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IPA-deformations of functions on affine space
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Abstract. We investigate deformations of functions on affine space, deformations in

which the changes specialize to a distinguished point in the zero-locus of the original

function. Such deformations – deformations with isolated polar activity – enable us

to obtain nice results on the cohomology of the Milnor fiber of the original function.
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1. Introduction

It is standard to investigate singularities of maps and spaces by looking
at deformations. We began doing this in our 1988 paper [10], and then, in
our 1996 paper [9], we defined prepolar deformations, but we did very little
with the notion.

In this paper, we will define a notion – deformations with isolated polar
activity or IPA-deformations – which is a more general notion than that of
our old prepolar deformations. An IPA-deformation is roughly analogous
to an unfolding of a map-germ such that the map-germ has an isolated
instability with respect to the given unfolding.

We will use many of our results from [7], in which we used the derived
category, nearby cycles, vanishing cycles, and a generalized notion of the
relative polar curve. We did this with respect to an arbitrary bounded,
constructible complex of Z-modules on an arbitrary complex analytic space
(and the results hold for more general base rings which are commutative,
regular, Noetherian, with finite Krull dimension). However, the extreme
generality of [7] makes the results there almost incomprehensible.

Even in the well-studied case of functions on affine space, the results we
obtain are non-trivial, but hard to decipher from [7]. Some of the results that
we obtain are familiar, but with weaker hypotheses, as in Theorem 3.1, while
the main result for IPA-deformations, Theorem 4.3, is new, and unavoidably
involves hypercohomology with coefficients in the sheaf of vanishing cycles.
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The basic essence of our results will certainly not be surprising for ex-
perts; the results say that if one has a complex analytic function germ at the
origin in affine space and one deforms the function in such a way that the
origin is the “only place where the deformation changes the function”, then
the Milnor fiber of the original function at the origin has cohomology which
“changes only in the top possible degree” (that is, in middle dimension). Of
course, making this precise is not simple.

An outline of this paper is as follows:

In Section 2, we give a conormal definition of the relative polar set |Γf,t|
of a function f with respect to a non-zero linear form t; when this is 1-
dimensional, we define the relative polar curve Γ1

f,t as a cycle. This is a
variant of the classical relative polar curve of Hamm, Lê, and Teissier (see,
for instance, [2], [15], [4], [5]). Our motivation for this seemingly convoluted
definition is that it turns out that the genericity that we need for our results
can be given simply by requiring dim0 |Γf,t|∩V (f) ≤ 0. We prove a number
of important properties about our polar set/curve.

In Section 3, we recover three classical results on Milnor fibers and
complex links, but we use our weaker hypothesis that dim0 |Γf,t|∩V (f) ≤ 0;
on the other hand, our results are also weaker, as they are on the level of
cohomology, not homotopy-type.

In Section 4, we define an IPA-deformation of a function f0 as a function
f and a non-zero linear form t such that f0 = f|V (t)

and dim0 |Γf,t|∩V (t) ≤ 0
(or, equivalently, dim0 |Γf,t| ∩ V (f) ≤ 0). Then, the main theorem, Theo-
rem 4.3 is:

Theorem Suppose that f is an IPA-deformation of f0. Then, there are
isomorphisms:
For k 6= n− 1,

H̃k(Ff0,0;Z) ∼= Hk
(
Ft,0 ∩ Σf ;φfZ•U

)
,

and

H̃n−1(Ff0,0;Z) ∼= Zγ ⊕Hn−1
(
Ft,0 ∩ Σf ;φfZ•U

)
,

where γ := (Γ1
f,t · V (t))0.

In particular, rank H̃n−1(Ff0,0;Z) ≥ γ.
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This theorem gives the reduced cohomology of the Milnor fiber Ff0,0 in
terms of a single intersection number and the hypercohomology Hk(Ft,0 ∩
Σf ;φfZ•U ), where Ft,0∩Σf is the Milnor fiber of the deformation parameter
t restricted to the critical locus Σf and φfZ•U is the complex of vanishing
cycles of the constant sheaf along f .

We also give two examples, where f0 has a 0- and 1-dimensional critical
locus, for which we can explicitly calculate H̃(Ff0,0;Z) via Theorem 4.3.

