that subgroups of O′N isomorphic to M11
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M11

B = A5

1

0

12

L2(11)

10

1

66

A5 : 2

c

(a) M11 on 12 points

J1

B = A5

1

0

266

L2(11)

10

1

1 463

A5 × 2

8 5 8

(b) The Livingstone graph

Figure 11: Rank 2 coset geometries for M11 and J1

stabilize cliques on 12-points in GIvSh. Those cliques are the 4-elements. Finally

they look at involutions of O′N lying in subgroups isomorphic to S3 < J1. They

consider the action of the centralizer of an involution in O′N on GIvSh. This

allows them to identify subgraphs of size 16 which in turn provide them with

subgraphs that become the h-elements of the geometry. However the stabilizer

of an h-element in O′N is not made explicit.

Ivanov and Shpectorov conclude their paper with the assertion that the ele-

ments they have produced together with maximal intersection yields a geometry

over the diagram of Figure 1 that admits a flag-transitive action of O′N. There

is no proof of this assertion in [24]. To the best of our knowledge we provide

the first proof of Ivanov–Shpectorov’s assertion.

The reason behind our names for types is the following. Points are 0-elements

and edges are 1-elements. The cliques of 12-points are 4-elements because the

residue of such an element is a geometry of rank 4 with a connected diagram.

Residues of the 6-cliques are geometries with a disconnected diagram: the direct

sum of an icosahedron and a rank one geometry. It is then intrinsically a geom-

etry of rank 3. The last elements are of type h to remind the word ‘hyperline’.

As we will detail in Section 10, those elements are endowed with remarkable

properties. The name ‘hyperline’ is an analogy of the French word hyperdroite

used by Tits to describe objects in geometries of exceptional type En, n = 6, 7, 8.

The first occurence of that terminology can be found in [33, Page 25].

6 A rank 3 geometry for O′N due to Connor

In [15] the second author provides a construction of a rank 3 coset geometry

Γ(O′N) for O’Nan’s sporadic simple group O′N over the set of types I = {0, 1, 2}.

In the present work we denote Γ(O′N) by ΓCo. The geometry ΓCo belongs to

the diagram of Figure 2.

Connor starts with coset geometries of rank 2 for M11 and J1 whose dia-
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O′N #1

J1 #6 2× S5 #212 M11 #23

2×A5 #277 L2(11) #119 S5 #278

A5 #370

Figure 12: An identification of the boolean lattice of ΓCo in ΛO′N

grams are given in Figure 11 [27]. Both geometries have a maximal parabolic

subgroup isomorphic to L2(11) and a Borel subgroup isomorphic to A5. This

observation led him to consider the amalgam of the two diagram geometries

in the group O′N in which M11 and J1 are maximal subgroups. The boolean

lattices of the two geometries are given by their Buekenhout diagram. Connor

shows that the amalgam of the boolean lattices can be done in a unique way

up to conjugacy in Aut(O′N). The resulting boolean lattice of rank 3 is given

in Figure 12. Using a theorem due to Aschbacher [1], Connor proves that this

boolean lattice yields a firm, residually connected, flag-transitive coset geom-

etry ΓCo over the diagram of Figure 2. Then he proves that ΓCo is residually

weakly primitive, locally 2-transitive and that it satisfies the intersection prop-

erty in rank 2 residues. Finally he proves that the automorphism group of the

geometry ΓCo is O′N, using a study of the truncation of ΓCo on its elements of

type in {0, 1}.

The construction of ΓCo in [15] is independent from [24].

7 From the Ivanov–Shpectorov geometry to the Con-

nor geometry

So far we have explained the various starting concepts and results as men-

tionned in the abstract and the introduction. We now turn to new results.

From now on and throughout the remaining of this paper, let G denote a

copy of O′N. Let us start with the diagram of the Ivanov–Shpectorov geometry

ΓIvSh = Γ(G, {G0, G1, G3, G4, Gh}) as in Figure 1. As we observed in Section 5,

the parabolic subgroup G0 is isomorphic to J1 and the parabolic subgroup G4 is

isomorphic to M11. The residue Γ0 of ΓIvSh is the diagram geometry described

in Section 4.3 (see also Figure 5) and the residue Γ4 is the diagram geometry

described in Section 4.2 (see also Figure 4). Thanks to Section 4, we know
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that M11 and J1 have unique flag-transitive geometries with those ΓIvSh residue

diagrams. Hence we know that the residues Γ0 and Γ4 of the geometry ΓIvSh are

isomorphic to ΓJ1
and ΓM11

respectively. The observations made in Section 5

show that G1 is isomorphic to 2×S5. This leads us to ask whether the truncation

of ΓIvSh on the elements of type in {0, 1, 4} could be the Connor geometry ΓCo

(see Figure 2). Then the use of the subgroup lattice ΛO′N of O′N readily shows

that these data provide indeed the needed diagram geometry as is shown in

Theorem 7.1. This provides an alternative construction of the Connor geometry

from the knowledge provided in [24].

Theorem 7.1. The Connor geometry ΓCo is a truncation of the Ivanov–Shpectorov

geometry ΓIvSh on the set of types {0, 1, 4}.

Proof. The strategy of the proof is to show that the truncation of ΓIvSh on its

elements of type in {0, 1, 4} is a coset geometry with the same boolean lattice

as ΓCo. Then we make use of results in [15] stating that such a boolean lattice

yields a unique flag-transitive geometry with automorphism group isomorphic

to O′N.

By the developments of Section 5, we know that G0
∼= J1, G1

∼= 2×S5, G4
∼=

M11, G04
∼= L2(11) and G01

∼= 2×A5. Consider a flag F of types in {0, 1, 4}. By

Assertion 1 in [24], the residue of F is isomorphic to the Petersen graph and it

is flag-transitive. Since it has 10× 3 = 30 flags, the group G014 must have order

divisible by 30. Moreover this group must be isomorphic to a subgroup of 2×S5,

L2(11) and M11 (see Tables 6, 7 and 4). By looking at the subgroup lattices of

each of these groups, it is easily seen that G014
∼= A5. Moreover G14 must

strictly contain a subgroup isomorphic to A5 and must be strictly contained in

a subgroup isomorphic to 2 × S5. Consequently, G14
∼= 2 × A5 or G14

∼= S5.

Since M11 does not have a subgroup isomorphic to 2 × A5, we get G14
∼= S5.

We just showed that the boolean lattice of Figure 12 is a rank 3 sublattice of the

boolean lattice of ΓIvSh. By Theorem 4.1 of [15], there are two such boolean

lattices of rank 3 up to conjugacy in O′N and by Theorem 4.2 in [15] each of

them determines a geometry isomorphic to ΓCo. Those two families of rank 3

boolean lattices are fused in Aut(O′N) ∼= O′N : 2. �

Theorem 7.1 is the first result announced in our abstract.

8 Identification of LIvSh in ΛO′N

The group G ∼= O′N acts flag-transitively on the geometry ΓIvSh. Using the

Tits construction described in Section 2.3, we can see ΓIvSh as a coset geometry
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2× S5 #1

2×A5 #4 S5 #2 S3 × 22 #8 D8 × 2 #15

A5 #5 D12 #18 23 #31 D12 #16 D8 #29 23 #28

S3 #34 22#47 22 #44 22 #45

2 #52

Figure 13: The boolean lattice of Γ2×S5
identified in Λ2×S5

Γ(G, {G0, G1, G3, G4, Gh}). In this section we determine the boolean lattice

LIvSh of parabolic subgroups of this coset geometry on the basis of Section 5.

As a matter of fact, we know four maximal parabolic subgroups: G0
∼= J1,

G1
∼= 2 × S5, G4

∼= M11, and G3
∼= A5 × S3 (see Section 5). Moreover we

proved in Section 4 that J1 and M11 have unique flag-transitive geometries over

the residue diagrams provided by the diagram of ΓIvSh and we computed the

boolean lattice of each of them in Section 4.4.

The residue Γ1 (resp. Γ3) is a geometry with 2 × S5 (resp. A5 × S3) acting

flag-transitively. We denote this geometry by Γ2×S5
(resp. ΓA5×S3

) to emphasize

the group action.

We now further analyze the residue Γ1
∼= Γ2×S5

. The stabilizer of a point

in the residue Γ0
∼= ΓJ1

is also a maximal parabolic subgroup of Γ1
∼= Γ2×S5

.

