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Abstract

We investigate blocking sets of projective spaces that are contained in
cones over quadrics of rank two. As an application we obtain new results
on partial ovoids, partial spreads, and blocking sets of polar spaces. One of
the results is that a partial ovoid of H(3, q2) with more than q3−q+1 points
is contained in an ovoid. We also give a new proof of the result that a partial
spread of Q(4, q) with more than q2 − q + 1 lines is contained in a spread;
this is the first common proof for even and odd q. Finally, we improve the
lower bound on the size of a smallest blocking set of the symplectic polar
space W (3, q), q odd.
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1 Introduction

Let H(3, q2) be a hermitian surface of PG(3, q2). The lines it contains are called
its generators. An ovoid of H(3, q2) is a set of points of H(3, q2) meeting every
generator exactly once, and a partial ovoid is a set of points meeting every
generator in at most one point. It is known thatH(3, q2) has ovoids, for example
a hermitian curve H(2, q2) that is obtained by intersecting H(3, q2) with a non-
tangent hyperplane. A blocking set ofH(3, q2) is a set of points that meets every
generator in at least one point. The same definition is used for all other polar
spaces of rank two, that is polar spaces that contain lines but no planes.

The origin of the paper was the problem of finding the largest partial ovoid of
H(3, q2) that is not an ovoid. This problem we learned from Gary Ebert [4]. It
is a simple calculation to see that an ovoid of H(3, q2) has exactly q3 + 1 points,
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and it is not difficult to construct a maximal partial ovoid of H(3, q2) of size
q3 + 1− q; we introduce this example in its dual form inside Q−(5, q) in Section
3. As a first result we show that this is best possible.

Theorem 1.1. A partial ovoid of H(3, q2) either is contained in an ovoid or has
at most q3 + 1− q points.

For the proof we work in the dual setting, that is in the elliptic quadric
Q−(5, q). Here the result can be formulated as follows. Recall that a partial
spread of a polar space is a set of mutually skew generators of the polar space;
it is called a spread if its generators partition the point set of the polar space.

Theorem 1.2. Suppose that S is a maximal partial spread of Q−(5, q). Then
either S is a spread or |S| ≤ q3 − q + 1.

We obtain this result by a careful analysis of blocking sets of PG(4, q) that
live inside a degenerate quadric, that is sets B of points of PG(4, q) that live
inside a degenerate quadric and have the property that they meet every solid of
PG(4, q). Counting arguments show that such a blocking set must have many
collinear points unless it is quite large. This will be done in Section 2.

Our method also shows that a partial spread of Q(4, q) either is contained
in a spread (with q2 + 1 lines) or has at most q2 − q + 1 lines. For odd q this
was proved many years ago by Tallini [7]. However, when q is even, it was
only proved very recently by Brown, De Beule and Storme [3] by using the
representation of Q(4, q) as a T2(O). Our proof is the first one that works for q
even and odd.

The method we develop, together with an algebraic trick that generalizes a
result of Bichara and Korchmáros [2], will enable us to also prove the following
theorem.

Theorem 1.3. Let q be odd. Then a blocking set of W (3, q) contains at least

q2 − q − 3

2
+

√
8q2 + 20q + 25

2

points.

The bound in Theorem 1.3 is of size q2 + (
√

2 − 1)q, which is a significant
improvement in comparison with the bound of size q2 + 1

3q proven in [5]. We
recall that W (3, q), q even, has an ovoid, which is a blocking set of size q2 + 1.
The smallest known blocking set of W (3, q), when q is odd, has size q2 + q − 1

and was found by Govaerts in [6].
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2 Blocking sets contained in quadrics

If one studies partial spreads or covers of quadrics, then the set of points of the
quadric that are not covered (for spreads) respectively the set of points of the
quadric that are covered more than once (for covers) have similar properties.
It is extremely useful to study the intersection of these sets with tangent hyper-
planes. We shall do this in the case Q−(5, q). The crucial observation is in the
following lemma.

Lemma 2.1. Consider in PG(4, q) a quadric that is a cone with vertex a point P
over a non-degenerate elliptic quadric Q−(3, q). Suppose that B is a set of at most
2q points contained in the quadric. If every solid of PG(4, q) meets B, then one of
the following occurs:

(a) Some line of the quadric is contained in B.

(b) |B| > 9
5q + 1, P ∈ B, and there exists a unique line l of the quadric that

meets B in at least 1 + 1
3 |B| points. This line has at most |B| − 1− q points

in B.