2. The Relative Conormal Space and Generalized Polar Curve

Let U be a connected open neighborhood of the origin in Cn+1 and let
f : (U ,0) → (C, 0) be a complex analytic function which is not identically
zero. We let t be a non-zero linear form on Cn+1, restricted to U . We write
Σf (respectively, Σ(f, t)) for the critical locus of f (respectively, of (f, t)).
We assume that U is chosen small enough so that Σf ⊆ V (f) := f−1(0).

Suppose that M is a complex submanifold of U . For x ∈ M , let TxM

denote the tangent space of M at x. Let T ∗U ∼= U × Cn+1 denote the
cotangent space of U and let π : T ∗U → U be the projection.

Below, we will recall the now-classic notions of the conormal and rela-
tive conormal spaces (see, for instance, [16]). We should mention that our
definition of the relative conormal space of f restricted to M deviates from
the standard definition, in that we do not eliminate critical points of f|M .
In Remark 2.2, we will discuss our reasons for this, and point out why, in
the case of M = U , it yields the usual closure.

Definition 2.1 The conormal space T ∗MU is defined by

T ∗MU := {(x, η) ∈ T ∗U ∩ π−1(M) | η(TxM) = 0}.

The relative conormal space T ∗f|M U is defined by

T ∗f|M U := {(x, η) ∈ T ∗U ∩ π−1(M) | η(TxM ∩ ker dxf) = 0}.

Remark 2.2 Definition 2.1 agrees with the definition we have used in
several other of our papers, other papers in which we needed to consider the
case where f is constant on M . In this degenerate case, we want the relative
conormal space of f|M in U to be equal to the conormal space of M in U ;
this requires our modified definition. However, since U is connected and we
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are assuming that f is not constant on U , once we take closures in T ∗U , the
original notion and our modified notion yield the same space for f = f|U .

To see this, note that the fiber, (T ∗f U)x, of T ∗f U over a point x ∈ U is
given by:

(T ∗f U)x =

{{λ dxf}λ∈C, if x 6∈ Σf ;

0, if x ∈ Σf.

Thus, there is an equality of the closures in T ∗U given by

T ∗f|U−Σf
U = T ∗f U ,

and this analytic set is irreducible of dimension n + 2.

We shall need the following proposition later.

Proposition 2.3 Suppose that Y is an irreducible component of Σf .
Then, T ∗Yreg

U ⊆ T ∗f U .
In fact, for an open dense (in the analytic Zariski topology) subset Q ⊆

Yreg, there is an equality

T ∗QU = T ∗f U ∩ π−1(Q).

Proof. An af stratification of V (f) (which exists by [2] or [3]) yields (by
considering the strata contained in Σf) a complex analytic stratification S

of Σf with connected strata such that, for all S ∈ S,

T ∗f U ∩ π−1(S) ⊆ T ∗SU . (†)

In particular,

T ∗f U ∩ π−1(Σf) ⊆
⋃

S∈S

T ∗SU . (‡)

Note that, for each irreducible component Y of Σf , there must exist a unique
stratum SY ∈ S such that SY = Y . We claim that SY can be used for the
Q referred to in the statement of the theorem.

It is well-known and easy to see that the projectivization P(T ∗f U) ⊆
U × Pn over the critical locus Σf is isomorphic to the exceptional divisor of
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the blow-up of U via the Jacobian ideal. Hence, each irreducible component
has dimension n. By un-projectivizing, this tells us that T ∗f U ∩ π−1(Σf) is
purely (n + 1)-dimensional.

Thus, (‡) implies that T ∗f U ∩ π−1(Σf) is a union of some of the T ∗SU
for S ∈ S (in micro-local terminology, this means that T ∗f U ∩ π−1(Σf) is
Langrangian). Let us write S′ for the subset of S such that

T ∗f U ∩ π−1(Σf) =
⋃

S∈S′
T ∗SU .

In addition, since this maps surjectively maps onto Σf , for each irreducible
component Y of Σf , SY ∈ S′.

Therefore, for each irreducible component Y of Σf ,

T ∗Yreg
U = T ∗

SY U ⊆ T ∗f U ,

which proves the first statement of the theorem.
The second statement follows from the first statement, since (†) tells us

that

T ∗f U ∩ π−1(SY ) ⊆ T ∗SY U . ¤

Below, we consider the intersection product, (− · −); as we will always
be dealing with proper intersections inside a smooth manifold, this will
yield a well-defined intersection cycle (not just a cycle class modulo rational
equivalence). See [1, Section 8.2 and Example 11.4.4].

