
Hokkaido Mathematical Journal Vol. 48 (2019) p. 195–206

On the annihilators of formal local cohomology modules
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Abstract. Let a denote an ideal in a commutative Noetherian local ring (R,m) and

M a non-zero finitely generated R-module of dimension d. Let d := dim(M/aM).

In this paper we calculate the annihilator of the top formal local cohomology module

Fd
a(M). In fact, we prove that AnnR(Fd

a(M)) = AnnR(M/UR(a,M)), where

UR(a,M) := ∪{N : N ⩽ M and dim(N/aN) < dim(M/aM)}.

We give a description of UR(a,M) and we will show that

AnnR(F
d
a(M)) = AnnR(M/ ∩pj∈AsshRM∩V(a) Nj),

where 0 =
∩n

j=1 Nj denotes a reduced primary decomposition of the zero submodule

0 in M and Nj is a pj-primary submodule of M , for all j = 1, . . . , n.

Also, we determine the radical of the annihilator of Fd
a(M). We will prove that√

AnnR(Fd
a(M)) = AnnR(M/GR(a,M)),

where GR(a,M) denotes the largest submodule of M such that AsshR(M) ∩ V(a) ⊆
AssR(M/GR(a,M)) and AsshR(M) denotes the set {p ∈ AssM : dimR/p = dimM}.
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1. Introduction

Throughout this paper, R is a commutative Noetherian ring with iden-

tity, a is an ideal of R and M is a non-zero finitely generated R-module.

Recall that the i-th local cohomology module of M with respect to a is

defined as

Hi
a(M) := lim−→

n≥1

ExtiR(R/an,M).

For basic facts about commutative algebra see [7] and [11]; for local coho-

mology refer to [6].
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Let a be an ideal of a commutative Noetherian local ring (R,m) and

M a non-zero finitely generated R-module. For each i ≥ 0; Fi
a(M) :=

lim←−
n

Hi
m(M/anM) is called the i-th formal local cohomology of M with re-

spect to a. The basic properties of formal local cohomology modules are

found in [1], [5], [9], [12] and [14].

In [14] Schenzel investigated the structure of formal local cohomol-

ogy modules and gave the upper and lower vanishing and non-vanishing

to these modules. In particular, he proved that Sup{i ∈ Z : Fi
a(M) ̸= 0} =

dim(M/aM). Thus F
dim(M)
a (M) ̸= 0 if and only if dim(M/aM) = dimM

(cf. [14, 4.5]).

For an R-module M and an ideal a, the cohomological dimension of M

with respect to a is defined as cd(a,M) := max{i ∈ Z : Hi
a(M) ̸= 0}. For

more details see [8]. For any ideal a of R, the radical of a, denoted by
√
a,

is defined to be the set {x ∈ R : xn ∈ a for some n ∈ N}.
A non-zero R-module M is called secondary if its multiplication map

by any element a of R is either surjective or nilpotent. A secondary rep-

resentation for an R-module M is an expression for M as a finite sum of

secondary modules. If such a representation exists, we will say that M is

representable. A prime ideal p of R is said to be an attached prime of M

if p = (N :R M) for some submodule N of M . If M admits a reduced

secondary representation, M = S1 + S2 + · · ·+ Sn, then the set of attached

primes AttR(M) of M is equal to {
√
0 :R Si : i = 1, . . . , n} (see [10]).

Recall that AsshR(M) denotes the set {p ∈ AssM : dimR/p = dimM}.
It is well known that AttR FdimM

a (M) = {p ∈ AsshR(M) : p ⊇ a} (cf. [5,

Theorem 3.1]).

There are many results about annihilators of local cohomology modules.

For example see [2], [3] and [4]. The following theorem is a main result of

[2] about the annihilators of the top local cohomology modules.

Theorem 1.1 ([2, Theorem 2.3]) Let R be a Noetherian ring and a an ideal

of R. Let M be a non-zero finitely generated R-module such that cd(a,M) =

dimM . Then AnnR HdimM
a (M) = AnnR(M/TR(a,M)), where

TR(a,M) := ∪{N : N ⩽ M and cd(a, N) < cd(a,M)}.

Note that, for a local ring (R,m), we have cd(m,M) = dimM (cf. [8]).