Proof. Denote by li, i = 1, . . . , q2 + 1, the lines of the quadric on P . If P is not
in B, then we use that each line li lies on a solid meeting the quadric only in
li to deduce that |B| ≥ q2 + 1; but |B| ≤ 2q, so P ∈ B. Put b := |B| − 1 and
bi := |li ∩B| − 1. Let S be the set consisting of the q4 solids that do not contain
P , and put bS := |B ∩ S| for S ∈ S. Since all solids S meet B, then bS ≥ 1 for
all S ∈ S.

If one of the lines li is contained in B, there is nothing to show. We may thus
assume that this is not the case. Consider different lines li and lj and choose
points Ri ∈ li and Rj ∈ lj such that Ri, Rj /∈ B. Then there are q2 solids in S
containing the line RiRj , and every point of B not lying on li ∪ lj appears in
exactly q of these. Thus, if we sum up bS for the q2 solids S of S on the line
RiRj , then we obtain (b − bi − bj)q. As bS ≥ 1 for all S ∈ S, it follows that
b− bi − bj ≥ q, that is

bi + bj ≤ b− q for i 6= j. (1)

We use for integers x ≥ 1 the inequality

1 ≤ x− 5

6

(
x

2

)
+

1

2

(
x

3

)
(2)

to obtain

q4 = |S| ≤
∑

S∈S

(
bS −

5

6

(
bS
2

)
+

1

2

(
bS
3

))
. (3)
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For the terms on the right hand side, standard counting arguments give
∑

S∈S
bS =

∑

i

biq
3 = bq3 ,

∑

S∈S

(
bS
2

)
=

∑

i<j

bibjq
2 =

1

2
q2b2 − 1

2
q2
∑

i

b2i , and

∑

S∈S

(
bS
3

)
=

∑

i<j<k

bibjbkq =
1

6
b3q − 1

2
bq
∑

i

b2i +
1

3
q
∑

i

b3i .

Putting this together and dividing by q results in

q3 ≤ bq2 − 5

12
b2q +

1

12
b3 +

1

12

∑

i

b2i (5q − 3b+ 2bi). (4)

CASE 1: bi ≤ 1
2 (b− q) for all i. Then

∑

i

b2i (5q − 3b+ 2bi) ≤
∑

i

bi
1

2
(b− q)(4q − 2b) = b(b− q)(2q − b) .

Combining this with (4) gives 0 ≤ 1
6q(2q − b)(b − 3q). As b = |B| − 1 ≤ 2q − 1,

this is a contradiction.

CASE 2: max{bi} > 1
2 (b − q). We may assume that b1 = max{bi}. From (1)

we obtain bi ≤ b− q − b1 for i ≥ 2. As
∑
bi = b, it follows that

∑

i

b2i (5q − 3b+ 2bi) ≤ b21(5q − 3b+ 2b1) +
∑

i≥2

bi(b− q − b1)(3q − b− 2b1)

= b21(5q − 3b+ 2b1) + (b− b1)(b− q − b1)(3q − b− 2b1) .

Combining this with (4) multiplied by 12, we find that 0 ≤ f(b1), where f ∈ Z[x]

is defined by

f := q(9bq − 12q2 − b2 + 6x2 − 5bx+ 3xq) . (5)

As f is a polynomial of degree two in x and since

f

(
b

3

)
= f

(
b− q

2

)
= q(2q − b)(b− 3q)/6 < 0

it follows that f(x) < 0 for x between 1
2 (b− q) and 1

3b; note that b < 2q implies
that 1

3 b >
1
2 (b− q). As b1 > 1

2 (b− q) and f(b1) ≥ 0, it follows that b1 > b
3 . Thus

|l1 ∩B| > 1 + b
3 and hence |l1 ∩B| ≥ 1 + 1

3 |B| (since |B| = b+ 1). From (1) we
also have b1 < b− q, that is |l1 ∩B| < |B| − q and hence |l1 ∩B| ≤ |B| − q − 1.
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Using again (1) we see that bi ≤ b − q − b1 for i ≥ 2, which implies that
|li ∩B| < 1 + 1

3 |B| for i ≥ 2. Hence l1 is the only line on P meeting B in at least
1 + 1

3 |B| points. Finally, using b
3 < b1 < b− q (see (1)) we find that

0 ≤ f(b1) < f(b− q) = q(5b− 9q) .

Hence b > 9
5q that is |B| > 1 + 9

5q.

3 Partial spreads of Q−(5, q)

Suppose that S is a partial spread of Q−(5, q), that is a set of mutually disjoint
lines of Q−(5, q). As Q−(5, q) has (q + 1)(q3 + 1) points, then |S| = q3 + 1 − δ
for some δ ≥ 0. If δ = 0, then S is a spread.

