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Vector valued inequalities and Littlewood-Paley operators

on Hardy spaces

Shuichi Sato

(Received August 27, 2016; Revised September 7, 2016)

Abstract. We prove certain vector valued inequalities on Rn related to Littlewood-

Paley theory. They can be used in proving characterization of the Hardy spaces in

terms of Littlewood-Paley operators by methods of real analysis.
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1. Introduction

We consider the Littlewood-Paley function on Rn defined by

gφ(f)(x) =

(∫ ∞

0

|f ∗ φt(x)|2
dt

t

)1/2

, (1.1)

where φt(x) = t−nφ(t−1x). We assume that φ ∈ L1(Rn) and∫
Rn

φ(x) dx = 0. (1.2)

If we further assume that |φ(x)| ≤ C(1 + |x|)−n−ϵ for some ϵ > 0, then

we have

∥gφ(f)∥p ≤ Cp∥f∥p, 1 < p <∞,

where ∥f∥p = ∥f∥Lp (see [10], [14] and also [1] for an earlier result). The

reverse inequality also holds if a certain non-degeneracy condition on φ is

assumed in addition (see [7, Theorem 3.8] and also [11]). This is the case

for gQ with Q(x) = [(∂/∂t)P (x, t)]t=1, where P (x, t) is the Poisson kernel
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associated with the upper half space Rn × (0,∞) defined by

P (x, t) = cn
t

(|x|2 + t2)(n+1)/2

with cn = π−(n+1)/2Γ((n + 1)/2) (see [16, Chapter I]). Here we recall that

Q̂(ξ) = −2π|ξ|e−2π|ξ|, where the Fourier transform is defined as

f̂(ξ) = F (f)(ξ) =

∫
Rn

f(x)e−2πi⟨x,ξ⟩ dx, ⟨x, ξ⟩ = x1ξ1 + · · ·+ xnξn.

Furthermore, it is known that

c1∥f∥Hp ≤ ∥gQ(f)∥p ≤ c2∥f∥Hp (1.3)

for f ∈ Hp(Rn) (the Hardy space), 0 < p < ∞, where c1, c2 are positive

constants (see [4] and also [18]). Recall that a tempered distribution f

belongs to Hp(Rn) if ∥f∥Hp = ∥f∗∥p <∞, where f∗(x) = supt>0 |Φt∗f(x)|.
Here Φ is in S (Rn) and satisfies

∫
Φ(x) dx = 1, where S (Rn) denotes the

Schwartz class of rapidly decreasing smooth functions on Rn; it is known

that any other choice of such Φ gives an equivalent norm (see [4]).

In this note we are concerned with the first inequality of (1.3) for 0 <

p ≤ 1. A proof of the inequality was given by Uchiyama [18]. The proof is

based on real analysis methods and does not use special properties of the

Poisson kernel such as harmonicity, a semigroup property. Consequently,

[18] can also prove

∥f∥Hp ≤ c∥gφ(f)∥p, 0 < p ≤ 1, (1.4)

for φ ∈ S (Rn) satisfying (1.2) and a suitable non-degeneracy condi-

tion. Also, a relation between Hardy spaces on homogeneous groups and

Littlewood-Paley functions associated with the heat kernel can be found in

[5, Chapter 7].

On the other hand, it is known and would be seen by applying an easier

version of our arguments in the following that the Peetre maximal function

F ∗∗
N,R can be used along with familiar methods to prove (1.4) when φ ∈

S (Rn) with a non-degeneracy condition and with the condition supp(φ̂) ⊂
{a1 ≤ |ξ| ≤ a2}, a1, a2 > 0, where for a function F on Rn and positive real

numbers N,R, the maximal function is defined as
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F ∗∗
N,R(x) = sup

y∈Rn

|F (x− y)|
(1 +R|y|)N

(1.5)

(see [8]).

The purpose of this note is to prove (1.4) for a class of functions φ

including Q and a general φ ∈ S (Rn), without the restriction on supp(φ̂)

above, with (1.2) and an admissible non-degeneracy condition (Corollary

3.2) as an application of a vector valued inequality which will be shown by

using the maximal function F ∗∗
N,R (see Proposition 2.3, Theorem 2.10 below).

The proof of Proposition 2.3 consists partly in further developing methods

of [17, Chapter V] and it admits some weighted inequalities. Theorem 2.10

follows from Proposition 2.3. Our proofs of Proposition 2.3 and Corollary

3.2 are fairly straightforward and they will be expected to extend to some

other situations (see [12], [13], [15]).

In Section 2, Proposition 2.3 will be formulated in a general form, while

Theorem 2.10 will be stated in a more convenient form for the application

to the proof of Corollary 3.2. In Section 3, we shall apply Theorem 2.10 and

an atomic decomposition for Hardy spaces to prove Corollary 3.2. Finally,

in Section 4, we shall give proofs of Lemmas 2.1 and 2.5 in Section 2 from

[17] and [8], respectively, for completeness; the lemmas will be needed in

proving Proposition 2.3.

2. Vector valued inequalities

Let φ(j), j = 1, 2, . . . ,M , be functions in L1(Rn) satisfying the non-

degeneracy condition

inf
ξ∈Rn\{0}

sup
t>0

M∑
j=1

|F (φ(j))(tξ)| > c (2.1)

for some positive constant c. We write φ = (φ(1), . . . , φ(M)), φ̂ = (F (φ(1)),

. . . ,F (φ(M))).

Lemma 2.1 Let φ(j), j = 1, 2, . . . ,M , be functions in L1(Rn) satisfying

(2.1). Then, there exist b0 ∈ (0, 1) and positive numbers r1, r2 with r1 < r2
such that if b ∈ [b0, 1), we can find η = (η(1), . . . , η(M)) which satisfies the

following :

(1) η ∈ C∞(Rn), where η ∈ Ck(U) means η(j) ∈ Ck(U) for all 1 ≤ j ≤M ;
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(2) suppF (η(j)) ⊂ {r1 < |ξ| < r2}, 1 ≤ j ≤M ;

(3) each F (η(j)) is continuous, 1 ≤ j ≤M ;

(4)
∑∞
j=−∞⟨φ̂(bjξ), η̂(bjξ)⟩ = 1 for ξ ∈ Rn \ {0}, where ⟨z, w⟩ =∑M
j=1 zjwj, z, w ∈ CM (the Cartesian product of M copies of the set of

complex numbers).