Thus
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TR(m,M) := ∪{N : N ⩽ M and dimN < dimM},

which is the largest submodule of M such that dim(TR(m,M)) < dim(M).

Here, by using the above main result, we obtain some results about

annihilators of top formal local cohomology modules. In Section 2, at first

we define a new notation UR(a,M) and we prove the following Theorem

which is a main result of this paper.

Theorem 1.2 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that Fd
a(M) ̸= 0. Then

AnnR Fd
a(M) = AnnR M/UR(a,M),

where UR(a,M) := ∪{N : N ⩽ M and dim(N/aN) < dim(M/aM)}.

In Section 3, we obtain the radical of the annihilator of top formal local

cohomology module FdimM
a (M). For this we define notation GR(a,M) and

we obtain the following main result.

Theorem 1.3 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that Fd
a(M) ̸= 0. Then√

AnnR Fd
a(M) = AnnR M/GR(a,M),

where GR(a,M) denotes the largest submodule of M such that AsshR(M)∩
V(a) ⊆ AssR(M/GR(a,M)).

2. Annihilators of the top formal local cohomology modules

Let a be an ideal of a local ring (R,m) and M a finitely generated

R-module of dimension d such that dim(M/aM) = d. In this section, we

will calculate the annihilator of the formal local cohomology module Fd
a(M).

Note that the assumption dim(M/aM) = d implies that Fd
a(M) ̸= 0 by (cf.

[14, 4.5]).

Definition 2.1 Let a be an ideal of R and M be a non-zero finitely

generated R-module. We denote by UR(a,M) the largest submodule of M

such that dim(UR(a,M)/aUR(a,M)) < dim(M/aM). One can check that

UR(a,M) := ∪{N : N ⩽ M and dim(N/aN) < dim(M/aM)}.
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The following lemma is needed in this section.

Lemma 2.2 Let (R,m) be a local ring and a an ideal of R. Let M be a

finitely generated R-module of finite dimension d such that dim(M/aM) = d.

Then

i) M/UR(a,M) has no non-zero submodule of dimension less than d;

ii) AssR(M/UR(a,M)) = AttR Fd
a(M);

iii) AssR UR(a,M) = AssR M −AttR Fd
a(M);

iv) Fd
a(M) ≃ Fd

a(M/UR(a,M)) ≃ Hd
m(M/U(a,M)).

Proof. Let U := UR(a,M).

i) Suppose that L is a submodule of M such that U ⊆ L ⊆ M and

dim(L/U) < d. We will show that U = L. By [14, Theorem 1.1] and [14,

Theorem 3.11], the short exact sequence

0→ U → L→ L/U → 0

induces an exact sequence

· · · → Fd
a(U)→ Fd

a(L)→ Fd
a(L/U)→ 0.

Since dim(L/U) < d we have Fd
a(L/U) = 0. On the other hand, by

Definition 2.1 dim(U/aU) < d and so Fd
a(U) = 0. Thus the above long exact

sequence implies that Fd
a(L) = 0. Hence dim(L/aL) < d. Since U ⊆ L, it

follows from the maximality of U that U = L.

ii) The short exact sequence

0→ U →M →M/U → 0

induces an exact sequence

· · · → Fd
a(U)→ Fd

a(M)→ Fd
a(M/U)→ 0.

Since dim(U/aU) < d, by definition 2.1 we have Fd
a(U) = 0. So by using the

above long exact sequence we conclude that Fd
a(M) ∼= Fd

a(M/U). Therefore

AttR Fd
a(M) = AttR Fd

a(M/U) ⊆ AssM/U by [5, Theorem 3.1].

Now we show that AssM/U ⊆ AttR Fd
a(M) = AttR Fd

a(M/U). Note

that by (i) dimM/U = d and by [5, Theorem 3.1] AttR Fd
a(M/U) = {p ∈
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AssR M/U : dimR/p = d and p ⊇ a}.
If p ∈ AssM/U then there exists a submodule K of M such that

U ⊊ K ⩽ M and R/p ≃ K/U ⩽ M/U . By (i) dimR/p = d and so it

suffices to show that a ⊆ p. If not, dimR/(a + p) < dimR/p = d. Thus

dim((K/U)/a(K/U)) = dim((R/p)/a(R/p)) = dim(R/(a + p)) < d. Hence

Fd
a(K/U) = 0. But the exact sequence

0→ U → K → K/U → 0

induces an exact sequence

· · · → Fd
a(U)→ Fd

a(K)→ Fd
a(K/U)→ 0.