We use thatQ−(5, q) andH(3, q2) are dual (Klein-Correspondence). A spread
of Q−(5, q) translates under this duality to an ovoid of H(3, q2), that is to a set
B of points that meets every line ofH(3, q2) in a unique point. The most natural
candidate for an ovoid in H(3, q2) is a hermitian curve H(2, q2). However there
are many others; for example every chord in such a H(2, q2) can be replaced
by its perp, and this can be done several times. A hermitian spread of Q−(5, q)

is a spread dual to an ovoid H(2, q2) of H(3, q2). As chords of H(2, q2) are
Baer-sublines and thus translate to reguli of Q−(5, q) (a property of the Klein-
Correspondence), we see that a hermitian spread S has the property that any
two lines of S lie in a unique regulus R with R ⊆ S.

Example. Let S be a hermitian spread of Q−(5, q), let l be a line of S and let
R1 and R2 be two reguli on l with Ri ⊆ S. Let Rop

i be the regulus opposite to
Ri. Replace the 2q + 1 lines of S in R1 ∪ R2 by q + 1 lines of Rop

1 ∪ Rop
2 such

that every point of l is covered exactly once. This gives a partial spread S ′ with
|S′| = q3 + 1− q. If one chooses at least one line of Rop

1 and one from Rop
2 , then

the partial spread is maximal.

This example and generalizations occur also in [1]. The following theorem
shows that this example is best possible.

Theorem 3.1. Suppose that S is a maximal partial spread of Q−(5, q). Then
either S is a spread or |S| ≤ q3 − q + 1.

Proof. Put δ := q3+1−|S|. We assume that 0 < δ < q and derive a contradiction.
Let H be the set consisting of the δ(q+1) points ofQ−(5, q) that are not covered
by S. The points of H will be called holes. As S is maximal, then H does not
contain a line.
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EmbedQ−(5, q) in the natural way in PG(5, q). Every hyperplane of PG(5, q)

meets Q−(5, q) in 1 modulo q points. As |S| = q3 + 1 − δ, it follows that every
hyperplane meets H in δ modulo q points. As δ < q, this implies that every
hyperplane contains at least δ holes.

Consider a hole P . The tangent hyperplane P⊥ on P meets Q−(5, q) in a
cone with vertex P over a Q−(3, q). Every line of S meets P⊥ in a unique point.
As P⊥ contains q3 + q+ 1 points of the quadric, then P⊥ contains q+ δ holes. If
S is a solid of P⊥, then each of the q hyperplanes on S other than P⊥ contains
at least δ holes. As the number of holes is (q + 1)δ and as P⊥ contains more
than δ holes, it follows that S must contain a hole. Hence P⊥ ∩H meets every
solid of P⊥. Lemma 2.1 shows that there exists a unique line l of the quadric
Q−(5, q) such that P ∈ l and |l ∩ H | ≥ 1 + 1

3 (q + δ). The lemma also gives
|l∩H | ≤ δ−1. As this holds for every hole P , we find lines l1, . . . , ls in Q−(5, q)

such that 1
3 (q + δ) + 1 ≤ |li ∩ H | ≤ δ − 1 for all li, and every hole is contained

in exactly one of the lines li.

A point of the quadric that is not a hole lies on a unique line of the spread.
This implies that P⊥ contains exactly δ holes. Therefore, P can be contained in
at most one of the lines li. This shows that the lines li are mutually skew. We
have verified the hypotheses of the following Proposition 3.2. As 0 < δ < q, this
proposition gives a contradiction.

Proposition 3.2. Consider the elliptic quadric Q−(5, q) and its ambient space
PG(5, q). Suppose that H is a set of δ(q + 1) points of Q−(5, q) with the following
properties.

(a) Every hyperplane of PG(5, q) meets H in δ modulo q points.

(b) There exist s mutually skew lines l1, . . . , ls of Q−(5, q) such that H is con-
tained in the union of the li and such that 1

3 (q + δ) + 1 ≤ |li ∩ H | ≤ δ − 1

for i = 1, . . . , s.

Then δ = 0 or δ ≥ q.

Proof. Assume on the contrary that 1 ≤ δ ≤ q − 1. We shall derive a contradic-
tion. The points of H will be called holes. As δ < q, hypothesis (a) implies that
every hyperplane has at least δ holes.

PART 1. Suppose that a hyperplane X has rq + δ holes. If S is a solid of
X and u its number of holes, then the other q hyperplanes on S have each at
least δ− u further holes. Hence rq + δ plus q(δ − u) is at most the total number
δ(q + 1) of holes. This gives u ≥ r. Hence every solid of X has at least r holes.