Further, if φ̂ ∈ Ck(Rn \ {0}), then η̂ ∈ Ck(Rn).

See [17, Chapter V] and also [2].

We assume that M = 1 for simplicity. Suppose that ψ ∈ L1(Rn) and

there exist Θ ∈ C∞(Rn) and A ≥ 1 such that

ψ̂(ξ) = φ̂(ξ)Θ(ξ) on {|ξ| < r2A
−1}. (2.2)

Suppose that b ∈ [b0, 1) and let η be as in Lemma 2.1 with M = 1. For

J > 0, define ζJ by

ζ̂J(ξ) = 1−
∑
j:bj≤J

φ̂(bjξ)η̂(bjξ). (2.3)

We note that supp(ζ̂J) ⊂ {|ξ| ≤ r2J
−1}, ζ̂J = 1 in {|ξ| < r1J

−1}. By (2.2)

it follows that

ψ̂(ξ) =
∑

j:bj≤A

ψ̂(ξ)φ̂(bjξ)η̂(bjξ) + ζ̂A(ξ)ψ̂(ξ)

=
∑

j:bj≤A

φ̂(bjξ)F (α(bj))(bjξ) + φ̂(ξ)β̂(ξ),

where α(bj)(x) = ψb−j ∗ η(x) and β̂(ξ) = ζ̂A(ξ)Θ(ξ).

Let E(ψ, f)(x, t) = f ∗ ψt(x), f ∈ S (Rn) (a similar notation will be

used). Then we have

|E(ψ, f)(x, t)| ≤
∑

j:bj≤A

|E(α(bj) ∗ φ, f)(x, bjt)|+ |E(β ∗ φ, f)(x, t)|. (2.4)

Also, let Eψ(x, t) = E(ψ, f)(x, t), when f is fixed (there will be a similar

notation).

Define
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C0(ψ, t, L, x) = (1+ |x|)L
∣∣∣∣∫ ψ̂(t−1ξ)η̂(ξ)e2πi⟨x,ξ⟩ dξ

∣∣∣∣ , t > 0, L ≥ 0. (2.5)

Consequently,

|α(bj)
s (x)| = C0(ψ, b

j , L, x/s)s−n(1 + |x|/s)−L

for j ∈ Z (the set of integers). Likewise, we have

|βs(x)| = D(Θ, A, L, x/s)s−n(1 + |x|/s)−L,

where

D(Θ, J, L, x) = (1 + |x|)L
∣∣∣∣∫ ζ̂J(ξ)Θ(ξ)e2πi⟨x,ξ⟩ dξ

∣∣∣∣ . (2.6)

Here ζ̂J is as in (2.3). We also write C(ψ, j, L, x) = C0(ψ, b
j , L, x), j ∈ Z.

Let

C(ψ, j, L) =

∫
Rn

C(ψ, j, L, x) dx, j ∈ Z, (2.7)

D(Θ, J, L) =

∫
Rn

D(Θ, J, L, x) dx. (2.8)

We also write C(ψ, j, L) = Cφ(ψ, j, L), D(Θ, J, L) = Dφ(Θ, J, L) to indicate

that these quantities are based on φ. See Lemma 2.8 below for a sufficient

condition which implies C(ψ, j, L) <∞, D(Θ, J, L) <∞.

The maximal function in (1.5) is used in the following result.

Lemma 2.2 Let φ,ψ ∈ L1(Rn). Suppose that φ satisfies (2.1). Let b ∈
[b0, 1). We assume that ψ and φ are related by (2.2) with Θ ∈ C∞(Rn) and
A ≥ 1. Let N > 0. Then for f ∈ S (Rn), we have

|E(ψ, f)(x, t)| ≤ C
∑

j:bj≤A

C(ψ, j,N)E(φ, f)(·, bjt)∗∗N,(bjt)−1(x)

+ CD(Θ, A,N)E(φ, f)(·, t)∗∗N,t−1(x); (2.9)
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E(ψ, f)(·, t)∗∗N,t−1(x) ≤ C
∑

j:bj≤A

C(ψ, j,N)b−jNE(φ, f)(·, bjt)∗∗N,(bjt)−1(x)

+ CD(Θ, A,N)E(φ, f)(·, t)∗∗N,t−1(x). (2.10)

Proof. Using (2.4), we see that

|Eψ(z, t)| ≤ C
∑

j:bj≤A

∫
|Eφ(y, bjt)|

(
1 +

|z − y|
bjt

)−N

× C(ψ, j,N, (z − y)/(bjt))(bjt)−n dy

+ C

∫
|Eφ(y, t)|

(
1 +

|z − y|
t

)−N

D(Θ, A,N, (z − y)/t)t−n dy.

If we multiply both sides of the inequality by (1+ |x− z|/t)−N and observe

that(
1 +

|z − y|
bjt

)−N (
1 +

|x− z|
t

)−N

≤ CA,Nb
−Nj

(
1 +

|x− y|
bjt

)−N

for all x, y, z ∈ Rn and t > 0 under the condition bj ≤ A, then we see that

|Eψ(z, t)|(1 + |x− z|/t)−N

≤ C
∑

j:bj≤A

b−Nj
∫

|Eφ(y, bjt)|
(
1 +

|x− y|
bjt

)−N

× C(ψ, j,N, (z − y)/(bjt))(bjt)−n dy

+ C

∫
|Eφ(y, t)|

(
1 +

|x− y|
t

)−N

D(Θ, A,N, (z − y)/t)t−n dy,

and hence

|Eψ(z, t)|(1 + |x− z|/t)−N

≤ C
∑

j:bj≤A

b−NjEφ(·, bjt)∗∗N,(bjt)−1(x)

∫
C(ψ, j,N, (z − y)/(bjt))(bjt)−n dy
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+ CEφ(·, t)∗∗N,t−1(x)

∫
D(Θ, A,N, (z − y)/t)t−n dy

≤ C
∑

j:bj≤A

C(ψ, j,N)b−NjEφ(·, bjt)∗∗N,(bjt)−1(x)

+ CD(Θ, A,N)Eφ(·, t)∗∗N,t−1(x).