Recall that t is a non-zero linear form on Cn+1, restricted to U . We will
also consider im dt, the image of the differential of t. To be clear, this means
that

im dt := {(x, dxt) ∈ T ∗U | x ∈ U};

Note that im dt has dimension n + 1, so that T ∗f U properly intersects im dt

in T ∗U if and only if

dim
(
T ∗f U ∩ im dt

)
= (n + 2) + (n + 1)− 2(n + 1) = 1.

Observe that the restriction, π̂, of π to T ∗f U ∩ im dt yields an analytic iso-
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morphism to its image π
(
T ∗f U ∩ im dt

)
, with inverse π̂−1 : π

(
T ∗f U ∩ im dt

) →
T ∗f U ∩ im dt given by π̂−1(x) = (x, dxt).

We can now define our mild generalization of the relative polar curve,
introduced in [7]:

Definition 2.4 The relative polar set is

∣∣Γf,t

∣∣ = π
(
T ∗f U ∩ im dt

)
.

If C is a 1-dimensional irreducible component of
∣∣Γf,t

∣∣, then T ∗f U and
im dt must intersect properly over C (i.e., along π̂−1(C)), and we define the
multiplicity mC of C in Γf,t to be the intersection multiplicity of the
cycles T ∗f U and im dt over C.

If
∣∣Γf,t| is purely 1-dimensional, then we define the relative polar

curve (cycle) to be the proper push-forward of the intersection product of
the cycles T ∗f U and im dt:

Γ1
f,t := π∗

([
T ∗f U

] · [im dt]
)

=
∑

C

mC [C],

where the sum is over the irreducible components C of
∣∣Γf,t|.

Remark 2.5 If t is generic enough (see the next proposition) so that
dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0, then, near the origin,

∣∣Γf,t

∣∣ = Σ(f, t)− Σf,

and so
∣∣Γf,t

∣∣ is the classical relative polar curve of Hamm, Lê, and Teissier.

However, frequently in these classic works, t was also required
to be generic enough so that the cycle Γ1

f,t was reduced, i.e., each
component occurs with multiplicity 1 in the cycle. This is equiva-
lent to requiring that T ∗f U transversely intersects im dt in T ∗U . Our
results do not require t to be so generic.

In fact, with our definition, there is no need for t to be a linear form;
t could be replaced by an arbitrary complex analytic function g : U → C,
which may have critical points. Then, the “genericity” that we need is still
essentially the same; we require that dim0 V (g) ∩

∣∣Γf,g

∣∣ ≤ 0.
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We now prove many properties possessed by the relative polar set and
curve.

Proposition 2.6 Let (t, z1, . . . , zn) be coordinates on U . The relative polar
set and curve have the following properties:

(1) The dimension of every component of
∣∣Γf,t

∣∣ must be at least 1 (which
includes vacuously the case of the empty set, which has no irreducible
components), i.e., there are no isolated points in

∣∣Γf,t

∣∣.
(2) Suppose that p 6∈ Σf . Then, near p,

∣∣Γf,t

∣∣ = V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
= Σ(f, t).

Thus,

Σ(f, t) = Σf ∪
∣∣Γf,t

∣∣.

(3) Furthermore, if C is a 1-dimensional component of
∣∣Γf,t

∣∣, and C 6⊆ Σf ,
then the multiplicity, mC , of C in the cycle Γf,t is precisely the geometric
multiplicity of the scheme

V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)

in an open neighborhood of a generic point p on C, which equals the
Milnor number µp(f|V (t−t(p))

− f(p)).
(4) There exists an open neighborhood W of the origin such that

W ∩
∣∣Γf,t

∣∣ ∩ V (t) = W ∩
∣∣Γf,t

∣∣ ∩ V (f).

In particular, dim0

∣∣Γf,t

∣∣∩V (t) ≤ 0 if and only if dim0

∣∣Γf,t

∣∣∩V (f) ≤ 0
(where the strict inequalities means that 0 6∈

∣∣Γf,t

∣∣, i.e.,
∣∣Γf,t

∣∣ is empty
at 0).