PART 2. As the lines li are mutually skew, any two lines li span a hyperbolic
solid, that is a solid meeting the quadric in a Q+(3, q). The number s of lines li
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is upper bounded by

s ≤ |H |
1
3 (q + δ)

=
3δ(q + 1)

(q + δ)
<

3

2
(q + 1).

Also, as |li ∩H | < δ and |H | = δ(q + 1), then s ≥ q + 2. Finally we remark that
δ ≤ q − 1 and the hypothesis 1 + 1

3 (q + δ) ≤ |li ∩H | ≤ δ − 1 for all i imply that
q ≥ 8.

PART 3. We shall show in this part that every hyperplane that contains two
of the lines li contains at least 1

2 (q+ 1) of the lines li. For this, suppose that X is
a hyperplane that contains exactly c ≥ 2 lines li, say l1, . . . , lc. We may assume
that |l1 ∩H | ≥ |li ∩H | for i = 1, . . . , c.

Consider the hyperbolic solid 〈l1, l2〉, and let R be a point of l1 that is not
a hole. As at least two points of l2 are not holes, we find a non-hole R′ on l2
such that RR′ is a secant line to the quadric. Then the line RR′ has no hole.
Since the line RR′ lies on q2 planes that are contained in X but not in 〈l1, l2〉
and since the number of holes is δ(q + 1) < q2, we find a plane π on RR′ that is
contained in X but not in 〈l1, l2〉 and that has no hole.

Put |X ∩H | = rq+ δ. By Part 1, every solid of X meets H in at least r points.
Considering the q + 1 solids of X on π taking into account that two of these
contain l1 resp. l2, we find that

rq + δ ≥ (q − 1)r + |l1 ∩H |+ |l2 ∩H |.
⇒ r + δ ≥ |l1 ∩H |+ |l2 ∩H |.

Each of the lines li with i > c meets X in a unique point, which might be in H .
This implies that

rq + δ = |X ∩H | ≤
∑

i≤c
|li ∩H |+ s− c ≤ c|l1 ∩H |+ s− c.

Writing rq + δ = q(r + δ)− δq + δ, we find

|l1 ∩H |q + |l2 ∩H |q − δq + δ ≤ c|l1 ∩H |+ s− c.

Assume that c ≤ q
2 . Using |li ∩H | ≥ 1

3 (q + δ) and s < 3
2 (q + 1), it follows that

3

2
q · q + δ

3
< δq − δ + q +

3

2
.

As δ ≤ q − 1, this leads to q < 5. But we have seen in Part 2 that q ≥ 8. This
contradiction shows that c ≥ 1

2 (q + 1).

PART 4. Here we study the case that every solid that contains two of the lines
li contains at least 1

2 (q + 1) of the lines li. Consider a solid S containing u ≥ 2
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of the lines li. Since there are s ≥ q + 2 lines li and since the li are mutually
skew, then not all lines li lie in S. We may assume that l1 is not contained in S.
Then l1 spans a solid with every line li in S. This gives at least u solids on l1
that all contain at least 1

2 (q + 1) of the s lines li. Hence

1 + u · q − 1

2
≤ s < 3

2
(q + 1).

As u ≥ 1
2 (q + 1) and q ≥ 8 (Step 2), this is a contradiction.

PART 5. Now we consider the case that some solid S contains u of the lines li
with 2 ≤ u < 1

2 (q+1). By Part 3, every hyperplane on S contains at least 1
2 (q+1)

lines li and thus at least one line li that is not contained in S. As s < 2(q+ 1), it
is not possible that each of the q+ 1 hyperplanes on S contains two lines li that
do not lie in S. Hence S must contain at least 1

2 (q − 1) lines li. Thus u = b q2c
and similarly every solid with two lines li contains at least u lines li. As each
hyperplane on S contains a line li that is not contained in S; it follows that each
such hyperplane contains at least 1 +u(u− 1) = u2−u+ 1 lines li. Considering
the q+1 hyperplanes on S, we find s ≥ u+(q+1)(u2−2u+1). But u ≥ b q2c ≥ 4

and s < 3
2 (q + 1), a contradiction.

The same technique also works for partial spreads of Q(4, q). As already
mentioned in the introduction, this was shown in [7] when q is odd and [3]
when q is even. The following new proof works for all q.

Theorem 3.3. Suppose that S is a maximal partial spread of Q(4, q). Then either
S is a spread or |S| ≤ q2 − q + 1.