The estimate (2.10) follows by taking the supremum in z over Rn. The proof
of (2.9) is easier; putting z = x and arguing as above, we get (2.9). □

Let φ ∈ L1(Rn). Suppose that φ satisfies (2.1). Let L > 0. We consider

the following conditions.

φ ∈ C1(Rn), ∂kφ ∈ L1(Rn), 1 ≤ k ≤ n; (2.11)

|φ̂(ξ)| ≤ C|ξ|ϵ for some ϵ > 0; (2.12)

sup
j≥0

Cφ(∇φ, j, L)b−jL−ϵj <∞ for some ϵ > 0, together with (2.11);

(2.13)

Dφ(L) <∞, with (2.11), (2.14)

where we write∇φ = (∂1φ, . . . , ∂nφ), ∂k = ∂xk
= ∂/∂xk and Cφ(∇φ, j, L) =∑n

k=1 Cφ(∂kφ, j, L); also we define Dφ(L) =
∑n
k=1Dφ(Ξk, 1, L) by taking

Θ(ξ) = Ξk(ξ) = 2πiξk and J = 1 in (2.8). We note that (2.11) implies the

following (with ϵ = 1):

|φ̂(ξ)| ≤ C|ξ|−ϵ for some ϵ > 0. (2.15)

Let ψ ∈ L1(Rn). We assume that ψ is related to φ as in (2.2) with Θ ∈
C∞(Rn) and A ≥ 1. We also consider the conditions:

sup
j:bj≤A

Cφ(ψ, j, L)b
−ϵj <∞ for some ϵ > 0; (2.16)

Dφ(Θ, A, L) <∞. (2.17)

Let M be the Hardy-Littlewood maximal operator

M(f)(x) = sup
x∈B

|B|−1

∫
B

|f(y)| dy,
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where the supremum is taken over all balls B in Rn such that x ∈ B and

|B| denotes the Lebesgue measure of B. Let 1 < p < ∞. We recall that a

weight function w belongs to the weight class Ap of Muckenhoupt on Rn if

[w]Ap = sup
B

(
|B|−1

∫
B

w(x) dx

)(
|B|−1

∫
B

w(x)−1/(p−1)dx

)p−1

<∞,

where the supremum is taken over all balls B in Rn. Also, we recall that a

weight function w is in the class A1 if M(w) ≤ Cw almost everywhere. The

infimum of all such C is denoted by [w]A1
.

For a weight w, the weighted Lp norm is defined as

∥f∥p,w =

(∫
Rn

|f(x)|pw(x) dx
)1/p

.

We have the following vector valued inequality.

Proposition 2.3 Let φ ∈ L1(Rn). We assume that φ satisfies (2.1) with

M = 1. Let N > 0, n/N < p, q < ∞ and w ∈ ApN/n. Suppose that φ

satisfies (2.11), (2.12) and (2.13), (2.14) with L = N . Let ψ ∈ L1(Rn).
Suppose that ψ is related to φ as in (2.2) with Θ ∈ C∞(Rn), A ≥ 1 and

(2.16), (2.17) hold with L = N . Then∥∥∥∥∥
(∫ ∞

0

|f ∗ ψt|q
dt

t

)1/q
∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥
(∫ ∞

0

|f ∗ φt|q
dt

t

)1/q
∥∥∥∥∥
p,w

for f ∈ S (Rn) with a positive constant C independent of f .

We need the next result to show Proposition 2.3.

Lemma 2.4 Suppose that 0 < q < ∞, N > 0 and that φ ∈ L1(Rn)
satisfies (2.1), (2.11), (2.12) and (2.13), (2.14) with L = N . Then∫ ∞

0

E(φ, f)(·, t)∗∗N,t−1(x)q
dt

t
≤ C

∫ ∞

0

M(|f ∗ φt|r)(x)q/r
dt

t
, r = n/N.

We need the following in proving Lemma 2.4.

Lemma 2.5 (see [8]) If F ∈ C1(Rn) and R > 0, r > 0, then
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F ∗∗
N,R(x) ≤ Cδ−NM(|F |r)(x)1/r + CδR−1|∇F |∗∗N,R(x)

for all δ ∈ (0, 1], where N = n/r and the constant C is independent of δ

and R.

Proof of Lemma 2.4. By Lemma 2.5 we have

E(φ, f)(·, t)∗∗N,t−1(x)

≤ Cδ−NM(|f ∗ φt|r)(x)1/r + Cδ|f ∗ (∇φ)t|∗∗N,t−1(x), (2.18)

where f ∗ (∇φ)t = (f ∗ (∂1φ)t, . . . , f ∗ (∂nφ)t), r = n/N . We apply (2.10)

of Lemma 2.2 with ψ = ∂kφ, Θ(ξ) = 2πiξk, A = 1 in (2.2). Then

|f ∗ (∇φ)t|∗∗N,t−1(x) ≤ C
∑
j≥0

Cφ(∇φ, j,N)b−jNE(φ, f)(·, bjt)∗∗N,(bjt)−1(x)

+ CDφ(N)E(φ, f)(·, t)∗∗N,t−1(x).

Using this in (2.18) and applying Hölder’s inequality when q > 1, we see

that

E(φ, f)(·, t)∗∗N,t−1(x)q

≤ Cδ−NqM(|f ∗ φt|r)(x)q/r

+ Cqδ
q
∑
j≥0

Cφ(∇φ, j,N)qb−jNqb−τcqjE(φ, f)(·, bjt)∗∗N,(bjt)−1(x)q

+ CδqDφ(N)qE(φ, f)(·, t)∗∗N,t−1(x)q, (2.19)

where τ > 0, cq = 1 if q > 1 and cq = 0 if 0 < q ≤ 1.