(5) For generic t, dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0.
Specifically, if S is an af stratification of V (f) and t is such that there
exists an open neighborhood W of the origin such that, in W−{0}, V (t)
transversely intersects all S ∈ S, then dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0.
In particular, if dim0 Σ(f|V (t)

) = 0, then dim0

∣∣Γf,t

∣∣ ∩ V (t) ≤ 0, which
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implies that dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0.

Proof. While all of these properties can be concluded from results in [7],
the proofs and statements there are far more abstract than we need here.
Hence, we will give more basic proofs which apply to our current setting.

Item (1): This is trivial. The dimension of every component of T ∗f U ∩ im dt

is at least

dimT ∗f U + dim(im dt)− dimT ∗U = (n + 2) + (n + 1)− 2(n + 1) = 1,

and π induces an isomorphism from this intersection to |Γf,t|.
Items (2) and (3): We use (w0, w1, . . . , wn) for our cotangent coordinates
and it is notationally convenient to let z0 := t, so that we have

(z0, z1, . . . , zn, w0, w1, . . . , wn)

for coordinates on T ∗U . Note that, in these coordinates im dt = im dz0 is
equal to

V (w0 − 1, w1, . . . , wn).

Suppose that p 6∈ Σf . Then, in a neighborhood of (p, dpt), w0 6= 0 and
T ∗f U = T ∗f U is given, as a scheme, by

T ∗f U = V

(
wi

∂f

∂zj
− wj

∂f

∂zi

)

0≤i,j≤n

= V

(
w0

∂f

∂zj
− wj

∂f

∂z0

)

1≤j≤n

Therefore, in a neighborhood of p,

π
(
T ∗f U ∩ im dt

)
= π

(
V

(
w0

∂f

∂zj
− wj

∂f

∂z0

)

1≤j≤n

∩ V (w0 − 1, w1, . . . , wn)
)

− π

(
V

(
∂f

∂z1
, . . . ,

∂f

∂zn
, w0 − 1, w1, . . . , wn

))

= V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
.

This proves (2).
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Now, if C ′ is a 1-dimensional component of T ∗f U ∩ im dt, then, at generic
points of C ′,

{
w0

∂f

∂zj
− wj

∂f

∂z0

}

1≤j≤n

, w0 − 1, w1, . . . , wn

is a regular sequence, and so the multiplicity of C ′ in T ∗f U · im dt is the
multiplicity of the scheme

V

(
∂f

∂z1
, . . . ,

∂f

∂zn
, w0 − 1, w1, . . . , wn

)

along C ′. The conclusion of (3) follows immediately.

Item (4):
Suppose this is false. Then either 0 ∈ ∣∣Γf,t

∣∣ ∩ V (t)− V (f) or 0 ∈∣∣Γf,t

∣∣ ∩ V (f)− V (t).
First, we fix an af stratification S of V (f) with connected strata; such

a stratification exists by [3]. As we used earlier in Proposition 2.3, the
conormal characterization of an af stratification is that, for all S ∈ S,

T ∗f U ∩ π−1(S) ⊆ T ∗SU .

Now, suppose that 0 ∈ ∣∣Γf,t

∣∣ ∩ V (t)− V (f). Let α(u) be a complex
analytic curve such that α(0) = 0 and, for u 6= 0, α(u) ∈ ∣∣Γf,t

∣∣∩V (t)−V (f).
For 0 < |u| ¿ 1, α(u) 6∈ V (f) and so α(u) 6∈ Σf . By Item (2), for all u,

α(u) ∈ V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
.

Thus, by the Chain Rule, and using that α(u) ∈ V (t),

(
f(α(u))

)′ = (t|α(u)
)′

∂f

∂t
∣∣

α(u)

≡ 0.

Hence, f(α(u)) is a constant, and that constant must be 0; this contradicts
that α(u) 6∈ V (f) for u 6= 0.

Suppose instead that 0 ∈ ∣∣Γf,t

∣∣ ∩ V (f)− V (t). Let α(u) be a complex
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analytic curve such that α(0) = 0 and, for u 6= 0, α(u) ∈ ∣∣Γf,t

∣∣∩V (f)−V (t).
Then, there exists a unique stratum S in our af stratification such that, for
0 < |u| ¿ 1, α(u) ∈ S. Since α(u) ∈

∣∣Γf,t

∣∣,

(α(u), dα(u)t) ∈ T ∗f U ∩ π−1(S) ⊆ T ∗SU .