Proof. Put δ := q2+1−|S|. We assume that 0 < δ < q and derive a contradiction.
As in the case of Q−(5, q), the points of the quadric not covered by S form a set
H consisting of δ(q + 1) holes. Also H contains no line and every hyperplane
meets H in δ modulo q points.

For a hole P , the tangent hyperplane P⊥ contains q+δ holes and hence each
plane of P⊥ contains a hole. The structure of P⊥ is a cone with vertex P over
a conic Q(2, q); such a structure can be embedded in a cone with vertex P over
a Q−(3, q) and then Lemma 2.1 can be applied. Thus, as for Q−(5, q) we find
lines l1, . . . , ls of Q(4, q) such that 1 + 1

3 (q + δ) ≤ |li ∩H | ≤ δ − 1 for all li, and
every hole is contained in exactly one of the lines li.

Embedding Q(4, q) now in a Q−(5, q), the proposition can again be applied,
leading to a contradiction as before.
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4 Covers of Q−(5, q) and Q(4, q)

The technique of the previous section can be slightly modified to be applicable
to covers. We shall demonstrate this for Q−(5, q). However, we start more
generally with weighted line sets that cover all points.

Lemma 4.1. Suppose that w is a function from the set L of lines of Q−(5, q) to
Z. For every point P denote by wP + 1 the sum of the values w(l) running over all
lines l on P . Suppose that wP ≥ 0 for all P .

If δ :=
∑

l∈L w(l)− (q3 + 1) ≤ 1 + 4
5q, then there exist (not necessarily distinct)

lines l1, . . . , lδ of Q−(5, q) with the following property: For every point P , the
number wP is equal to the number of lines li that pass through P .

Proof. We have
∑
l∈L w(l) = q3 + 1 + δ and thus

∑

P∈Q−(5,q)

(wP + 1) = (q3 + 1 + δ)(q + 1) ⇒
∑

P∈Q−(5,q)

wP = δ(q + 1).

Hence δ ≥ 0 with equality if and only if wP = 0 for all points P of Q−(5, q).
Thus, the theorem is correct in the case δ = 0. Suppose now that 0 < δ ≤
4
5q + 1. Embed Q−(5, q) in a natural way in PG(5, q). For every subset A of
PG(5, q), denote by w(A) the sum of the wP for P ∈ A ∩ Q−(5, q). Notice that
w(PG(5, q)) = δ(q + 1).

As every hyperplane of PG(5, q) meets Q−(5, q) in 1 modulo q points and
since

∑
w(l) = q3 + 1 + δ, then w(H) is congruent to δ modulo q for every

hyperplane H of PG(5, q). As a matter of fact, when S is a solid with w(S) = 0,
then w(PG(5, q)) = δ(q + 1) implies that w(H) = δ for every hyperplane H on
S. In other words:

(∗) w(H) > δ for a hyperplane H implies w(S) > 0 for all solids S of H .

Put c := min{wP | wP > 0}, and denote by P a point satisfying wP = c.
Then the sum of the w(l) for the lines l of Q−(5, q) not on P is q3 + δ− c. As the
tangent hyperplane P⊥ has (q2 + 1)q + 1 points in Q−(5, q), it follows that

w(P⊥) = (c+ 1)(q + 1) + q3 + δ − c− (q2 + 1)q − 1 = cq + δ.

Put B := {X ∈ P⊥ | wX > 0}. Then w(B) = cq+ δ. As w(X) ≥ c for all X ∈ B,
this implies that |B| ≤ (cq + δ)/c ≤ q + δ. From (∗) we see that all solids of
P⊥ meet B. As δ ≤ 1 + 4

5q, then Lemma 2.1 implies that B contains a line l0.
Define a new function w′ from the lines of Q−(5, q) to Z with w′(l) = w(l) for
l 6= l0, and w′(l0) := w(l0)− 1. As w(P ) ≥ 1 for all P ∈ l0, we see that w′ fulfills
the hypothesis of the lemma. As

∑
w′(l) is one less than

∑
w(l), an inductive

argument completes the proof.
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Corollary 4.2. Suppose that S is a cover ofQ−(5, q). For every point P ofQ−(5, q)

denote by wP + 1 the number of lines of S on P . Suppose that δ := |S| − q3 − 1 ≤
4
5q+1. Then there exist lines l1, . . . , lδ of Q−(5, q) with the following property: For
every point P , the number wP is equal to the number of lines li that pass through
P .

Remark. (1) Consider a hermitian spread S of Q−(5, q), that is, a spread
that translates by the duality to H(3, q2) to a hermitian curve. Then the spread
contains two reguli R1 and R2 that share precisely one line l. Let Ropi be the
regulus opposite to Ri, and put S′ := (S ∪ Rop1 ∪ Rop2 ) \ (R1 ∪ R2). Then S′

is a minimal cover with q3 + 2 lines. This shows that there does not exist a
gap-theorem for covers.