If we integrate both sides of the inequality (2.19) over (0,∞) with re-

spect to the measure dt/t and if we apply termwise integration on the right

hand side, then we have∫ ∞

0

E(φ, f)(·, t)∗∗N,t−1(x)q
dt

t

≤ Cδ−Nq
∫ ∞

0

M(|f ∗ φt|r)(x)q/r
dt

t
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+ Cqδ
q

[∑
j≥0

Cφ(∇φ, j,N)qb−jNqb−τcqj +Dφ(N)q
]

×
∫ ∞

0

E(φ, f)(·, t)∗∗N,t−1(x)q
dt

t
. (2.20)

The condition (2.13) with L = N implies that the sum in j on the right

hand side of (2.20) is finite if τ is small enough. We can see that the last

integral on the right hand side of (2.20) is finite for f ∈ S (Rn) by (2.12)

and (2.15). Further, we have (2.14) for L = N . Altogether, it follows that

the second term on the right hand side of (2.20) is finite. Thus, we can get

the conclusion if we choose δ sufficiently small. □

Proof of Proposition 2.3. By (2.9) we have

|E(ψ, f)(x, t)|q ≤ Cq
∑

j:bj≤A

C(ψ, j,N)qb−τcqjE(φ, f)(·, bjt)∗∗N,(bjt)−1(x)q

+ CD(Θ, A,N)qE(φ, f)(·, t)∗∗N,t−1(x)q,

where τ > 0 and cq is as in (2.19). Integrating with the measure dt/t over

(0,∞), we have∫ ∞

0

|E(ψ, f)(x, t)|q dt
t

≤ Cq

[ ∑
j:bj≤A

C(ψ, j,N)qb−τcqj +D(Θ, A,N)q
]

×
∫ ∞

0

E(φ, f)(·, t)∗∗N,t−1(x)q
dt

t
. (2.21)

The sum in j on the right hand side of (2.21) is finite by (2.16) with L = N

if τ is small enough; also we have assumed D(Θ, A,N) < ∞ ((2.17) with

L = N). Let r = n/N < q, p and w ∈ ApN/n. By (2.21) and Lemma 2.4 we

see that(∫
Rn

(∫ ∞

0

|E(ψ, f)(x, t)|q dt
t

)p/q
w(x) dx

)1/p

≤ C

∥∥∥∥∥
(∫ ∞

0

M(|f ∗ φt|r)(x)q/r
dt

t

)1/q
∥∥∥∥∥
p,w
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= C

∥∥∥∥∥
(∫ ∞

0

M(|f ∗ φt|r)(x)q/r
dt

t

)r/q∥∥∥∥∥
1/r

p/r,w

≤ C

(∫
Rn

(∫ ∞

0

|E(φ, f)(x, t)|q dt
t

)p/q
w(x) dx

)1/p

, (2.22)

where the last inequality follows from the following lemma, which is a version

of the vector valued inequality for the Hardy-Littlewood maximal functions

of Fefferman-Stein [3] (see [9] for a proof of the ℓµ-valued case, which may

be available also in the present situation).

Lemma 2.6 Suppose that 1 < µ, ν <∞ and w ∈ Aν . Then for appropri-

ate functions E(x, t) on Rn × (0,∞) we have∥∥∥∥∥
(∫ ∞

0

M(Et)(x)µ
dt

t

)1/µ
∥∥∥∥∥
ν,w

≤ C

(∫
Rn

(∫ ∞

0

|E(x, t)|µ dt
t

)ν/µ
w(x) dx

)1/ν

,

where Et(x) = E(x, t).

This completes the proof of Proposition 2.3. □

We have an analogous result for general φ = (φ(1), . . . , φ(M)), although

Proposition 2.3 is stated only for the case M = 1.

It is obvious that Q, Q̂(ξ) = −2π|ξ|e−2π|ξ|, satisfies all the requirements

on φ in Lemma 2.4 for all N > 0. To state results with more directly

verifiable assumptions on φ and ψ, we introduce a class of functions.

Definition 2.7 Let ψ ∈ L1(Rn). Let l be a non-negative integer and τ a

non-negative real number. We say ψ ∈ Blτ if ψ̂ ∈ Cl(Rn \ {0}) and

|∂γξ ψ̂(ξ)| ≤ Cγ |ξ|−τ−|γ| outside a neighborhood of the origin

for every γ satisfying |γ| ≤ l with a constant Cγ , where γ = (γ1, . . . , γn) is

a multi-index, γj ∈ Z, γj ≥ 0, |γ| = γ1 + · · ·+ γn and ∂γξ = ∂γ1ξ1 . . . ∂
γn
ξn

.

Clearly, Q ∈ Blτ for any l, τ . This is also the case for ψ ∈ S (Rn).
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Lemma 2.8 Suppose that φ ∈ L1(Rn) and φ satisfies the condition (2.1).

Let τ ≥ 0, J > 0 and let L be a non-negative integer.

(1) Suppose that ψ ∈ B
L+[n/2]+1
τ and φ̂ ∈ CL+[n/2]+1(Rn \ {0}), where [a]

denotes the largest integer not exceeding a. Then we have

sup
j:bj≤J

Cφ(ψ, j, L)b
−jτ <∞,

where Cφ(ψ, j, L) = C(ψ, j, L) is as in (2.7).

(2) Suppose that Θ ∈ C∞(Rn) and φ̂ ∈ CL+[n/2]+1(Rn \ {0}). Then

Dφ(Θ, J, L) <∞,

where Dφ(Θ, J, L) = D(Θ, J, L) is as in (2.8).

(3) Let ψ(k) ∈ L1(Rn) and F (ψ(k))(ξ) = 2πiξkφ̂(ξ), 1 ≤ k ≤ n. If φ ∈
B
L+[n/2]+1
L+1+τ , then we have

sup
j:bj≤J

Cφ(ψ
(k), j, L)b−jL−jτ <∞, Dφ(Ξk, 1, L) <∞

for each k, where Ξk(ξ) = 2πiξk as above.