As α′(u) ∈ Tα(u)S, we conclude that dα(u)t(α′(u)) = (t|α(u)
)′ ≡ 0. Thus,

t|α(u)
must be a constant, and that constant must be 0; this contradicts that

α(u) 6∈ V (t) for u 6= 0.

Item (5): Finally, we will show that, for a generic linear form t, dim0

∣∣Γf,t

∣∣∩
V (f) ≤ 0. By generic, we mean that its projective class is in an open dense
subset of the projectivized dual of Cn+1. The argument that we give is due
to Hamm and Lê in [2].

Recall that we fixed an af stratification S for V (f) in Item (4). For each
stratum S ∈ S, T ∗SU is irreducible and conic of dimension n + 1. Writing
P(T ∗SU) for its projectivization in the cotangent directions, we have that
P(T ∗SU) is an irreducible n-dimensional subvariety

P(T ∗SU) ⊆ P(T ∗U) ∼= U × Pn.

Therefore, if S 6= {0}, then the fiber over the origin P(T ∗SU)0 is a subvariety
of {0} × Pn ∼= Pn of dimension at most n − 1. Consider the open dense
subset Ω of Pn given by

Ω := Pn −
⋃

S 6={0}
P(T ∗SU)0.

Let t be such that its projective class [d0t] is in Ω, i.e., t is such that

d0t 6∈
⋃

S 6={0}

(
T ∗SU ∩ π−1(0)

)
;

this is equivalent to selecting t so that there exists an open neighborhood
W such that V (t) transversely intersects all S ∈ S inside W − {0} (where
we use that stratified critical points of t near 0 must occur inside V (t)).

Thus,
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π−1(W) ∩ im dt ∩
⋃

S 6={0}
T ∗SU = ∅.

Now, using that S is an af stratification, we find

π−1(W) ∩ T ∗f U ∩ (f ◦ π)−1(0) ∩ im dt

= π−1(W) ∩ T ∗f U ∩ π−1

( ⋃

S∈S

S

)
∩ im dt

⊆ π−1(W) ∩
( ⋃

S∈S

T ∗SU
)
∩ im dt = π−1(W) ∩ T ∗{0}U ∩ im dt.

Therefore, W ∩ |Γf,t| ∩ V (f) ⊆ {0}, i.e., dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0.
The last statement of this item follows from the af statement, but is

trivial to prove independently.

Σ(f|V (t)
) = V

(
∂f

∂z1
, . . . ,

∂f

∂zn
, t

)
,

which, by Item (2), is equal to

(
Σf ∪

∣∣Γf,t

∣∣) ∩ V (t)

If the dimension of this at the origin is at most 0, then certainly dim0

∣∣Γf,t

∣∣∩
V (t) ≤ 0. ¤

Remark 2.7 Given the previous proposition, the definition of the relative
polar curve given in Definition 2.4 may seem needlessly convoluted. Why
not just define Γf,t to be Σ(f, t)− Σf and, if this is 1-dimensional, give it
the cycle structure in which the coefficient of a component C is the Milnor
number of f − f(p), restricted to a transverse hyperplane slice to C at a
generic point p ∈ C?

In fact, Item 2 of Proposition 2.6 does not prohibit the possibility that
a component of Γf,t is contained in Σf ; this is what makes our definition
of the relative polar curve more general than the traditional one. However,
the condition that we will always require on t is that dim0

∣∣Γf,t

∣∣∩V (f) ≤ 0,
which means that we need for this theoretical possibility to not occur.

In conormal terms, the condition that dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0 is equiva-
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lent to requiring that (0, d0t) be an isolated point of

T ∗f U ∩ (f ◦ π)−1(0) ∩ im dt.

This is the property that we needed for many of the results in [7], which we
shall use later in this paper.

We wish to give a classic example of the relative polar curve and some
of the properties given in Proposition 2.6.

Example 2.8 Consider the function given by f(t, x, y) = y2 − x3 − tx2.
Considered as a family in t, the zero-locus of f , V (f), is a family of nodes,
degenerating to a cusp. Up to an analytic change of coordinates, this is the
complex Whitney umbrella.