Hence a maximal parabolic subgroup of Γ2×S5
is isomorphic to 2 × A5. This

subgroup acts on the direct sum of the rank 2 geometry of a Petersen graph and

a rank 1 geometry of 2 points. A parabolic subgroup isomorphic to A5 acts flag-

transitively on the Petersen graph. Table 6 shows that this subgroup belongs to

conjugacy class #5 in Λ2×S5
. Moreover a subgroup of class #5 has exactly three

overgroups in 2× S5: an overgroup isomorphic to 2×A5 belonging to class #4

and two overgroups isomorphic to S5 belonging to classes #3 and #2 respec-

tively. Consequently a maximal parabolic subgroup of Γ2×S5
is isomorphic to S5

and acts on a direct sum of a Petersen graph and a rank 1 geometry of 2 points.

This coset geometry of rank 3 is already known (see for instance [11, page 36]).

At this point, knowing already two maximal parabolic subgroups, it is an easy
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A5 × S3 #1

D10 × S3 #5 22 × S3 #13 S3 × S3 #7 A5 × 2 #3

D12 #20 D12 #20 D20 #14 D12 #20 23 #29 D12 #19

S3 #32 22#38 22 #38 22 #38

2 #45

Figure 14: The boolean lattice of ΓA5×S3
identified in ΛA5×S3

task to compute the whole boolean lattice L2×S5
of Γ2×S5

as in Figure 13.

Let us mention further that geometries for 2× S5 have been studied by Cara

and Leemans [14]. They classified the residually weakly primitive geometries

for this group and so they knew geometry Γ1.

Let us now focus on Γ3
∼= ΓA5×S3

. In this case too we know already some

parabolic subgroups thanks to our conclusions on the residues Γ0
∼= ΓJ1

, Γ1
∼=

Γ2×S5
and Γ4

∼= ΓM11
. We leave the reader checking for himself that the boolean

lattice LA5×S3
of the coset geometry Γ3 is as depicted in Figure 14 by making

use of the subgroup lattice ΛA5×S3
given in Table 8.

The boolean lattices LJ1
, LM11

, L2×S5
and LA5×S3

of the four coset geome-

tries ΓJ1
, Γ2×S5

, ΓM11
and ΓA5×S3

occur as sublattices in the boolean lattice

LIvSh of ΓIvSh. Our strategy to compute LIvSh is to use that knowledge by filling

in a general rank 5 boolean lattice with 32 unknowns with those four rank 4

boolean lattices (see Figures 15 and 16). We prove that this can be done in a

unique way up to conjugacy in Aut(O′N). There remains an unknown in this

boolean lattice, namely Gh, and we prove that it is in fact uniquely determined

in Theorem 8.1 under the assumption that the resulting boolean lattice is gener-

ating (see proof of Lemma 3.1). This will finish the computation of the boolean

lattice of ΓIvSh, the second result stated in our abstract.

Afterwards we start with the boolean lattice of subgroups of LIvSh identified

in the subgroup lattice of O′N and we prove in Theorem 9.4 that it yields a

flag-transitive, residually connected, firm geometry. This is a new construction
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G

G0 G1 G4 G3 Gh

G01 G04 G03 G0h G14 G13 G1h G43 G4h G3h

G014 G013 G01h G043 G04h G03h G143 G14h G13h G43h

G0143 G014h G013h G043h G143h

B

Figure 15: The general boolean lattice of a rank 5 coset geometry with set of

types according to our choice for ΓIvSh

of ΓIvSh from the subgroup lattice of O′N.

8.1 Existence and uniqueness of ΓIvSh’s boolean lattice in

O′N

We prove the following theorem on the basis of the developments of Section 5.

Theorem 8.1. Up to conjugacy, there are exactly two partial boolean lattices as

in Figure 16 in the subgroup lattice of O′N. Each of them extends uniquely to a

generating boolean lattice of subgroups of O′N as in Figure 17. Those two families

of lattices are fused in Aut(O′N) ∼= O′N : 2.

8.2 Proof of Theorem 8.1

Table 9 contains carefully chosen subgroups of O′N extracted from ΛO′N in

order to help the reader during the process of the upcoming proof. Labels that

matter in that proof are bold to ease the reading.

There is exactly one conjugacy class of subgroups isomorphic to J1 in O′N.

Thanks to Theorem 4.4 it is quite straightforward to identify the boolean lat-

tice of ΓJ1
in ΛO′N depicted in Figure 18. Since our aim is now to extend this

boolean lattice of rank 4 to a boolean lattice of rank 5, it is convenient to pro-

vide parabolic subgroups of ΓJ1
embedded in O′N with names suited to our

purpose. This is done by the natural comparison between Figure 15 and Fig-

ure 16. Namely G0
∼= J1, G01

∼= 2 × A5, G04
∼= L2(11), G03

∼= S3 × D10,
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O′N

J1 2× S5 M11 A5 × S3 Gh

2×A5 L2(11) S3 ×D10 2×A5 S5 22 × S3 D8 × 2 S3 × S3 4 · S4 A5 × 2

A5 D12 23 D12 D12 D20 D12 D8 23 D12

S3 22 22 22 22

2

Figure 16: The boolean lattices of ΓJ1
, Γ2×S5

, ΓM11
and ΓA5×S3

amalgamated

in a rank 5 boolean lattice with a unique unknown

G0h
∼= 2 × A5, G014

∼= A5, G013
∼= D12, G01h

∼= 23, G043
∼= D12, G04h

∼= D12,

G03h
∼= D20, G0143

∼= S3, G014h
∼= G013h

∼= G043h
∼= 22 and B ∼= 2.

Notice that a subgroup isomorphic to L2(11) (necessarily in class #119) is

a maximal subgroup of two subgroups of O′N isomorphic to M11 (in classes

#23 and #24) and one subgroup isomorphic to J1. Hence we can choose the

subgroups G0
∼= J1 and G4

∼= M11 in O′N in classes #6 and #23 respectively

such that G04 = G0 ∩G4 is a subgroup isomorphic to L2(11) of class #119. The

parabolic subgroup G014
∼= A5 belongs to class #370. By construction, G014

∼=
A5 (in class #370) is a subgroup of G4

∼= M11. Table 9 shows that a subgroup

of class #370 sits in exactly two overgroups of class #278, isomorphic to S5.

On the other hand M11 has a unique class of (maximal) subgroups isomorphic

to S5. In the case of G4, that class of S5 is #278. Therefore we can choose a

subgroup G14
∼= S5 in class #278 contained in G4 and containing G014. Now

〈G01, G14〉 is by definition the smallest common overgroup of G01 and G14. In

this situation, it should be clear that the group they generate is a subgroup of

O′N of class #212, isomorphic to 2 × S5 (compare with Table 6). Observe at

this point that we just proved Theorem 4 stated in [15].

By Theorem 4.3 we may choose subgroups of M11 ≤ O′N such as in Figure 9.

This provides us with G43
∼= S3 × S3 in class #407, G4h

∼= 2 · S4 in class

#382, G143
∼= D12 in class #537, G14h

∼= D8 in class #564 and G143h
∼= 22 in

class #578. At this stage, we have already extracted 25 subgroups of O′N that

intersect pairwise in such a way that they form a partial boolean lattice. The
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seven remaining unknowns are G3, Gh, G13, G1h, G3h, G13h and G14h.

In Section 8 we extracted a boolean lattice of subgroups Γ2×S5
from the

subgroup lattice of 2× S5. We apply this construction here to G1
∼= 2× S5 and

we obtain G13
∼= 22×S3 in class #478, G1h

∼= Q8 : 2 in class #527, G13h
∼= 23 in

class #568 and G14h
∼= D12 in class #537. This leaves us with three unknowns

namely G3, Gh and G3h.

G03
∼= S3 × D10 has exactly one overgroup isomorphic to A5 × S3 in class

#166. A subgroup of O′N of class #166 contains subgroups of class #407.

Therefore we can assume that the overgroup of G03 contains G43
∼= S3 × S3 in

class #407, for otherwise we choose conjugate subgroups to G43 in G4. Simi-

larly, we can assume that it contains G13
∼= 22×S3 in class #478. Hence we can

assume that subgroups G03, G13 and G43 generate G3
∼= A5 × S3 in class #166.

Now we apply the construction of ΓA5×S3
given in Section 8 which allows us

to choose G3h as a subgroup isomorphic to 2 × A5 which must belong to class

#282.