Proof. Part (3) follows from part (1) and part (2) since ψ(k) ∈ B
L+[n/2]+1
L+τ

and φ̂ ∈ CL+[n/2]+1(Rn \{0}) if φ ∈ B
L+[n/2]+1
L+1+τ . To prove part (1), we note

that

(1 + |x|)[n/2]+1C0(ψ, t, L, x)

≤ C

∣∣∣∣∫ ψ̂(t−1ξ)η̂(ξ)e2πi⟨x,ξ⟩ dξ

∣∣∣∣
+ C sup

|γ|=L+[n/2]+1

∣∣∣∣∫ ∂γξ

[
ψ̂(t−1ξ)η̂(ξ)

]
e2πi⟨x,ξ⟩ dξ

∣∣∣∣ ,
where C0(ψ, t, L, x) is as in (2.5). We note that η̂ ∈ CL+[n/2]+1(Rn) by

Lemma 2.1, since φ̂ ∈ CL+[n/2]+1(Rn\{0}). The assumption ψ ∈ B
L+[n/2]+1
τ

implies ∣∣∣∂γξ [ψ̂(t−1ξ)η̂(ξ)
]∣∣∣ ≤ CM t

τ , 0 < t ≤M,
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for any M > 0, if |γ| = L+ [n/2] + 1 or γ = 0. It follows that

C0(ψ, t, L, x) ≤ C(1 + |x|)−[n/2]−1G(x)

with some G ∈ L2 such that ∥G∥2 ≤ Ctτ . Thus, since [n/2] + 1 > n/2, by

the Schwarz inequality we have∫
Rn

C0(ψ, t, L, x) dx ≤ Ctτ . (2.23)

The conclusion of part (1) follows from (2.23) with t = bj .

Likewise, we have ∫
Rn

D(Θ, J, L, x) dx <∞

under the assumptions of part (2), where D(Θ, J, L, x) is as in (2.6), which

proves part (2). □

By Lemma 2.8 and Proposition 2.3 we have the following.

Theorem 2.9 Let φ ∈ L1(Rn) satisfy (2.1) with M = 1. Suppose that

ψ ∈ L1(Rn) and ψ̂(ξ) = φ̂(ξ)Θ(ξ) in a neighborhood of the origin with

some Θ ∈ C∞(Rn). Let 0 < p, q < ∞ and let N be a positive integer

such that N > max(n/p, n/q). Let w ∈ ApN/n. Suppose that φ belongs to

B
N+[n/2]+1
N+1+ϵ for some ϵ > 0 and satisfies (2.11) and (2.12). Also, suppose

that ψ ∈ B
N+[n/2]+1
ϵ for some ϵ > 0. Then we have∥∥∥∥∥

(∫ ∞

0

|f ∗ ψt|q
dt

t

)1/q
∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥
(∫ ∞

0

|f ∗ φt|q
dt

t

)1/q
∥∥∥∥∥
p,w

for f ∈ S (Rn), where C is a positive constant independent of f .

Proof. If we have (2.11) and if φ ∈ B
N+[n/2]+1
N+1+ϵ , then (2.13) and (2.14)

hold with L = N by part (3) of Lemma 2.8 with J = 1, τ = ϵ, L = N .

Since ψ ∈ B
N+[n/2]+1
ϵ and φ ∈ CN+[n/2]+1(Rn \ {0}), if ψ̂(ξ) = φ̂(ξ)Θ(ξ) on

{|ξ| < r2A
−1}, A ≥ 1, we have (2.16) and (2.17) with L = N by part (1) of

Lemma 2.8 with J=A, τ = ϵ, L=N and part (2) of Lemma 2.8 with J=A,

L=N , respectively. Thus Proposition 2.3 implies the conclusion. □
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This immediately implies the following.

Theorem 2.10 Let φ ∈ L1(Rn) satisfy (2.1) with M = 1, (2.11) and

(2.12). We assume that 0 < p, q <∞ and N is a positive integer satisfying

N > max(n/p, n/q). Let w ∈ ApN/n. Suppose that φ ∈ B
N+[n/2]+1
N+1+ϵ for

some ϵ > 0. Then, if ψ ∈ S (Rn) and ψ̂ vanishes in a neighborhood of the

origin, the inequality∥∥∥∥∥
(∫ ∞

0

|f ∗ ψt|q
dt

t

)1/q
∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥
(∫ ∞

0

|f ∗ φt|q
dt

t

)1/q
∥∥∥∥∥
p,w

, f ∈ S (Rn),

holds with a positive constant C independent of f .

Proof. We see that ψ̂(ξ) = φ̂(ξ)Θ(ξ) in a neighborhood of the origin with Θ

being identically 0. Obviously, ψ ∈ B
N+[n/2]+1
1 . So all the requirements for

φ and ψ in the hypotheses of Theorem 2.9 are satisfied. Thus the conclusion

follows from Theorem 2.9. This completes the proof. □

We note that Q fulfills all the requirements on φ in the hypotheses of

Theorem 2.10 for everyN . Thus, the inequality of the conclusion of Theorem

2.10 withQ in place of φ is valid for all p, q ∈ (0,∞) and w ∈ A∞ := ∪p>1Ap.

The same is true of φ0 ∈ S (Rn) satisfying (2.1) (with M = 1) and (1.2).

3. Littlewood-Paley operators and Hardy spaces

Let H denote the Hilbert space of functions u(t) on (0,∞) such that

∥u∥H =
(∫∞

0
|u(t)|2 dt/t

)1/2
<∞. We first recall Hardy spaces of functions

on Rn with values in H , which will be used to prove (1.4) by Theorem 2.10

(see Corollary 3.2 below).

The Lebesgue space LqH (Rn) consists of functions h(y, t) with the norm

∥h∥q,H =

(∫
Rn

∥hy∥qH dy

)1/q

,

where hy(t) = h(y, t). For 0 < p ≤ 1, we consider the Hardy space Hp
H (Rn)

of functions on Rn with values in H . We take φ ∈ S (Rn) with
∫
φ(x) dx =

1. Let h ∈ L2
H (Rn). We recall that h ∈ Hp

H (Rn) if ∥h∥Hp
H

= ∥h∗∥Lp <∞,

where
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h∗(x) = sup
s>0

(∫ ∞

0

|φs ∗ ht(x)|2
dt

t

)1/2

,

with ht(x) = h(x, t).