Since Fd
a(U) = Fd

a(K/U) = 0 by the above long exact sequence we have

Fd
a(K) = 0. Thus dim(K/aK) < d. But U ⊊ K and so from the maximality

of U we get a contradiction. Therefore a ⊆ p and the proof is complete.

iii) Let p ∈ AssR U . Then there exists a submodule L of U such that

R/p ≃ L ≤ U . Thus

dimR/(a+ p) = dim((R/p)/a(R/p)) ≤ dim(U/aU) < dim(M/aM) = d.

Now, if p ∈ AttR Fd
a(M) then a ⊆ p and dimR/p = d. Hence dimR/(a+p) =

d which is a contradiction. Therefore AssR U ⊆ AssR M −AttR Fd
a(M). On

the other hand,

AssR M −AttR Fd
a(M) ⊆ AssR M ⊆ AssR U ∪AssR M/U.

But by (ii) AssR M/U = AttR Fd
a(M). Thus AssR M − AttR Fd

a(M) ⊆
AssR U. Therefore AssR M −AttR Fd

a(M) = AssR U.

iv) Since AttR Fd
a(M) ⊆ V(a), it follows that Ass(M/U) ⊆ V(a) by (ii).

Thus a ⊆ ∩p∈Ass(M/U)p =
√
(0 : (M/U)). This yields that M/U is an a-

torsion R-module. Hence by [5, Lemma 2.1], Fd
a(M/U) ∼= Hd

m(M/U). But

in the proof of (ii) we saw that Fd
a(M/U) ∼= Fd

a(M). Therefore Fd
a(M) ∼=

Hd
m(M/U). □

Now we can prove the following main result.

Theorem 2.3 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = d. Then
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AnnR Fd
a(M) = AnnR M/UR(a,M).

Proof. Let U := UR(a,M). By Lemma 2.2 (iv), Fd
a(M) ∼= Hd

m(M/U).

Thus AnnR(F
d
a(M)) = AnnR(H

d
m(M/U)). But by Theorem 1.1 we have

AnnR(H
d
m(M/U)) = AnnR((M/U)/TR(m,M/U)).

Since TR(m,M/U) = 0 by Lemma 2.2 (i), we conclude that

AnnR Fd
a(M) = AnnR(H

d
m(M/U)) = AnnR M/UR(a,M),

as required. □

Proposition 2.4 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = d. Then

V(AnnR Fd
a(M)) = SuppR(M/UR(a,M)).

Proof. By Theorem 2.3,

V(AnnR Fd
a(M)) = V(AnnR M/UR(a,M)) = SuppR(M/UR(a,M)),

as required. □

Theorem 2.5 Let a be an ideal of a complete local ring (R,m) and M

a finitely generated R-module of dimension d such that dim(M/aM) = d.

Then

AttR Fd
a(M) = Min SuppR(M/UR(a,M)) = AssR M/UR(a,M).

Proof. By [13, Theorem 2.11 (ii)] AttR Fd
a(M) = MinV(AnnR Fd

a(M)).

Now the result follows by Proposition 2.4 and Lemma 2.2 (ii). □

The next Theorem gives us a description of UR(a,M).

Theorem 2.6 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = d. Then

UR(a,M) = ∩pj∈AsshR M∩V(a)Nj ,
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where 0 =
∩n

j=1 Nj denotes a reduced primary decomposition of the zero

submodule 0 in M and Nj is a pj-primary submodule of M , for all j =

1, . . . , n.

Proof. Set N := ∩pj∈AsshR M∩V(a)Nj . At first we show that dim(N/aN) <

d. By [14, Lemma 2.7] AssR M/N = AsshR M ∩ V(a) and AssR N =

AssR M−AsshR M ∩V(a). If dimN/aN = d then there exists a prime ideal

p ∈ SuppR N ∩V(a) such that dimR/p = d. Thus p ∈ AsshR M ∩V(a) and

so p /∈ AssR N . Since p ∈ SuppR N and dimR/p = d we have p ∈ AssR N

which is a contradiction. Therefore dim(N/aN) < d and so N ⊆ UR(a,M)

by Definition 2.1.