(2) Consider again the spread S of Q−(5, q) and its two reguli sharing the
line l. Remove l from S and add q + 1 lines of Rop1 ∪ Rop2 such that each point
of l is covered exactly once. This gives a cover with q3 + q + 1 lines. If one
uses at least one line of Rop1 and one of Rop2 , the cover is minimal. However, the
multiple covered points can not be written as a sum of lines as in Corollary 4.2.
We conjecture that there is no smaller example with this property.

An analogous result to Lemma 4.1 can be proved for Q(4, q). The proof is
almost identical. We therefore omit the lemma and the proof and give only the
corollary.

Corollary 4.3. Suppose that S is a cover of Q(4, q). For every point P of Q(4, q)

denote by wP +1 the number of lines of S on P . Suppose that |S| = q2 +1+δ with
δ ≤ 4

5q + 1. Then there exist (not necessarily distinct) lines l1, . . . , lδ of Q(4, q)

such that for every point P the number wP is equal to the number of lines li that
pass through P .

5 An algebraic tool

We will need the following algebraic tool in the next section. We remark that
the lemma reduces in the case when w(P ) ∈ {0, 1} for all points P to a result
due to Bichara and Korchmáros [2].

Lemma 5.1. Consider a weight function w from the points of PG(2, q) to Z with∑
P∈PG(2,q) w(P ) = q + 2.

A point P of weight 1 is called an internal nucleus if for each line l through P
we find

∑
Q∈l w(Q) = 2.

If we find three distinct (and necessarily non-collinear) internal nuclei P1, P2

and P3 with w(Q) = 0 for all Q ∈ PiPj\{Pi, Pj}, then q is even.
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Proof. Define P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1). Consider another point
P of weight 6= 0. The hypotheses imply that P is not on any of the lines P1P2,
P2P3 and P3P1. Thus, by Ceva’s theorem the lines PP1, PP2, PP3 intersect the
lines P2P3, P3P1, P1P2 respectively in points (0, λP1 , 1), (1, 0, λP2 ), (λP3 , 1, 0) with
λP1 λ

P
2 λ

P
3 = 1. This implies that

∏

P∈PG(2,q)\{P1,P2,P3}, w(P )6=0

(λP1 λ
P
2 λ

P
3 )w(P ) = 1 . (6)

As Pi is an internal nucleus, then
∏

P∈PG(2,q)\{P1,P2,P3}
(λPi )

w(P )
=
∏

λ∈F∗q

λ

for i = 1, 2, 3. Thus (6) is also equal to
∏

λ∈F∗q

λ3 = −1 .

This shows that q is even.

6 Blocking sets of W (3, q)

In this section we study W (3, q). We represent it as the set of absolute points
and lines with respect to a symplectic polarity in PG(3, q). The absolute lines are
also called symplectic lines. A blocking set of W (3, q) is a set of points of W (3, q)

that meets every symplectic line. Clearly, a blocking set has at least q2 +1 points
with equality iff it is an ovoid, that is, if it meets every symplectic line in a
unique point. If q is odd, then W (3, q) does not have an ovoid, in fact, it is
known that a blocking set of W (3, q), q odd, has at least q2 +1+ 1

3 (q−1) points,
see [5]. We shall improve this result in this section. Note that W (3, q) has a
blocking set with q2 + q points, since the points 6= P in the tangent hyperplane
P⊥ of a point P provide such a blocking set. If one replaces in this blocking set
the q + 1 points on a non-absolute line l of PG(3, q) with P /∈ l ⊆ P⊥ by the q
points 6= P of l⊥, a blocking set of size q2 + q− 1 is obtained. This example first
appeared in [6] and is the smallest known blocking set for W (3, q).

From now on, suppose that B is a blocking set of W (3, q) such that

|B| = q2 + 1 + δ and δ ≤ 4q

5
.

First we use the representation of W (3, q) as the dual of Q(4, q). From Corollary
4.3, we know that for a cover of Q(4, q) with q2 + 1 + δ lines, the multiple
covered points can be represented as the sum of δ lines. Translating this to
W (3, q) proves the following.
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Lemma 6.1. There exist δ (not necessarily distinct) points N1, . . . , Nδ with the
following property. If l is a symplectic line, then |l∩B|− 1 is the number of indices
i with Ni ∈ l.