For the last unknown Gh, careful observation of the respective overgroups of

G0h, G1h, G4h, G3h shows that their least possible common overgroup in O′N

is a subgroup of class #30 isomorphic to 4 · 24 : A5 or one of its overgroups.

However a subgroup of class #30 is quasimaximal, i.e. it has a unique chain of

overgroups with maximal element O′N. Hence the least common overgroup of

G0h, G1h, G4h, G3h is either a subgroup of class #30 or G itself. If it were G,

then ΓIvSh would be degenerate.

The configuration of 32 subgroups of O′N as we just produced yields a boolean

lattice of subgroups. Observe moreover that it is generating by construction.

9 Construction of the geometry ΓIvSh

We prove that the ΓIvSh boolean lattice described in Section 8 is the boolean

lattice of a unique firm, residually connected, flag-transitive geometry for O′N.

Then we prove that this geometry is the geometry ΓIvSh built in [24].

9.1 Graphs for O′N and O′N : 2

The truncation of ΓIvSh on the set of types {0, 1} is a graph GIvSh of which

objects of type 3, 4 and h are subgraphs. We construct and describe this graph

in this section. We first define the 2B–commuting involution graph of O′N : 2.

Then we describe some of the action of O′N < O′N : 2 on that graph in order to

produce the graph GIvSh.
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J1 #6

2×A5 #277 L2(11) #119 S3 ×D10 #366 2×A5 #277

A5 #370 D12 #537 23 #567 D12 #537 D12 #537 D20 #494

S3 #573 22#578 22 #578 22 #578

2 #580

Figure 18: The boolean lattice of ΓJ1
identified in ΛO′N

9.1.1 The commuting 2B-involution graph of O′
N : 2

The group Aut(G) ∼= O′N : 2 has two classes of involutions namely 2A and

2B according to the notation of the ATLAS [17]. Let ρ be a 2B-involution (an

outer automorphism of G). The centralizer C := CAut(G)(ρ) of ρ in Aut(G)

is isomorphic to J1 × 2. We define the graph C = (VC , EC) as follows. The

set VC of vertices of C is the set of 2B-involutions of O′N : 2. The set EC of

edges of C consists of the pairs of 2B-involutions that commute. Such a graph is

called a commuting involution graph [2]. The graph C has 2 624 832 vertices and

1 920 064 608 edges. It is arc-transitive of valency 1 463.

Lemma 9.1. The centralizer C has an orbit Σ of size 2 926 on the set of vertices

of C.

Proof. We work in the subgroup lattice Λ2 of Aut(G) ∼= O′N : 2 and we consider

the conjugacy class of 2B-involutions of Aut(G) that correspond to class #732

in Λ2.
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Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

712 D8 8 960032304 727 (2), 728 430 (6), 493 (20), 531

(6), 532 (30), 620 (10),

625 (10), 656 (10), 662

(15)

713 D8 8 14400484560 727 (2), 726 431 (2), 440 (4), 533

(4), 626 (4), 654 (2),

662, 666 (2)

716 23 4 4800161520 730, 727 (6) 529 (12), 610 (12), 622

(4), 662 (3), 666 (3),

667

727 22 4 1 920 064 608 733, 732 (2) 412 (40), 520 (24), 605

(20), 606 (40), 633

(60), 635 (20), 638

(6), 639 (30), 685 (60),

686 (10), 687 (12), 692

(10), 712, 713 (15),

716 (15)

732 2 2 2 624 832 734 479 (11704), 535

(29260), 536 (1540),

628 (1596), 629

(17556), 676 (4180),

680 (29260), 681

(4180), 696 (2926),

699 (14630), 721

(2926), 724 (2926),

727 (1463)

Table 2: Overgroups of order 8 of a 2B-involution in O′N : 2

Table 2 is extracted from Λ2 and shows sublattices of subgroups of Aut(G)

of order 8 that contain a 2B-involution. Two of them are dihedral groups of

order 8, namely subgroups of classes #712 and #713. The dihedral group D8

contains 5 involutions. Seeing D8 as the automorphism group of a square S,

we can give a geometric interpretation of those 5 involutions: they are the

central symmetry of S, two symmetries around axes through opposite vertices

of S and two symmetries around axes through midpoints of opposite edges of S.

Considering Table 2, we see that dihedral subgroups of class #712 have four 2B-

involutions and one (central) 2A-involution. Out of the four 2B-involutions, one

is ρ and another one is an involution ρ′ that commutes with ρ. The involution ρ′

belongs to the orbit of size 1 463 of C under the action of C since ρ′ is a neighbor

of ρ in C. The remaining two 2B-involutions σ and σ′ commute together but do

not commute with either ρ or ρ′. Moreover we read from Table 2 that ρ belongs

to 1 463 dihedral subgroups of class #712 which yield 1 463 2B-involutions that

commute with ρ. Thus any dihedral subgroup of class #712 also yields two more

2B-involutions. There are 2 × 1 463 = 2 926 2B-involutions arising in this way.
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Let us call Σ the set of those 2 926 2B-involutions. Since C is transitive on the

involutions commuting with ρ and since a pair (ρ, ρ′) of commuting involutions

yields a dihedral subgroup of class #712, we conclude that Σ is an orbit under

the action of C = StabAut(G)(ρ) = CAut(G)(ρ). �

We determine with MAGMA that the full orbit distribution of C on 2 624 832
points is

1+ 1 463+ 2 926+ 5 852+ 25 080+ 29 2603 +43 890+ 58 5203 +87 7802 +175 56010 +351 120.

9.1.2 The Ivanov–Shpectorov graph for O
′
N

Lemma 9.2. The index 2 subgroup J ∼= J1 of C has two orbits on the set Σ, each

of size 1 463.

Proof. The stabilizer in J of a point of Σ is isomorphic to 2 × A5 (the central-

izer of an involution in J1), which is a maximal subgroup of index 1 463 of J .

Therefore J acts intransitively on Σ with two orbits of size 1463 each. �

Consider the action of J < C = CAut(O′N)(ρ) on the set of vertices of C. It

is now clear that J has three orbits O1
1463, O2

1463, O3
1463 of size 1463, namely the

orbit O1
1463 of 2B-involutions commuting with ρ and two orbits O2

1463 and O3
1463,

each of size 1463 such that O2
1463 ⊔ O3

1463 = Σ. Let α ∈ O1
1463, β ∈ O2

1463 and

γ ∈ O3
1463.

Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

1 O′N 460815505920 1 2(122760),

3(122760),

6(2 624 832),

7(2857239),

11(17778376),

12(17778376),

15(30968784),

16(30968784),

21(42858585),

23(58 183 776),

24(58 183 776),

43(182863296),

44(182863296)

continued on next page
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continued from previous page
Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

6 J1 175560 2 624 832 119(266),

237(1045),

277(1463),

285(1540),

286(1596),

366(2926),

397(4180)

1

7 4 · L3(4) : 2 161280 2857239 8, 32(56), 33(56),

34(56), 55(105),

67(120), 65(120),

66(120), 140(280),

143(336)

1

8 4 · L3(4) 80640 2857239 30(42), 57(56),

58(56), 59(56),

112(120), 113(120),

114(120), 194(280)

7

30 4 · 24 : A5 3840 120004038 97(5), 133(6),

156(10), 208(16),

209(16), 210(16),

211(16)

8

143 A5 : D8 480 960032304 212, 213, 210,

299(5), 312(6),

386(10)

7

210 4×A5 240 960032304 277, 391(5), 403(6),

481(10)

30(2), 143

212 2× S5 240 960032304 278(2), 277, 393(5),

402(6), 478(10)

143

213 2× S5 240 960032304 279(2), 277, 394(5),

401(6), 479(10)

143

277 2×A5 120 960032304 370, 482(5), 494(6),

537(10)

6(4), 210, 212, 213

Table 3: Overgroups of a subgroup of class #277 in ΛO′N

Lemma 9.3. We have StabG{ρ, α} ∼= 4 × A5, StabG{ρ, β} ∼= StabG {ρ, γ} ∼=
2× S5. Moreover StabG{ρ, β} and StabG {ρ, γ} are not conjugate in G.

Proof. Consider a subgroup 2 × A5
∼= A < J . It belongs to class #277 in ΛO′N.