If a is a (p,∞) atom in Hp
H (Rn), we have

(i)
(∫∞

0
|a(x, t)|2 dt/t

)1/2 ≤ |Q|−1/p, where Q is a cube in Rn with sides

parallel to the coordinate axes;

(ii) supp(a(·, t)) ⊂ Q uniformly in t > 0, where Q is the same as in (i);

(iii)
∫
Rn a(x, t)x

γ dx = 0 for all t > 0 and γ such that |γ| ≤ [n(1/p − 1)],

where γ = (γ1, . . . , γn) is a multi-index and xγ = xγ11 . . . xγnn .

We apply the following atomic decomposition.

Lemma 3.1 Let h ∈ L2
H (Rn). If h ∈ Hp

H (Rn), then there exist a se-

quence {ak} of (p,∞) atoms in Hp
H (Rn) and a sequence {λk} of positive

numbers such that
∑∞
k=1 λ

p
k ≤ C∥h∥p

Hp
H

with a constant C independent of h

and h =
∑∞
k=1 λkak in Hp

H (Rn) and in L2
H (Rn).

A proof of the atomic decomposition for Hp(Rn) can be found in [6] and

[17]. Similar methods apply to the vector valued case.

In this section, we prove the following result as an application of Theo-

rem 2.10.

Corollary 3.2 Let 0 < p ≤ 1, N > n/p. Suppose that φ ∈ L1(Rn)
satisfies (2.1) with M = 1, (2.11), (2.12) and suppose that φ ∈ B

N+[n/2]+1
N+1+ϵ

for some ϵ > 0. Then we have

∥f∥Hp ≤ Cp∥gφ(f)∥p

for f ∈ Hp(Rn)∩S (Rn), where Cp is a positive constant independent of f .

This can be generalized to an arbitrary f ∈ Hp(Rn) if φ = Q or if φ is

a function in S (Rn) satisfying (2.1) and (1.2) (see [18]).

In proving Corollary 3.2, we need the following.

Lemma 3.3 Suppose that η ∈ S (Rn), supp(η̂) ⊂ {1/2 ≤ |ξ| ≤ 4}, η̂(ξ) =
1 on {1 ≤ |ξ| ≤ 2} and that Φ ∈ S (Rn) satisfies

∫
Rn Φ(x) dx = 1. Let

ψ ∈ S (Rn) and supp ψ̂ ⊂ {1 ≤ |ξ| ≤ 2}. Then, for p, q > 0 and f ∈ S (Rn)
we have



76 S. Sato

∥∥∥∥∥
(∫ ∞

0

sup
s>0

|Φs ∗ ψt ∗ f |q
dt

t

)1/q
∥∥∥∥∥
p

≤ C

∥∥∥∥∥
(∫ ∞

0

|ηt ∗ f |q
dt

t

)1/q
∥∥∥∥∥
p

.

Proof. We note that Φ̂(sξ)ψ̂(tξ) = Φ̂(sξ)ψ̂(tξ)η̂(tξ). Thus we have

|Φs ∗ ψt ∗ f(x)| ≤ (f ∗ ηt)∗∗N,t−1(x)

∫
Rn

|Φs ∗ ψt(w)|(1 + t−1|w|)N dw

= (f ∗ ηt)∗∗N,t−1(x)

∫
Rn

|Φs/t ∗ ψ(w)|(1 + |w|)N dw

≤ CN (f ∗ ηt)∗∗N,t−1(x)

for any N > 0, with a positive constant CN independent of s, t. The last

inequality follows from the observation that Φs/t ∗ ψ, s, t > 0, belongs to a

bounded subset of the topological vector space S (Rn), since F (Φu∗ψ)(ξ) =
Φ̂(uξ)ψ̂(ξ), u > 0, and ψ̂(ξ) is supported on {1 ≤ |ξ| ≤ 2}. Therefore, we

have(∫ ∞

0

sup
s>0

|Φs ∗ ψt ∗ f(x)|q
dt

t

)1/q

≤ C

(∫ ∞

0

|(f ∗ ηt)∗∗N,t−1(x)|q
dt

t

)1/q

.

(3.1)

Thus (3.1) and Lemma 2.4 with η in place of φ imply

(∫ ∞

0

sup
s>0

|Φs ∗ ψt ∗ f(x)|q
dt

t

)1/q

≤ C

(∫ ∞

0

M(|f ∗ ηt|r)(x)(x)q/r
dt

t

)1/q

,

with N = n/r. By this and Lemma 2.6, the conclusion follows as in (2.22).

□

We also use the following to prove Corollary 3.2.

Lemma 3.4 Let ψ̂ ∈ S (Rn) be a radial function supported on {1 ≤ |ξ| ≤
2} such that ∫ ∞

0

|ψ̂(tξ)|2 dt
t

= 1 for all ξ ̸= 0.

Let f ∈ Hp(Rn) ∩ S (Rn), 0 < p ≤ 1, and put E(y, t) = f ∗ ψt(y). Then E



Vector valued inequalities 77

is in Hp
H (Rn) and we have

∥f∥Hp ≤ C∥E∥Hp
H
.

Let ψ be a function in L1(Rn) satisfying (1.2). Suppose that h ∈ L2
H .

Let h(ϵ)(y, t) = h(y, t)χ(ϵ,ϵ−1)(t), 0 < ϵ < 1, where χS denotes the charac-

teristic function of a set S. Put

F ϵψ(h)(x) =

∫ ∞

0

∫
Rn

ψt(x− y)h(ϵ)(y, t) dy
dt

t
.

To prove Lemma 3.4 we apply the following.

Lemma 3.5 Let 0 < p ≤ 1. Suppose that ψ ∈ S (Rn) and supp ψ̂ ⊂ {1 ≤
|ξ| ≤ 2}. Then

sup
ϵ∈(0,1)

∥F ϵψ(h)∥Hp ≤ C∥h∥Hp
H
.