From now on we also suppose that the blocking set B is minimal, that is, no
proper subset of B is a blocking set of W (3, q). Then the points N1, . . . , Nδ do
not belong to B. Define a function w from the point set to Z such that w(P ) = 1

for P ∈ B, and otherwise

w(P ) := −|{i ∈ {1, . . . , δ} | P = Ni}|.

Lemma 6.1 implies that
∑
P∈l w(P ) = 1 for every symplectic line l. Thus, we

may view the function w as a generalized ovoid of W (3, q). By construction, the
sum of w(P ) for all points P with w(P ) < 0 is −δ. Thus Theorem 1.3 follows
from the following more general statement.

Theorem 6.2. Suppose that w is a function from the point set of W (3, q) to Z.
Suppose that w(P ) ≤ 1 for every point and

∑
P∈l w(P ) = 1 for every symplectic

line of W (3, q). Then

∑

P,w(P )<0

−w(p) ≥ −5

2
− q +

√
25 + 20q + 8q2

2
.

In the rest of this section, we prove Theorem 6.2. This will be done in four
steps. The points P satisfying w(P ) < 0 will be called negative points.

Lemma 6.3. We have
∑
P w(P ) = q2 + 1 where the sum runs over all points P of

W (3, q).

Proof. By hypothesis we have
∑
P∈l w(P ) = 1 for every symplectic line l. Since

there are (q2 + 1)(q + 1) symplectic lines and every point lies on q + 1 of these,
the assertion follows.

Lemma 6.4. If l is a line, then
∑

P∈l
w(P ) +

∑

Q∈l⊥
w(Q) = 2 (7)

Proof. Through a point P in W (3, q) we find q + 1 symplectic lines, which lie in
P⊥. Since the weight of each such line is 1, we have

∑

Q∈P⊥
w(Q) = q + 1− qw(P ) .
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For any line l of PG(3, q), we conclude that
∑

P∈l

∑

Q∈P⊥
w(Q) = (q + 1)2 − q

∑

P∈l
w(P ) .

Since the planes P⊥ with P ∈ l cover PG(3, q) and intersect in l⊥, we also find
(use Lemma 6.3)
∑

P∈l

∑

Q∈P⊥
w(Q) =

∑

Q∈PG(3,q)

w(Q) + q
∑

Q∈l⊥
w(Q) = q2 + 1 + q

∑

Q∈l⊥
w(Q) .

Both equations together reveal the assertion for the line l.

Notation. For every line l (symplectic or not), we call w(l) :=
∑
P∈l w(P ) the

weight of l. The above lemma gives w(l) + w(l⊥) = 2 for every line l. For any
point P , let ak(P ) be the number of lines in the plane P⊥ that have weight k.
By bk(P ) we denote the number of lines through P that have weight k. As the
map l 7→ l⊥ maps the lines l through P bijectively to the lines of the plane P⊥,
the equality w(l) + w(l⊥) = 2 implies that

ak(P ) = b2−k(P )

for every point P and all k ∈ Z.

Lemma 6.5. Suppose the point P0 satisfies w(P0) = 0, and put

δ0 := −
∑

Q∈P⊥
0

:

w(Q)<0

w(Q).

Then
∑
k>2 kak(P ) ≥ q − 3δ0.

Proof. This proof works only in the plane P⊥0 . As w(P0) = 0 and as every
symplectic line (on P0) has weight one, then q + 1 =

∑
P∈P⊥0 w(P ). Thus, the

number of points of weight one in P⊥0 is q+ 1 + δ0. The assertion is that at least
q − 3δ0 of these points lie on a line of P⊥0 having weight at least three. Assume
this is not true, that is, P⊥0 contains at least 4δ0 + 2 points P of weight one such
that every line of P⊥0 on P has weight at most two. For such a point P , the line
PP0 has weight one, and every other line of P⊥0 on P has weight exactly two.
Define

ŵ(P ) =

{
1 for P = P0

w(P ) for P ∈ P⊥0 \{P0}
,
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Then ŵ satisfies the hypothesis of Lemma 5.1 for the plane P⊥0 . Also, P0 is an
internal nucleus. The hypothesis just made says that at least 4δ0 +2 other points
of P⊥0 are internal nuclei, so we have 4δ0 + 3 internal nuclei.

Consider one internal nucleus N1. We shall show next that there exist at
most 2δ0 internal nuclei N 6= N1 with the property that the line N1N contains
a negative point. To see this, consider a line g of P⊥0 on N1 that contains a
negative point, and denote by r the sum of the numbers −w(Q) for pointsQ ∈ g
with w(Q) < 0. Then r ≥ 1. As the weight of g (with respect to the weight
function w) is at most two, then g contains at most r+2 points P with w(P ) = 1,
so apart fromN1 at most r+1 ≤ 2r points P with w(P ) = 1. Hence, the number
of internal nuclei N 6= N1 such that the line NN1 contains a negative point is
at most 2δ0.