The lattice of overgroups of A extracted from ΛO′N is pictured in Table 3. We

see that A is in exactly four distinct subgroups of G isomorphic to J1. Therefore

A fixes four points of C. The normalizer N := NG(A) ∼= A5 : D8
∼= (A5 × 2) · 22

stabilizes those four points and acts transitively on them. We see in Table 3 that

there are exactly three subgroups between N and A. They are subgroups of

classes #212, #213 and #210. Since N acts transitively on 4 points with kernel

2×A5, each of its subgroups 2×SA
5 and 2×SB

5 fixes two points and exchanges

the remaining two while 4×A5 has no fixed point. Moreover Aut(G) fuses the
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G ∼= O′N

B = 2

1

0

2 624 832

J1

1

1

1 920 064 608

2× S5

1,
4

58 183 776, M11

1

3

1 280 043 072

A5 × S3

2

h

120 004 038

2 · 25 : A5

5

P

Figure 19: The Buekenhout diagram of ΓIvSh

two conjugacy classes #212 and #213. Therefore we have StabG{ρ, α} ∼= 4×A5,

StabG{ρ, β} ∼= 2× SA
5 and StabG{ρ, γ} ∼= 2× SB

5 . �

We are now able to define a graph GIvSh = (VIvSh, EIvSh) as follows. The

vertex set of GIvSh is the set of vertices of C. The set of edges EIvSh is the

set of all the pairs of vertices whose stabilizer in O′N is a subgroup of class

#212. Definition of GIvSh corresponds obviously to the construction of the graph

defined in [24]. With MAGMA we compute the distance distribution map of

GIvSh given in Tables 10, 11 and 12.

9.2 Existence and uniqueness of a geometry from LIvSh

We prove the following theorem.

Theorem 9.4. The boolean lattice of Figure 17 is the lattice of parabolic sub-

groups of a unique firm, residually connected, flag-transitive coset geometry over

the Buekenhout diagram in Figure 19.

9.3 Proof of Theorem 9.4

First we define a set of types I = {0, 1, 3, 4, h} as suggested by Figure 1. Next

we provide the construction of a geometry Γ = (X, ∗, τ) over the set of types I.

We define the elements of each type as subsets of vertices of GIvSh stabilized by

parabolic subgroups of the boolean lattice LIvSh. Then we provide an incidence
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relation and we prove that we obtain a firm, residually connected, flag-transitive

geometry.

9.3.1 Elements of types 0, 1, 3 and 4

Elements of type 0 are the left cosets of G0
∼= J1 in G ∼= O′N. They are the

vertices of the graph GIvSh defined in Section 9.1.2. We also call elements of

type 0 points. The stabilizer of any point is isomorphic to J1 by construction. Call

p the vertex stabilized by G0 in GIvSh. The group G acts primitively on the set X0

of points by left translation. (Notice it is also the case for O′N : 2 ∼= Aut(O′N).)

The elements of type 1 are edges of GIvSh. By Lemma 9.3 the stabilizer of an

edge in GIvSh is isomorphic to 2× S5 and conjugate to G1.

The boolean lattice of subgroups of G4
∼= M11 yields the flag-transitive ge-

ometry ΓM11
constructed in Section 4.2 which has 12 points. Since M11 acts

3-transitively on those 12 points, G4 yields a clique of 12 vertices in GIvSh. Each

left coset of G4 in G provides such a 12-clique. They are the 4-elements of Γ.

The boolean lattice of subgroups of G3
∼= A5 × S3 yields the flag-transitive

geometry ΓA5×S3
constructed in Section 8 which has 6 points forming a clique.

Each left coset of G3 in G provides such a 6-clique. They are the 3-elements

of Γ.

9.3.2 h-Elements

By Lemma 9.3 the maximal parabolic subgroup G0
∼= J1 acts on three orbits of

size 1463 in the same way it acts on its set of involutions. Let p be the point fixed

by G0. The subgroup G01
∼= 2 × A5 is the pointwise stabilizer StabG[p, x] of a

pair {p, x}, x ∈ O2
1463. Obviously StabG{p, x} is conjugate to G1 in G. Moreover

StabG[p, x] has two orbits of size 15 in O2
1463 on which it acts in the same way

it acts on its 2-Sylow subgroups isomorphic to 23. In particular, G0h
∼= 2 × A5

fixes a point q in O2
1463 and has two such orbits O1

15 and O2
15. One of them, say

O1
15, has a nontrivial intersection with the subgraphs stabilized by G3 and G4

detailed in the previous section. On the other hand, G0 has two orbits of size

21 945 on the set of vertices VIvSh, namely O1
21945 and O2

21945, on which it acts in

the same way it acts on its 2-Sylow subgroups 23. Therefore G0h has at least one

orbit of size 15 in each of those two G0-orbits. Using the distance distribution

map provided in Tables 11 and 12, we see that a point of O2
1463 has neighbors

in O1
21945 and none in O2

21945.

As we saw in the proof of Lemma 9.3, StabG[p, q] fixes two more points, say

r ∈ O1
1463 and s ∈ O3

1463. By our previous developments, r corresponds to the

2B-involution commuting with p in Aut(G). Let o be the vertex in O1
21945 fixed
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by G01h
∼= 23. Since G01h is one of the 15 2-Sylow subgroups of G0h, it belongs

to a G0h-orbit of size 15, say O2
15. At this point, we have identified 4 orbits under

the action of G0h: p, r, O1
15 and O2

15. Notice that G1h swaps o and p. Let us

now consider the subgroup H := 〈StabG[p, r], StabG{p, o}〉. This subgroup acts

transitively on those 32 points. By looking at the subgroup lattice of G, we see

that common overgroups of subgroups of classes #277 (StabG[p, r]) and #527

(StabG{p, o}) could be in classes #1, #7, #8, #30, #143, #212 or #213. Since

H acts transitively on 32 points, H cannot be a subgroup of classes #143, #212

and #213. It cannot be G itself since H is not transitive on all points. Since a

subgroup of class #30 is quasimaximal in G, it follows that H is a subgroup of

that class and H = Gh. We now define the h-element stabilized by Gh to be the

subgraph of the H-orbit of size 32 that we emphasized.

9.3.3 Incidence relation

We define an incidence relation ∗ on X induced by maximal intersection, i.e.

inclusion in all but two cases. More precisely, a 3-element x is incident to a

4-element y if and only if |x ∩ y| = 3, and a 4-element y is incident to an

h-element z if and only if |y ∩ z| = 4.

According to Section 4, the 3-tuple (X, ∗, τ) defines a pregeometry Γ of rank 5

over I.

9.3.4 Firmness and residual connectedness

The boolean lattice LIvSh is generating, hence Γ is residually connected by virtue

of Lemma 3.1. Moreover Γ is firm since all of its residues are.

9.3.5 Flag-transitivity

The group G is transitive on the 0-elements of the pregeometry Γ. The stabilizer

J in G of a 0-element is isomorphic to J1. The residue of a 0-element is isomor-

phic to the pregeometry ΓJ1
with J acting flag-transitively on it. Let C and C ′

be two chambers of Γ. By transitivity on the 0-elements, the 0-element p of C

can be brought onto the 0-element q of C ′. Now the stabilizer of q in G is tran-

sitive on the flags incident to q. Hence there exists an element in G that maps

C onto C ′. Therefore Γ is a flag-transitive pregeometry, thus a flag-transitive

geometry according to Section 4. By uniqueness of the ΓIvSh boolean lattices, Γ

is the ΓIvSh geometry.

This technique was used by Buekenhout to prove flag-transitivity in most of

the geometries he got in his catalogue [6].
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9.4 Properties of Γ

We just proved that Γ is a firm, residually connected, flag-transitive geometry.

Moreover G acts primitively on the 0-elements and the 4-elements of Γ since

the stabilizer of an element of each of those types is a maximal subgroup of G.

Hence Γ is weakly primitive, in the terminology of [8]. However Γ is not residu-

ally weakly primitive since there exists a residue of Γ that is not weakly primitive

itself, namely the residue of a hyperline of Γ. This last property was proven by

Buekenhout and Leemans in [12].

9.4.1 The Buekenhout diagram of Γ

Since the geometry Γ is firm, residually connected and flag-transitive, we as-

sociate to it a Buekenhout diagram (see [10], Chapter 2, §3). This diagram is

an amalgam of the diagrams of the residues of Γ. The orders can be computed

by taking the index of the stabilizer of some element of each type in G. The

resulting diagram is shown in Figure 19.

10 More on h-elements

In this section we provide a detailed study of the residue of an h-element H

in ΓIvSh. The diagram ∆IvSh together with the boolean lattice LIvSh of ΓIvSh

yields the Buekenhout diagram of the residue ΓH of H depicted in Figure 20.