Proof. Let a be a (p,∞) atom in Hp
H (Rn) with support in the cube Q

of the definition of the atom. We denote by y0 the center of Q. Let Q̃ be

a concentric enlargement of Q such that 2|y − y0| < |x − y0| if y ∈ Q and

x ∈ Rn \ Q̃. Let Φ be a non-negative C∞ function on Rn supported on

{|x| < 1} which satisfies
∫
Φ(x) dx = 1. Let Ψs,t = Φs ∗ ψt, s, t > 0. Then

Ψs,t = (Φs/t ∗ ψ)t and Φu ∗ ψ, u > 0, belongs to a bounded subset of the

topological vector space S (Rn), as in the proof of Lemma 3.3.

Let Px(y, y0) be the Taylor polynomial in y of order M = [n(1/p − 1)]

at y0 for Φs/t ∗ ψ(x− y). Then, if |x− y0| > 2|y − y0|, we see that

|Φs/t ∗ ψ(x− y)− Px(y, y0)| ≤ C|y − y0|M+1(1 + |x− y0|)−L,

where L > n+M +1 and the constant C is independent of s, t, x, y, y0, and

hence

|Ψs,t(x−y)− t−nPx/t(y/t, y0/t)| ≤ Ct−n−M−1|y−y0|M+1(1+ |x−y0|/t)−L.

Therefore, by the properties of an atom and the Schwarz inequality, for

x ∈ Rn \ Q̃ we have
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∣∣Φs ∗ F ϵψ(a)(x)∣∣
=

∣∣∣∣ ∫∫
Rn×(0,∞)

(
Ψs,t(x− y)− t−nPx/t(y/t, y0/t)

)
a(ϵ)(y, t) dy

dt

t

∣∣∣∣
≤
∫
Q

(∫ ∞

0

∣∣Ψs,t(x− y)− t−nPx/t(y/t, y0/t)
∣∣2 dt

t

)1/2

×
(∫ ∞

0

|a(y, t)|2 dt
t

)1/2

dy

≤ C|Q|−1/p

∫
Q

(∫ ∞

0

∣∣Ψs,t(x− y)− t−nPx/t(y/t, y0/t)
∣∣2 dt

t

)1/2

dy

≤ C|Q|−1/p

∫
Q

|y − y0|M+1|x− y0|−n−M−1 dy

≤ C|Q|−1/p+1+(M+1)/n|x− y0|−n−M−1.

We note that p > n/(n+M + 1). Thus∫
Rn\Q̃

sup
s>0

∣∣Φs ∗ F ϵψ(a)(x)∣∣p dx
≤ C|Q|−1+p+p(M+1)/n

∫
Rn\Q̃

|x− y0|−p(n+M+1) dx ≤ C. (3.2)

Since
∫∞
0

|ψ̂(tξ)|2 dt/t ≤ C, by duality we have

sup
ϵ∈(0,1)

∥F ϵψ(h)∥2 ≤ C∥h∥L2
H
, h ∈ L2

H (Rn).

Thus, applying Hölder’s inequality, by the properties (i), (ii) of a we see

that∫
Q̃

sup
s>0

∣∣Φs ∗ F ϵψ(a)(x)∣∣p dx ≤ C|Q|1−p/2
(∫

Q̃

|M(F ϵψ(a))(x)|2 dx
)p/2

≤ C|Q|1−p/2
(∫

Q

∫ ∞

0

|a(y, t)|2 dt
t
dy

)p/2
≤ C. (3.3)
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The estimates (3.2) and (3.3) imply∫
Rn

sup
s>0

∣∣Φs ∗ F ϵψ(a)(x)∣∣p dx ≤ C. (3.4)

Using Lemma 3.1 and (3.4), we have∫
Rn

sup
s>0

∣∣Φs ∗ F ϵψ(h)(x)∣∣p dx ≤ C∥h∥p
Hp

H
.

This completes the proof. □

Proof of Lemma 3.4. The fact that E ∈ Hp
H (Rn) can be proved similarly

to the proof of Lemma 3.5 by applying the atomic decomposition forHp(Rn)
(see [18, Lemma 3.6]).

We write

F ϵ˜̄ψ(E)(x) =

∫ ϵ−1

ϵ

∫
Rn

ψt ∗ f(y)ψ̄t(y − x) dy
dt

t
=

∫
Rn

Ψ(ϵ)(x− z)f(z) dz,

where ψ̄ denotes the complex conjugate, g̃(x) = g(−x) and

Ψ(ϵ)(x) =

∫ ϵ−1

ϵ

∫
Rn

ψt(x+ y)ψ̄t(y) dy
dt

t
.

We note that

Ψ̂(ϵ)(ξ) =

∫ ϵ−1

ϵ

ψ̂(tξ)̂̄ψ(−tξ) dt
t

=

∫ ϵ−1

ϵ

|ψ̂(tξ)|2 dt
t
.

From this and Lemma 3.5 we have

∥f∥Hp ≤ C lim inf
ϵ→0

∥F ϵ˜̄ψ(E)∥Hp ≤ C∥E∥Hp
H
. □

Proof of Corollary 3.2. We take a function η as in Lemma 3.3. Then by

Lemma 3.3 with q = 2 and Lemma 3.4, it follows that

∥f∥Hp ≤ C ∥gη(f)∥p

for f ∈ Hp(Rn) ∩ S (Rn). If we use this and Theorem 2.10 with q = 2,



80 S. Sato

w = 1 and with η in place of ψ, we can reach the conclusion of Corollary

3.2. □

We can also prove discrete parameter versions of Proposition 2.3 and

Corollary 3.2 by analogous methods.

Proposition 3.6 Let N > 0, n/N < p, q < ∞. Suppose that w ∈ ApN/n
and that φ and ψ fulfill the hypotheses of Proposition 2.3 with N . Then, for

f ∈ S (Rn) we have∥∥∥∥∥
( ∞∑
j=−∞

|f ∗ ψbj |q
)1/q

∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥
( ∞∑
j=−∞

|f ∗ φbj |q
)1/q

∥∥∥∥∥
p,w

.

Corollary 3.7 Let 0 < p ≤ 1 and N > n/p. Suppose that φ fulfills the

hypotheses of Corollary 3.2 with N . Then, for f ∈ Hp(Rn) ∩ S (Rn) we

have

∥f∥Hp ≤ C

∥∥∥∥∥
( ∞∑
j=−∞

|f ∗ φbj |2
)1/2

∥∥∥∥∥
p

.