Now we prove the reverse inclusion. To do this, suppose that there exists

x ∈ U such that x /∈ N . Thus there exists an integer t ∈ {1, . . . , n} such

that x /∈ Nt and pt ∈ AsshR M ∩ V(a). On the other hand, there exists an

integer k such that (
√
AnnR Rx)kx = 0. Thus (

√
AnnR Rx)kx ⊆ Nt. Since

x /∈ Nt and Nt is a pt-primary submodule, it follows that ∩p∈AssR Rxp =√
AnnR Rx ⊆ pt. Thus there exists a prime ideal p ∈ AssR Rx ⊆ AssR U

such that p ⊆ pt. Then, as p ∈ AssR M and dimR/pt = dimM it follows

that p = pt. Hence p ∈ AsshR M ∩V(a) = AttFd
a(M). Now Lemma 2.2 (iii)

implies that p /∈ AssR U which is a contradiction, because of p ∈ AssR Rx ⊆
AssR U . This completes the proof. □

Corollary 2.7 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = d. Then

AnnR(F
d
a(M)) = AnnR(M/ ∩pj∈AsshR M∩V(a) Nj),

where 0 =
∩n

j=1 Nj denotes a reduced primary decomposition of the zero

submodule 0 in M and Nj is a pj-primary submodule of M , for all j =

1, . . . , n.

Proof. The result follows from Theorems 2.3 and 2.6. □

3. The radical of the annihilators of the top formal local coho-

mology modules

Let a be an ideal of a local ring (R,m) and M a finitely generated R-

module of dimension d such that dim(M/aM) = d. The aim of this section

will be to determine the radical of AnnR(F
d
a(M)).
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Definition 3.1 Let M be a non-zero finitely generated R-module of finite

dimension. We denote by GR(a,M) the largest submodule of M such that

AsshR(M) ∩V(a) ⊆ AssR(M/GR(a,M)).

Lemma 3.2 Let (R,m) be a local ring and a an ideal of R. Let M be a

finitely generated R-module of finite dimension d such that dim(M/aM) = d.

Then dim(M/GR(a,M)) = d.

Proof. Since dim(M/aM) = d we have Fd
a(M) ̸= 0. Thus AttR(F

d
a(M)) =

AsshR M ∩V(a) ̸= ϕ.

Let p ∈ AsshR M ∩ V(a). Then p ∈ AssR(M/GR(a,M)).

Thus SuppR(R/p) ⊆ SuppR(M/GR(a,M)) and so d = dim(R/p) ≤
dim(M/GR(a,M)). On the other hand, dim(M/GR(a,M)) ≤ dimM = d.

Therefore d = dim(M/GR(a,M)), as required. □

Lemma 3.3 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = d. Then

UR(a,M/GR(a,M)) = 0.

Proof. Let G := GR(a,M). It suffices to show that for any non-zero

submodule L/G of M/G we have dim((L/G)/a(L/G)) = dim((M/G)/

a(M/G)). It is easy to see that AsshR(M) ∩ V(a) ⊆ AssR(M/G) ⊆
AssR L/G∪AssR M/L. If AsshR(M)∩V(a) ⊆ AssR(M/L) then since G ⊊ L

from the maximality of G we get a contradiction. Thus there exists a prime

ideal p ∈ AsshR(M) ∩V(a) such that p ∈ AssR L/G. Hence

dim((R/p)/a(R/p) ≤ dim((L/G)/a(L/G)) ≤ dim((M/G)/a(M/G))

≤ dim(M/aM).

Since p∈AsshR M , dim(R/p)=d. Also, p∈V(a) and so dim((R/p)/a(R/p)

= dim(R/p) = d. It follows that

d ≤ dim((L/G)/a(L/G)) ≤ dim((M/G)/a(M/G)) ≤ d.

Therefore dim((L/G)/a(L/G)) = dim((M/G)/a(M/G)), as required. □

Lemma 3.4 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = d. Then
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AttR Fd
a(M) = AttR Fd

a(M/GR(a,M)).