Since ΓIvSh is a flag-transitive, residually connected geometry, so is ΓH . The

truncation of this geometry on its elements of types in {0, 1} is a graph, that we

call the underlying graph of ΓH and that we denote with {0,1}ΓH . A 0-element

is now called a point and a 1-element an edge. The residue of a 2-element is

obviously a hemi-icosahedron and the residue of a 3-element is a tetrahedron.

Let us describe the structure of {0,1}ΓH . By flag-transitivity of ΓH , the trun-

cation {0,1}ΓH is flag-transitive, i.e. arc-transitive in the terminology of graph

theory. Every vertex has degree 15, there are 32 vertices and 240 edges. Since

ΓH is residually connected, {0,1}ΓH is connected. The group 4 · 24 : A5 acts

flag-transitively on {0,1}ΓH with a kernel of size 2, whose quotient is 25 : A5.

This quotient has a central involution which induces a pairing of the vertices of

{0,1}ΓH . The vertex paired with p through the central involution is called the

opposite of p and is denoted by pop. Hence the distance distribution map of the

graph {0,1}ΓH is endowed with a central symmetry and can be depicted as in

Figure 21. There remains to determine the unknowns a and b.

Lemma 10.1. The distance distribution map of {0,1}ΓH is as depicted in Figure 22.
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G ∼= 2 · (25 : A5)

B = 2

1

0

32

2 ×A5

1

1

240

2 · 23

1,
3

80, 2 · S4

1

2

32

2 ×A5

5

Figure 20: The residue of a hyperline in ΓIvSh
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b
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1

15

Figure 21: The distance distribution map of the underlying graph of a hyperline

Proof. Since the residue of a 2-element is a hemi-icosahedron, the {0, 1}-shadow

of a 2-element in ΓH is a clique K6 of 6 vertices. The diagram shows that there

are 6 elements of type 2 incident with each point. Therefore every vertex of

{0,1}ΓH lies in 6 cliques K6. Hence the neighborhood p⊥ of any vertex p of

{0,1}ΓH contains 6 cliques of size 5. By flag-transitivity, every vertex of p⊥ is

contained in the same number x of cliques K5. By double counting, we obtain

5× 6 = 15x ⇐⇒ x = 2.

We deduce that a ≥ 8 and thus b ≤ 6. Every edge of {0,1}ΓH is contained in

exactly 2 cliques of size 6. Given two adjacent vertices v ∈ p⊥ and w ∈ pop⊥,

we conclude that they must have at least 8 common neighbors, and thus b ≥
8
2 + 1 = 5. Finally, we observe that p, w ∈ v⊥ are at distance 2 in {0,1}ΓH . By

flag-transitivity, we conlude that there exists a vertex in p⊥ adjacent to w but

not adjacent to v. Hence w has a sixth neighbor in p⊥ and b = 6, a = 8. �

Now we proceed with the recognition of the graph {0,1}ΓH . First of all, let

us introduce some terminology and a surprising situation. The n-halved cube is

a graph of 2n−1 vertices consisting of one of the two connected components of

the graph of vertices at distance 2 in the n-cube graph. In [23], Imrich, Klavzar

and Vesel provide a characterization of halved cube graphs as follows.
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Lemma 10.2 ([23]). Let n ≥ 5. The n-halved cube graph Qn is the only con-

nected,
(

n
2

)

-regular graph on 2n−1 vertices in which every edge is in two n-cliques

and no two n-cliques intersect in a vertex.

We use Lemma 10.2 to characterize {0,1}ΓH in Theorem 10.4. During that

process, we also make use of Lemma 10.3 due to Harary [21].

Lemma 10.3 ([21, Theorem 8.4]). A graph is a line graph if and only if its edges

can be partitioned into complete subgraphs in such a way that no vertex lies in

more than two of the subgraphs.

Given a line graph L(G) and a partition P as in Lemma 10.3, we recover the

original graph G as follows: the vertex set of G is the set P; two vertices of

G are now joined by an edge if and only if the corresponding cliques share a

vertex in L(G).

Theorem 10.4. The underlying graph {0,1}ΓH of a hyperline H is isomorphic to

the 6-halved cube.

Proof. The purpose of the proof is to show that {0,1}ΓH satisfies the hypothe-

ses of Lemma 10.2. Notice that {0,1}ΓH has 25 = 26−1 vertices and that it is

regular of valency
(

6
2

)

= 15. Let p be any vertex of {0,1}ΓH and let p⊥ be its

neighborhood. As we observe in the proof of Lemma 10.1, every vertex of p⊥

sits in exactly two 5-cliques. We now apply Lemma 10.3 to conclude that p⊥ is

the line graph of some graph. We recover that graph by applying the construc-

tion described after Lemma 10.3 and we see that the induced subgraph on p⊥ is

isomorphic to the line graph of a 6-clique. Moreover every edge of {0,1}ΓH sits

in exactly two 6-cliques. It is also obvious that two 6-cliques cannot intersect in

a single vertex. We finish the proof by applying Lemma 10.2. �

The full automorphism group of {0,1}ΓH
∼= Q6 is isomorphic to 25 : S6. Let

us mention that the neighborhood of any point in {0,1}ΓH is isomorphic to the

line graph of a complete graph of 6 vertices with S6 acting. Observe moreover

that this graph of 15 vertices is also the complement of the collinearity graph

of the generalized quadrangle of order (2, 2) with Sp4(2) ∼= S6 acting. It is also

the graph of hyperbolic lines of that generalized quadrangle.

Finally Theorem 10.5 shows that our h-elements deserve the name hyperline.

Theorem 10.5. Through any pair of opposite points, there is a unique hyperline.

Proof. Let p be any vertex of GIvSh. Then there are 1463 opposites to p and

there are 1463 hyperlines through p. Since there is one opposite to p in each

hyperline, any pair of opposite points provides a unique hyperline. �
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Figure 22: The distance distribution map of the underlying graph of a hyperline

11 Computational resources

Generators for each maximal parabolic subgroup of ΓIvSh are available upon

request to the authors. They are given as permutations of O′N in its represen-

tation on 122 760 points. They were obtained following the process of the proof

of Theorem 8.1 in MAGMA [3].
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13 Appendix

We provide subgroup lattices of various groups appearing in this work as well

as the distance distribution map of the graph GIvSh.

Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

1 M11 7920 1 2 (11), 3 (12), 5 (55), 6 (66), 13 (165)

2 M10 720 11 4, 7 (10), 19 (36), 22 (45) 1

3 L2(11) 660 12 10 (11), 11 (11), 12 (12), 23 (55) 1

4 A6 360 11 11 (12), 14 (10), 17 (30) 2

5 M9 : 2 144 55 8, 7, 9, 22 (9) 1

6 S5 120 66 10, 17 (5), 19 (6), 23 (10) 1

7 M9 72 55 14 (2), 15, 28 (9) 2 (2), 5

8 3 : S3 · 2 · 2 72 55 15, 29 (9) 5

9 3 : S3 · 2 : 2 72 55 16 (2), 15, 30 (9) 5

10 A5 60 66 24 (5), 26 (6), 31 (10) 3 (2), 6

11 A5 60 132 24 (5), 26 (6), 32 (10) 3, 4

12 11 : 5 55 144 25, 34 (11) 3

13 Q8 : S3 48 165 18, 22 (3), 23 (4) 1

continued on next page
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continued from previous page
Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

14 3 : S3 · 2 36 110 20, 35 (9) 4, 7

15 3 : S3 · 2 36 55 20, 35 (9) 7, 8, 9

16 S3 × S3 36 110 20, 21 (2), 23 (6) 9

17 22 : S3 24 330 24, 30 (3), 32 (4) 4, 6

18 Q8 : 3 24 165 28, 33 (4) 13

19 D10 · 2 20 396 26, 35 (5) 2, 6

20 3 : S3 18 55 27, 32 (12) 14 (2), 15, 16 (2)

21 S3 × 3 18 220 27, 31, 33 (3) 16

22 Q8 : 2 16 495 30, 29, 28 2, 5, 13

23 D12 12 660 32, 33, 31, 36 (3) 3, 6, 13, 16

24 A4 12 330 36, 37 (4) 10, 11 (2), 17

25 11 11 144 39 12

26 D10 10 396 34, 38 (5) 10, 11 (2), 19

27 32 9 55 37 (4) 20, 21 (4)