Hence, if N1 is an internal nucleus, then we find a second internal nucleus
N2 such that the line N1N2 does not contain negative points. Then N1 and N2

are the only two internal nuclei of N1N2, since the weight of the line N1N2 is
at most two. Hence, at least 4δ0 + 1 internal nuclei lie outside this line. We also
know for i = 1, 2 that at most 2δ0 nuclei N 6= Ni are joined to Ni by a line with
negative points. Hence, we find an internal nucleus N3 that is joined to N1 and
N2 by a line without negative points. Lemma 5.1 gives a contradiction.

Lemma 6.6. Denote by
δ := −

∑

N : w(N)<0

w(N)

the negative sum of weights of all negative points N . Then q2 ≤ (2q + 5)δ + δ2.

Proof. Denote by P0 the set consisting of the points P with w(P ) = 0. For
P ∈ P0, let δ(P ) be the sum of the numbers −w(N) for the negative points N
of P⊥. Consider a negative point N . As each of the q + 1 symplectic lines on
N has weight one, the plane N⊥ contains at least q + 1 points with positive
weight. It follows for every negative point N that the plane N⊥ contains at
most q2 − 1 < q2 points P of P0. A double counting argument thus shows that

∑

P∈P0

δ(P ) < δq2.

For the proof, we may assume that δ ≤ q
2 (otherwise δ satisfies the inequality

of the statement). Note that the definition of δ implies that the number of
negative points is at most δ. Lemma 6.3 implies that the number of points P
with w(P ) = 1 is q2 + 1 + δ. Hence, the number of points P satisfying w(P ) = 0

is at least q3 + q − 2δ ≥ q3. The preceding lemma shows
∑

P∈P0

∑

k>2

kak(P ) ≥
∑

P∈P0

(q − 3δ(P )) ≥ q4 − 3
∑

P∈P0

δ(P ) > q4 − 3δq2.
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Using ak(P ) = b2−k(P ) we get
∑

P∈P0

∑

k<0

(2− k)bk(P ) ≥ q4 − 3δq2.

As a line l with w(l) < 0 contains at least one negative point and hence at most
q points of P0, this implies that

∑

l, w(l)<0

(2− w(l)) ≥ q3 − 3δq.

We remark that the sum is over all symplectic and non-symplectic lines l with
w(l) < 0. Since every line with negative weight contains at least one negative
point, we find ∑

N : w(N)<0

∑

k<0

(2− k)bk(N) ≥ q3 − 3δq.

Then, by the Pigeonhole Principle, we find a negative point N0 satisfying

∑

k<0

(2− k)bk(N0) ≥ −w(N0)

δ
(q3 − 3δq),

or in other words ∑

k>2

kak(N0) ≥ −w(N0)

δ
(q3 − 3δq). (8)

The sum of the weights of all points butN0 of the planeN⊥0 is (1−w(N0))(q+1).
Since the sum of the absolute values of the weights of the negative points in N⊥0
is at most δ, we find that

∑

Q∈N⊥
0

w(Q)>0

1 ≤ (1− w(N0))(q + 1) + δ.

Count incident point-line pairs (P, l) with points P ofN⊥0 \{N0} satisfying w(P ) =

1 and lines l of N⊥0 satisfying w(l) > 2. A point P of N⊥0 \{N0} satisfying
w(P ) = 1 occurs in at most q pairs, since the symplectic line PN0 has weight
one. On the other hand, a line l of N⊥0 with k := w(l) > 2 must occurs in at
least k pairs. Therefore, the double counting gives

∑

k>2

kak(N0) ≤
∑

Q∈N⊥0
w(Q)>0

q ≤ (1− w(N0))(q2 + q) + qδ. (9)

Now we put (8) and (9) together and obtain

−w(N0)

δ
(q3 − 3δq) ≤ (1− w(N0))(q2 + q) + qδ.
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As 2δ ≤ q, then q3 − 3δq ≥ (q2 + q)δ. Since −w(N0) ≥ 1, this implies that

q3 − 3δq ≤ 2(q2 + q)δ + qδ2.

This is equivalent to the inequality in the statement.

Solving the inequality for δ in the previous lemma gives the bound for δ
stated in Theorem 6.2.

References

[1] A. Aguglia, G. L. Ebert and D. Luyckx, On partial ovoids of hermitian
surfaces, Bulletin Belg. Math. Soc. — Simon Stevin, To appear.
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