Proof. Let G := GR(a,M). By definition 3.1 AsshR M ∩ V(a) ⊆
AssR(M/G). Thus, by using Lemma 3.2 we conclude that

{p ∈ AssR M : dimR/p = dimM} ∩V(a)

⊆ {p ∈ AssR M/G : dimR/p = dimM/G} ∩V(a)

and so AttR Fd
a(M) ⊆ AttR Fd

a(M/G). On the other hand, the exact se-

quence

0→ G→M →M/G→ 0

induces an exact sequence

· · · → Fd
a(G)→ Fd

a(M)→ Fd
a(M/G)→ 0.

Thus AttR(F
d
a(M/G)) ⊆ AttR(F

d
a(M)). Therefore AttR Fd

a(M) =

AttR Fd
a(M/G), the proof is complete. □

Lemma 3.5 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = d. Then√
AnnR(M/GR(a,M)) = AnnR(M/GR(a,M)).

Proof. Let G := GR(a,M). Let x ∈
√

AnnR(M/G). There exists an

integer n such that xnM ⊆ G. Thus Lemma 3.4 implies that

AttR((F
d
a(M)) = AttR((F

d
a(M/G)) = AttR(F

d
a(M/(xnM +G))).

Since SuppR(M/(xnM +G)) = SuppR(M/(xM +G)) by [5, Corollary 3.2]

we have AttR(F
d
a(M/(xnM +G))) = AttR(F

d
a(M/(xM +G))). Hence

AttR(F
d
a(M)) = AttR(F

d
a(M/(xM +G))).

But AttR(F
d
a(M/(xM +G))) ⊆ AssR(M/(xM +G)). Thus

AttR(F
d
a(M)) = AsshR M ∩V(a) ⊆ AssR(M/(xM +G)).
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By definition of G we conclude that xM +G ⊆ G. Therefore xM ⊆ G and

x ∈ AnnR(M/G), the proof is complete. □

The following result is the main result of this section.

Theorem 3.6 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = d. Then√
AnnR Fd

a(M) = AnnR M/GR(a,M).

Proof. Let G := GR(a,M). By Lemma 3.4 and [6, 7.2.11] we have√
AnnR Fd

a(M) =
√

AnnR Fd
a(M/G). But by Lemma 3.2 dim(M/G) = d

and so by Theorem 2.3 and Lemma 3.3,

AnnR Fd
a(M/G) = AnnR((M/G)/UR(a,M/G)) = AnnR M/G.

Now Lemma 3.5 implies that
√

AnnR Fd
a(M/G) =

√
AnnR M/G =

AnnR M/G. Thus
√

AnnR Fd
a(M) = AnnR M/G, as required. □

Corollary 3.7 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = dimM . Then

∩p∈AttR(Fd
a(M))p = AnnR M/GR(a,M).

Proof. It follows by [6, 7.2.11] and Theorem 3.6. □

In the next result, we obtain a necessary and sufficient condition for the

equality of the attached prime sets of the two top formal local cohomology

modules.

Proposition 3.8 Let (R,m) be a local ring and a an ideal of R. Let

M and N be two finitely generated R-modules of dimension d such that

dim(M/aM) = dim(N/aN) = d. Then

AttR Fd
a(M) = AttR Fd

a(N) if and only if

SuppR(M/GR(a,M)) = SuppR(N/GR(a, N)).

Proof. If AttR Fd
a(M) = AttR Fd

a(N) then AnnR M/GR(a,M) = AnnR N/

GR(a, N) by Corollary 3.7 and so V(AnnR(M/GR(a,M))) = V(AnnR(N/



Annihilators of formal local cohomology modules 205

GR(a, N))). Thus SuppR(M/GR(a,M)) = SuppR(N/GR(a, N)).

Conversly, if SuppR(M/GR(a,M)) = SuppR(N/GR(a, N)) then by [5,

Corollary 3.2] we have AttR(F
d
a(M/GR(a,M))) = AttR(F

d
a(N/GR(a, N))).

Therefore Lemma 3.4 implies that AttR(F
d
a(M)) = AttR(F

d
a(N)), as re-

quired. □
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