28 Q8 8 165 35 (3) 7 (3), 18, 22 (3)

29 8 8 495 35 8, 22

30 D8 8 495 36 (2), 35 9, 17 (2), 22

31 S3 6 220 37, 38 (3) 10 (3), 21, 23 (3)

32 S3 6 660 37, 38 (3) 11 (2), 17 (2), 20, 23

33 6 6 660 37, 38 18, 21, 23

34 5 5 396 39 12 (4), 26

35 4 4 495 38 14 (2), 15, 19 (4), 28, 29, 30

36 22 4 330 38 (3) 23 (6), 24, 30 (3)

37 3 3 220 39 24 (6), 27, 31, 32 (3), 33 (3)

38 2 2 165 39 26 (12), 31 (4), 32 (12), 33 (4), 35 (3), 36 (6)

39 1 1 1 25 (144), 34 (396), 37 (220), 38 (165)

Table 4: Subgroup lattice of M11

Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

1 J1 175560 1 2 (266), 3 (1045), 4 (1463), 5 (1540),

6 (1596), 7 (2926), 13 (4180)

2 L2(11) 660 266 8 (11), 9 (11), 12 (12), 25 (55) 1

3 23 : 7 : 3 168 1045 11, 18 (7), 20 (8) 1

4 A5 × 2 120 1463 9, 18 (5), 21 (6), 25 (10) 1

5 19 : 3 : 2 114 1540 10, 14, 33 (19) 1

6 11 : 5 : 2 110 1596 12, 19, 28 (11) 1

7 D10 × S3 60 2926 15, 16, 17, 21 (3), 25 (5) 1

8 A5 60 2926 26 (5), 29 (6), 34 (10) 2

9 A5 60 1463 26 (5), 29 (6), 35 (10) 2 (2), 4

10 19 : 3 57 1540 22, 38 (19) 5

11 23 : 7 56 1045 31, 32 (8) 3

12 11 : 5 55 1596 27, 36 (11) 2 (2), 6

13 7 : 3 : 2 42 4180 20, 24, 33 (7) 1

14 D38 38 1540 22, 39 (19) 5

15 S3 × 5 30 2926 23, 28 (3), 35 7

16 15 : 2 30 2926 23, 30, 33 (5) 7

17 D30 30 2926 23, 29 (3), 34 (5) 7

18 A4 × 2 24 7315 26, 31, 33 (4) 3, 4

19 D22 22 1596 27, 39 (11) 6

20 7 : 3 21 4180 32, 38 (7) 3 (2), 13

21 D20 20 8778 29, 28, 30, 37 (5) 4, 7

22 19 19 1540 40 10, 14

23 15 15 2926 36, 38 15, 16, 17

24 D14 14 4180 32, 39 (7) 13

25 D12 12 14630 35, 33, 34, 37 (3) 2, 4, 7

26 A4 12 7315 37, 38 (4) 8 (2), 9, 18

27 11 11 1596 40 12, 19

28 10 10 8778 36, 39 6 (2), 15, 21

29 D10 10 8778 36, 39 (5) 8 (2), 9, 17, 21

30 D10 10 2926 36, 39 (5) 16, 21 (3)

31 23 8 1045 37 (7) 11, 18 (7)

32 7 7 4180 40 11 (2), 20, 24

33 6 6 14630 38, 39 5 (2), 13 (2), 16, 18 (2), 25

34 S3 6 14630 38, 39 (3) 8 (2), 17, 25

35 S3 6 2926 38, 39 (3) 9 (5), 15, 25 (5)

36 5 5 2926 40 12 (6), 23, 28 (3), 29 (3), 30

37 22 4 7315 39 (3) 21 (6), 25 (6), 26, 31

38 3 3 2926 40 10 (10), 20 (10), 23, 26 (10), 33 (5), 34 (5), 35

continued on next page
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continued from previous page
Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

39 2 2 1463 40 14 (20), 19 (12), 24 (20), 28 (6), 29 (30), 30

(10), 33 (10), 34 (30), 35 (6), 37 (15)

40 1 1 1 22 (1540), 27 (1596), 32 (4180), 36 (2926), 38

(2926), 39 (1463)

Table 5: Subgroup lattice of J1

Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

1 S5 × 2 240 1 2, 3, 4, 6 (5), 7 (6), 8 (10)

2 S5 120 1 5, 9 (5), 12 (6), 16 (10) 1

3 S5 120 1 5, 10 (5), 13 (6), 17 (10) 1

4 A5 × 2 120 1 5, 11 (5), 14 (6), 18 (10) 1

5 A5 60 1 19 (5), 24 (6), 34 (10) 2, 3, 4

6 S4 × 2 48 5 10, 9, 11, 15 (3), 20 (4) 1

7 D10 · 2 × 2 40 6 13, 14, 12, 27 (5) 1

8 S3 × 22 24 10 21, 20, 22, 16, 17, 23, 18, 28 (3) 1

9 S4 24 5 19, 29 (3), 35 (4) 2, 6

10 S4 24 5 19, 30 (3), 36 (4) 3, 6

11 A4 × 2 24 5 19, 31, 37 (4) 4, 6

12 D10 · 2 20 6 24, 42 (5) 2, 7

13 D10 · 2 20 6 24, 43 (5) 3, 7

14 D20 20 6 25, 26, 24, 44 (5) 4, 7

15 D8 × 2 16 15 29, 32, 28, 31, 33, 27, 30 6

16 D12 12 10 34, 35, 38, 45 (3) 2, 8

17 D12 12 10 39, 36, 34, 46 (3) 3, 8

18 D12 12 10 40, 37, 34, 44 (3) 4, 8

19 A4 12 5 47, 51 (4) 5, 9, 10, 11

20 D12 12 10 37, 36, 35, 48 (3) 6 (2), 8

21 D12 12 10 40, 39, 35, 49 (3) 8

22 D12 12 10 36, 40, 38, 49 (3) 8

23 2 × 6 12 10 37, 39, 38, 48 8

24 D10 10 6 41, 52 (5) 5, 12, 13, 14

25 D10 10 6 41, 53 (5) 14

26 10 10 6 41, 54 14

27 2 × 4 8 15 42, 43, 44 7 (2), 15

28 23 8 15 45, 44, 48 (2), 49 (2), 46 8 (2), 15

29 D8 8 15 45, 42, 47 9, 15

30 D8 8 15 46, 43, 47 10, 15

31 23 8 5 44 (3), 50 (3), 47 11, 15 (3)

32 D8 8 15 46, 42, 50 15

33 D8 8 15 45, 50, 43 15

34 S3 6 10 51, 52 (3) 5, 16, 17, 18

35 S3 6 10 51, 55 (3) 9 (2), 16, 20, 21

36 S3 6 10 51, 56 (3) 10 (2), 17, 20, 22

37 6 6 10 51, 54 11 (2), 18, 20, 23

38 6 6 10 51, 55 16, 22, 23

39 6 6 10 51, 56 17, 21, 23

40 S3 6 10 51, 53 (3) 18, 21, 22

41 5 5 6 57 24, 25, 26

42 4 4 15 52 12 (2), 27, 29, 32

43 4 4 15 52 13 (2), 27, 30, 33

44 22 4 15 52, 53, 54 14 (2), 18 (2), 27, 28, 31

45 22 4 15 55 (2), 52 16 (2), 28, 29, 33

46 22 4 15 52, 56 (2) 17 (2), 28, 30, 32

47 22 4 5 52 (3) 19, 29 (3), 30 (3), 31

48 22 4 10 55, 54, 56 20 (3), 23, 28 (3)

49 22 4 30 55, 53, 56 21, 22, 28

50 22 4 15 53 (2), 52 31, 32, 33

51 3 3 10 57 19 (2), 34, 35, 36, 37, 38, 39, 40

52 2 2 15 57 24 (2), 34 (2), 42, 43, 44, 45, 46, 47, 50

53 2 2 15 57 25 (2), 40 (2), 44, 49 (2), 50 (2)

54 2 2 1 57 26 (6), 37 (10), 44 (15), 48 (10)

55 2 2 10 57 35 (3), 38, 45 (3), 48, 49 (3)

56 2 2 10 57 36 (3), 39, 46 (3), 48, 49 (3)

57 1 1 1 41 (6), 51 (10), 52 (15), 53 (15), 54, 55 (10),

56 (10)

Table 6: Subgroup lattice of 2× S5
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Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