Also, from Proposition 3.6 we have discrete parameter analogues of The-

orems 2.9 and 2.10.

4. Proofs of Lemmas 2.1 and 2.5

In this section we give proofs of Lemmas 2.1 and 2.5 for completeness.

Proof of Lemma 2.1. There exist a finite family {Ij}Lj=1 of compact inter-

vals in (0,∞) and a positive constant c such that

inf
ξ∈Sn−1

max
1≤j≤L

inf
t∈Ij

M∑
i=1

|F (φ(i))(tξ)|2 ≥ c,

where Sn−1 = {ξ : |ξ| = 1}. This follows from a compactness argument,

since each F (φ(j)) is continuous.

Let b0 = max1≤h≤L(ah/bh), where Ih = [ah, bh]. Then b0 ∈ (0, 1) and if

b ∈ [b0, 1), t > 0 and 1 ≤ h ≤ L, h ∈ Z, we have bjt ∈ Ih for some j ∈ Z.
Let [m,H] be an interval in (0,∞) such that ∪Lj=1Ij ⊂ [m,H]. We take
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a non-negative function θ ∈ C∞
0 (R) such that θ = 1 on [m,H], supp θ ⊂

[m/2, 2H]. Then

∞∑
j=−∞

θ(bj |ξ|)
M∑
i=1

|F (φ(i))(bjξ)|2 =: Ψ(ξ) ≥ c > 0 for ξ ̸= 0.

We have Ψ(bkξ) = Ψ(ξ) for k ∈ Z. Define

F (η(j))(ξ) = θ(|ξ|)F (φ(j))(ξ)Ψ(ξ)−1 for ξ ̸= 0

and F (η(j))(0) = 0. Then, η has all the properties required in the lemma.

Also, from the construction, we can see that η̂ ∈ Ck(Rn) if φ̂ ∈ Ck(Rn\{0}).
This completes the proof. □

Proof of Lemma 2.5. Let −
∫
B(x,t)

f(y) dy= |B(x, t)|−1
∫
B(x,t)

f(y) dy, where

B(x, t) denotes a ball in Rn with center x and radius t. Then, for u, r > 0

and x, z ∈ Rn,

|F (x− z)| =
(
−
∫
B(x−z,u)

|F (y) + (F (x− z)− F (y))|r dy
)1/r

≤ Cr

(
−
∫
B(x−z,u)

|F (y)|r dy
)1/r

+ Cr

(
−
∫
B(x−z,u)

|F (x− z)− F (y)|r dy
)1/r

,

where Cr = 1 if r ≥ 1 and Cr = 2−1+1/r if 0 < r < 1. Therefore

|F (x− z)| ≤ Cr

(
−
∫
B(x−z,u)

|F (y)|r dy
)1/r

+ Cr sup
y:|x−z−y|<u

u|∇F (y)|. (4.1)

If |x− z − y| < u, |x− y| < u+ |z|. Thus we have
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|∇F (y)| ≤ |∇F (x+ (y − x))|
(1 +R|x− y|)N

(1 +R(u+ |z|))N

≤ |∇F |∗∗N,R(x)(1 + δ +R|z|)N

≤ 2N |∇F |∗∗N,R(x)(1 +R|z|)N

if we choose u = δ/R. Consequently,

sup
y:|x−z−y|<u

u|∇F (y)| ≤ 2Nu|∇F |∗∗N,R(x)(1 +R|z|)N (4.2)

with u = δ/R.

Also, if u = δ/R,

(
−
∫
B(x−z,u)

|F (y)|r dy
)1/r

≤
(
u−n(u+ |z|)n−

∫
B(x,u+|z|)

|F (y)|r dy
)1/r

≤ u−n/r(u+ |z|)n/rM(|F |r)(x)1/r

= δ−n/r(δ +R|z|)n/rM(|F |r)(x)1/r

≤ δ−n/r(1 +R|z|)n/rM(|F |r)(x)1/r. (4.3)

From (4.1), (4.2) and (4.3), we see that

|F (x− z)| ≤ Crδ
−n/r(1 +R|z|)n/rM(|F |r)(x)1/r

+ 2NCru|∇F |∗∗N,R(x)(1 +R|z|)N .

If N = n/r, it follows that

|F (x− z)|
(1 +R|z|)N

≤ Crδ
−NM(|F |r)(x)1/r + 2NCrδR

−1|∇F |∗∗N,R(x).

Thus we have the conclusion of the lemma by taking the supremum in z

over Rn. □
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[ 7 ] Hörmander L., Estimates for translation invariant operators in Lp spaces.

Acta Math. 104 (1960), 93–139.

[ 8 ] Peetre J., On spaces of Triebel-Lizorkin type. Ark. Mat. 13 (1975), 123–130.

[ 9 ] Rubio de Francia J. L., Ruiz F. J. and Torrea J. L., Calderón-Zygmund

theory for operator-valued kernels. Adv. in Math. 62 (1986), 7–48.

[10] Sato S., Remarks on square functions in the Littlewood-Paley theory. Bull.

Austral. Math. Soc. 58 (1998), 199–211.

[11] Sato S., Littlewood-Paley equivalence and homogeneous Fourier multipliers.

Integr. Equ. Oper. Theory 87 (2017), 15–44.

[12] Sato S., Characterization of parabolic Hardy spaces by Littlewood-Paley

functions, arXiv:1607.03645v2 [math.CA], Results Math 73 (2018), 106.

https://doi.org/10.1007/s00025-018-0867-9.

[13] Sato S., Characterization of H1 Sobolev spaces by square functions of

Marcinkiewicz type. J. Fourier Anal. Appl. (2018). https://doi.org/10.1007/

s00041-018-9618-2

[14] Sato S., Boundedness of Littlewood-Paley operators relative to non-isotropic

dilations. Czech Math J (2018). https://doi.org/10.21136/CMJ.2018.0313-

17.

[15] Sato S., Hardy spaces on homogeneous groups and Littlewood-Paley func-

tions. preprint, 2018.

[16] Stein E. M. and Weiss G., Introduction to Fourier Analysis on Euclidean

Spaces, Princeton Univ. Press, 1971.
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