1 L2(11) 660 1 2 (11), 3 (11), 4 (12), 5 (55)

2 A5 60 11 6 (5), 8 (6), 9 (10) 1

3 A5 60 11 6 (5), 8 (6), 10 (10) 1

4 11 : 5 55 12 7, 12 (11) 1

5 D12 12 55 11, 9, 10, 13 (3) 1

6 A4 12 55 13, 14 (4) 2, 3

7 11 11 12 16 4

8 D10 10 66 12, 15 (5) 2, 3

9 S3 6 55 14, 15 (3) 2 (2), 5

10 S3 6 55 14, 15 (3) 3 (2), 5

11 6 6 55 14, 15 5

12 5 5 66 16 4 (2), 8

13 22 4 55 15 (3) 5 (3), 6

14 3 3 55 16 6 (4), 9, 10, 11

15 2 2 55 16 8 (6), 9 (3), 10 (3), 11, 13 (3)

16 1 1 1 7 (12), 12 (66), 14 (55), 15 (55)

Table 7: Subgroup lattice of L2(11)

Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

1 A5 × S3 360 1 2, 3 (3), 4 (5), 5 (6), 7 (10)

2 A5 × 3 180 1 6, 8 (5), 9 (6), 15 (10) 1

3 A5 × 2 120 3 6, 12 (5), 14 (6), 19 (10) 1

4 A4 × S3 72 5 8, 13, 12 (3), 16 (4) 1

5 D10 × S3 60 6 9, 10, 11, 14 (3), 20 (5) 1

6 A5 60 1 21 (5), 25 (6), 30 (10) 2, 3 (3)

7 S3 × S3 36 10 17, 16, 15, 19 (3), 20 (3) 1

8 A4 × 3 36 5 22 (2), 21, 23, 28 (4) 2, 4

9 15 : 2 30 6 18, 25, 31 (5) 2, 5

10 S3 × 5 30 6 18, 26 (3), 32 5

11 D30 30 6 18, 27 (3), 33 (5) 5

12 A4 × 2 24 15 21, 29, 34 (4) 3, 4

13 S3 × 22 24 5 20 (3), 24 (3), 23, 29 (3) 4

14 D20 20 18 27, 25, 26, 38 (5) 3, 5

15 S3 × 3 18 10 28, 30, 31 (3) 2, 7

16 S3 × 3 18 10 28, 32, 34 (3) 4 (2), 7

17 3 : S3 18 10 28, 35 (3), 36 (6), 33 (3) 7

18 15 15 6 37, 41 9, 10, 11

19 D12 12 30 30, 35, 34, 38 (3) 3, 7

20 D12 12 15 33, 31, 32, 38 (3) 5 (2), 7 (2), 13

21 A4 12 5 39, 42 (4) 6, 8, 12 (3)

22 A4 12 10 39, 43 (4) 8

23 2 × 6 12 5 31 (3), 39 8, 13

24 D12 12 15 33 (2), 31, 40 (3) 13

25 D10 10 6 37, 44 (5) 6, 9, 14 (3)

26 10 10 18 37, 45 10, 14

27 D10 10 18 37, 46 (5) 11, 14

28 32 9 10 41, 43 (2), 42 8 (2), 15, 16, 17

29 23 8 15 38 (3), 40 (3), 39 12, 13

30 S3 6 10 42, 44 (3) 6, 15, 19 (3)

31 6 6 15 41, 44 9 (2), 15 (2), 20, 23, 24

32 S3 6 1 41, 45 (3) 10 (6), 16 (10), 20 (15)

33 S3 6 15 41, 46 (3) 11 (2), 17 (2), 20, 24 (2)

34 6 6 30 42, 45 12 (2), 16, 19

35 S3 6 30 42, 46 (3) 17, 19

36 S3 6 60 43, 46 (3) 17

37 5 5 6 47 18, 25, 26 (3), 27 (3)

38 22 4 45 45, 46, 44 14 (2), 19 (2), 20, 29

39 22 4 5 44 (3) 21, 22 (2), 23, 29 (3)

40 22 4 45 46 (2), 44 24, 29

41 3 3 1 47 18 (6), 28 (10), 31 (15), 32, 33 (15)

42 3 3 10 47 21 (2), 28, 30, 34 (3), 35 (3)

43 3 3 20 47 22 (2), 28, 36 (3)

44 2 2 15 47 25 (2), 30 (2), 31, 38 (3), 39, 40 (3)

45 2 2 3 47 26 (6), 32, 34 (10), 38 (15)

46 2 2 45 47 27 (2), 33, 35 (2), 36 (4), 38, 40 (2)

47 1 1 1 37 (6), 41, 42 (10), 43 (20), 44 (15), 45 (3),

46 (45)

Table 8: Subgroup lattice of A5 × S3
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Nr. Structure Order Length Maximal Subgroups Minimal Overgroups

1 O′N 460815505920 1 2(122760), 3(122760),

6(2 624 832), 7(2857239),

11(17778376), 12(17778376),

15(30968784), 16(30968784),

21(42858585), 23(58 183 776),

24(58 183 776),

43(182863296),

44(182863296)

6 J1 175560 2 624 832 119(266), 237(1045),

277(1463), 285(1540),

286(1596), 366(2926),

397(4180)

1

23 M11 7920 58 183 776 102(11), 119(12), 252(55),

278(66), 382(165)

1

30 4 · 24 : A5 3840 120004038 97(5), 133(6), 156(10),

208(16), 209(16), 210(16),

211(16)

8

119 L2(11) 660 698205312 368(11), 370(11), 375(12),

537(55)

6, 23, 24

166 A5 × S3 360 1280043072 232, 282(3), 335(5), 366(6),

407(10)

48, 86

212 2 × S5 240 960032304 278(2), 277, 393(5), 402(6),

478(10)

143

277 2 × A5 120 960032304 370, 482(5), 494(6), 537(10) 6(4), 210, 212, 213

278 S5 120 1 920 064 608 370, 472(5), 491(6), 537(10) 23(2), 212

282 2 × A5 120 1 920 064 608 371, 485(5), 494(6), 537(10) 104, 165(2), 166(2), 209

366 S3 × D10 60 7680258432 464, 465, 463, 494(3), 537(5) 6, 165, 166, 230

370 A5 60 960032304 545(5), 550(6), 573(10) 119(8), 277, 278(2), 279(2)

382 2 · S4 48 4800161520 477, 514(3), 537(4) 23(2), 229, 296

407 S3 × S3 36 6400215360 497(2), 502, 537(6) 166(2), 253(2), 287(2), 330

478 3 : 23 24 3200107680 537(3), 539(3), 542, 568(3) 110(3), 212(3), 335, 337,

386(3)

527 Q8 : 2 16 3600121140 567, 562, 564(2), 565(2), 568 393(4), 394(4), 447(2), 449(2),

455

537 D12 12 9600323040 573, 572, 571, 578(3) 119(4), 277, 278(2), 279(2),

282(2), 366(4), 382(2), 383(2),

387(2), 406(4), 407(4), 418,

478, 479, 481

564 D8 8 3600121140 578(2), 575 330(8), 472(8), 504, 505(2),

514(2), 526, 527(2), 530(2),

531

567 23 8 42858585 578(7) 374(64), 482(112), 525(7),

527(84)

568 23 8 1200040380 578(3), 577(4) 478(8), 479(8), 485(4), 521,

522(6), 523(6), 527(3), 531(3)

573 S3 6 213340512 579, 580(3) 370(45), 371(10), 465(36),

480(10), 496(20), 497(20),

500, 537(45)

578 22 4 300010095 580(3) 494(96), 537(96), 545(16),

561(3), 562(12), 563(3),

564(24), 565(24), 567,

568(12)

580 2 2 2857239 581 404(26880), 487(16128),

533(1920), 534(960),

535(1920), 536(3840),

549(2016), 550(10080),

551(1120), 571(10080),

572(1120), 573(224),

575(315), 576, 577(560),

578(315)

Table 9: Subgroups occuring in LIvSh extracted from ΛO′N
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Orbit 1 2 3 4 5 6 7

Size 1 1463 1463 1463 5852 12540 12540

Name {p} O2

1463 O1

1463 O3

1463

Orbit 8 9 10 11 12 13 14

Size 21945 21945 29260 29260 29260 29260 29260

Name O2

21945 O1

21945

Orbit 15 16 17 18 19 20 21

Size 58520 58520 87780 87780 87780 87780 87780

Orbit 22 23 24 25 26 27 28

Size 87780 87780 87780 87780 87780 87780 87780

Orbit 29 30 31 32 33 34 35

Size 175560 175560 175560 175560 175560 175560 175560

Table 10: Orbit sizes and names of J1 on 2 624 832 points (as referred to in the

text)

Orbits 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 1463 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 40 0 0 12 0 0 0 90 60 0 60 0 120 0 120 120

3 0 0 0 13 0 0 60 15 75 20 0 20 0 0 0 0 60

4 0 0 13 0 0 0 60 15 15 20 0 20 0 0 0 0 0

5 0 3 0 0 0 30 0 30 0 30 5 0 15 0 0 60 75

6 0 0 0 0 14 42 0 7 28 0 21 14 28 0 0 42 77

7 0 0 7 7 0 0 28 28 21 14 14 28 0 21 14 28 7

8 0 0 1 1 8 4 16 26 19 28 16 20 20 32 8 56 64

9 0 6 5 1 0 16 12 19 16 12 12 28 8 12 40 24 56

10 0 3 1 1 6 0 6 21 9 4 6 20 12 33 30 30 57

11 0 0 0 0 1 9 6 12 9 6 16 15 30 9 48 24 60

12 0 3 1 1 0 6 12 15 21 20 15 22 12 48 18 36 66

13 0 0 0 0 3 12 0 15 6 12 30 12 12 1 20 26 48

14 0 6 0 0 0 0 9 24 9 33 9 48 1 66 20 32 60

15 0 0 0 0 0 0 3 3 15 15 24 9 10 10 37 41 54

16 0 3 0 0 6 9 6 21 9 15 12 18 13 16 41 40 45

17 0 2 1 0 5 11 1 16 14 19 20 22 16 20 36 30 50

18 0 1 0 0 3 7 5 6 10 14 14 16 16 10 34 36 44

19 0 0 0 3 8 13 2 9 1 20 6 6 14 9 26 44 36

20 0 1 2 2 0 4 6 16 14 13 14 14 19 14 34 34 42

21 0 0 1 2 2 8 4 11 11 17 23 14 18 20 36 28 52

22 0 4 1 1 6 4 8 13 12 20 16 17 19 10 38 30 49

23 0 1 2 2 2 6 8 16 20 19 16 11 19 26 36 34 46

24 0 0 1 2 2 4 16 13 9 10 20 17 18 7 30 30 33

25 0 0 1 1 2 12 9 11 14 10 27 22 24 4 26 24 56

26 0 0 1 0 1 5 12 8 6 12 16 9 22 2 32 24 30

27 0 0 3 1 2 4 7 5 18 21 22 10 9 6 32 30 62

28 0 1 0 0 5 9 7 6 16 16 16 17 16 22 36 36 56

29 0 0 1 1 5 4 8 14 7 22 13 16 17 17 27 26 50

30 0 1 0 0 5 10 6 11 13 18 12 21 13 25 31 34 52

31 0 0 0 0 1 9 8 14 11 13 16 18 21 19 31 32 38

32 0 1 1 1 4 9 3 10 13 17 13 11 17 15 36 32 53

33 0 0 1 1 1 4 14 15 14 12 23 20 14 16 45 38 46

34 0 1 1 1 3 0 6 14 14 17 18 16 15 16 37 34 54

35 0 0 0 0 5 11 2 8 12 19 13 16 17 18 27 32 54

Table 11: The distance distribution map of GIvSh (1/2)
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Orbits 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 60 0 60 0 240 60 0 0 0 0 60 0 120 0 120 0 120 0

3 0 0 120 60 60 120 60 60 60 180 0 120 0 0 120 120 120 0

4 0 180 120 120 60 120 120 60 0 60 0 120 0 0 120 120 120 0

5 45 120 0 30 90 30 30 30 15 30 75 150 150 30 120 30 90 150

6 49 91 28 56 28 42 28 84 35 28 63 56 140 126 126 56 0 154

7 35 14 42 28 56 56 112 63 84 49 49 112 84 112 42 196 84 28

8 24 36 64 44 52 64 52 44 32 20 24 112 88 112 80 120 112 64

9 40 4 56 44 48 80 36 56 24 72 64 56 104 88 104 112 112 96

10 42 60 39 51 60 57 30 30 36 63 48 132 108 78 102 72 102 114

11 42 18 42 69 48 48 60 81 48 66 48 78 72 96 78 138 108 78

12 48 18 42 42 51 33 51 66 27 30 51 96 126 108 66 120 96 96

13 48 42 57 54 57 57 54 72 66 27 48 102 78 126 102 84 90 102

14 30 27 42 60 30 78 21 12 6 18 66 102 150 114 90 96 96 108

15 51 39 51 54 57 54 45 39 48 48 54 81 93 93 108 135 111 81

16 54 66 51 42 45 51 45 36 36 45 54 78 102 96 96 114 102 96

17 44 36 42 52 49 46 33 56 30 62 56 100 104 76 106 92 108 108

18 52 60 46 37 56 35 49 58 50 50 46 94 112 112 94 90 100 106

19 60 86 51 60 41 39 56 46 52 49 48 104 98 78 118 80 88 112

20 46 51 60 44 46 54 47 57 58 40 35 92 84 112 108 100 118 82

21 37 60 44 54 49 60 54 50 43 48 49 90 96 90 106 96 92 98

22 56 41 46 49 32 48 50 45 34 64 50 116 88 78 88 102 112 116

23 35 39 54 60 48 58 48 33 56 48 44 92 88 104 104 102 92 94

24 49 56 47 54 50 48 58 54 66 59 54 90 96 94 82 108 96 90

25 58 46 57 50 45 33 54 64 43 58 34 102 88 110 84 102 104 88

26 50 52 58 43 34 56 66 43 70 53 56 114 78 118 104 94 82 112

27 50 49 40 48 64 48 59 58 53 52 50 94 100 86 108 92 98 82

28 46 48 35 49 50 44 54 34 56 50 50 94 116 88 98 92 82 118

29 47 52 46 45 58 46 45 51 57 47 47 107 97 95 103 83 101 108

30 56 49 42 48 44 44 48 44 39 50 58 97 98 98 98 97 95 106

31 56 39 56 45 39 52 47 55 59 43 44 95 98 111 92 107 93 101

32 47 59 54 53 44 52 41 42 52 54 49 103 98 92 96 85 99 107

33 45 40 50 48 51 51 54 51 47 46 46 83 97 107 85 119 107 72

34 50 44 59 46 56 46 48 52 41 49 41 101 95 93 99 107 103 86

35 53 56 41 49 58 47 45 44 56 41 59 108 106 101 107 72 86 100

Table 12: The distance distribution map of GIvSh (2/2)
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[23] W. Imrich, S. Klavžar and A. Vesel, A characterization of halved cubes,

Ars Combin. 48 (1998), 27–32.

[24] A. A. Ivanov and S. V. Shpektorov, A geometry for the O’Nan-Sims group,

connected with the Petersen graph, Uspekhi Mat. Nauk 41 (1986), no.

3(249), 183–184.

[25] A. A. Ivanov, S. V. Tsaranov and S. V. Shpektorov, Maximal subgroups of

the O’Nan-Sims sporadic simple group and its automorphism group, Dokl.

Akad. Nauk SSSR 291 (1986), no. 4, 777–780.

[26] D. Leemans, On computing the subgroup lattice of O′N , Unpublished

manuscript (2008), 1–23.

http://www.math.auckland.ac.nz/∼dleemans/abstracts/onlat.html

[27] , Residually weakly primitive and locally two-transitive geometries for

sporadic groups, Académie Royale de Belgique: Classe des Sciences, vol.

XI, 2058, 2008.

[28] D. Livingstone, On a permutation representation of the Janko group, J.

Algebra 6 (1967), 43–55.

[29] M. E. O’Nan, Some evidence for the existence of a new simple group,

Proc. London Math. Soc. (3) 32 (1976), no. 3, 421–479.

[30] M. Perkel, A characterization of J1 in terms of its geometry, Geom. Dedi-

cata 9 (1980), no. 3, 291–298.

[31] S. V. Shpectorov, On Geometries with diagram Pn, Ph.D. thesis, University

of Moscow (1989).

[32] L. H. Soicher, Presentations of some finite groups with applications to the

O’Nan simple group, J. Algebra 108 (1987), no. 2, 310–316.

URL http://dx.doi.org/10.1016/0021-8693(87)90104-9
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