One easily verifies that critical locus of f is Σf = V (x, y) = t-axis.
Furthermore,

Σ(f, t) = V

(
∂f

∂x
,
∂f

∂x

)
= V (−3x2 − 2tx, 2y) = V (x, y) ∪ V (3x + 2t, y).

Note that Σ(f, t)∩V (t) = {0}, which, by Item 2 of Proposition 2.6, implies
that

dim0

∣∣Γf,t

∣∣ ∩ V (t) ≤ 0

and, equivalently, that dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0. Thus, Σf does not contain
a component of

∣∣Γf,t

∣∣, and so

∣∣Γf,t

∣∣ = Σ(f, t)− Σf = V (3x + 2t, y).

As the geometric multiplicity of V (3x + 2t, y) is 1, we have an equality of
cycles

Γ1
f,t = [V (3x + 2t, y)].

3. Generalizations of Classical results

The only theorem in this section contains, on the level of cohomology,
generalizations of Lê’s main result in [4], a result of Siersma in [14], and a
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result of Lê and Perron in [6]. These are generalizations in the sense that
the hypothesis needed is significantly weaker than those used in the earlier
theorems.

We let f0 := f|V (t)
, and we let Ff,0 and Ff0,0 denote, respectively, the

Milnor fibers of f and f0 at the origin. Also let B◦
ε (0) denote the open ball

of radius ε > 0, centered at 0.
Recall that, from Remark 2.5, dim0

∣∣Γf,t

∣∣ ∩ V (t) ≤ 0 if and only if
dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0.

Theorem 3.1 Suppose that dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0 (or, equivalently,
dim0

∣∣Γf,t

∣∣ ∩ V (t) ≤ 0).
Then, for 0 < |v| ¿ |c| ¿ ε ¿ 1,

(1) For all k, there are isomorphisms

Hk(B◦
ε (0) ∩ f−1(v), B◦

ε (0) ∩ t−1(c) ∩ f−1(v); Z)

∼= Hk(B◦
ε (0) ∩ f−1(v), B◦

ε (0) ∩ V (t) ∩ f−1(v); Z)

= Hk(Ff,0, Ff0,0; Z) ∼=
{
Zτ , if k = n,

0, if k 6= n,

where τ := (Γ1
f,t · V (f))0.

(2) The complex link of V (f) at the origin (with respect to t),

LV (f),0 := B◦
ε (0) ∩ V (f) ∩ t−1(c),

has reduced cohomology given by

H̃k(LV (f),0;Z) ∼=
{
Zγ , if k = n− 1,

0, if k 6= n− 1,

where γ := (Γ1
f,t · V (t))0.

Proof. In the statement of the theorem, we have suppressed any use of
the derived category, vanishing cycles, and nearby cycles. However, we will
necessarily need them to translate the results [7] into the forms that appear
in Theorem 3.1.

First,
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Hk
(
B◦

ε (0) ∩ f−1(v), B◦
ε (0) ∩ t−1(c) ∩ f−1(v); Z

)

∼= Hk−n
(
φg[−1]ψf [−1]Z•U [n + 1]

)
0
.

Now, Theorem 3.14 of [7] implies that

Hk
(
B◦

ε (0) ∩ f−1(v), B◦
ε (0) ∩ t−1(c) ∩ f−1(v); Z

) ∼=
{
Zτ , if k = n,

0, if k 6= n.

That this is also isomorphic to Hk(Ff,0, Ff0,0; Z) is immediate from Item
1 of Corollary 4.6 of [7].

Item 2 of Corollary 4.6 of [7] tells us that

Hn+k
(
Ft,0, Ft|V (f)

,0;Z
)

is non-zero only if k = 0 and, if k = 0, is isomorphic to Zγ . As Ft,0 is
contractible, Item 2 of Theorem 3.1 follows from the long exact sequence of
the pair (Ft,0, Ft|V (f)

,0). ¤

Remark 3.2 It is important to note that we have said that Theorem 3.1
generalizes earlier works on the level of cohomology. In fact, these earlier
works have stronger conclusions.

The first isomorphism of Item 1 of Theorem 3.1 is the cohomological
version of an isotopy result proved in Lê and Perron in [6] (their ambient
space is C3, but that is irrelevant to their proof). In [4], Lê actually proves
that Ff,0 is obtained, up to homotopy, from Ff0,0 by attaching τ n-cells. In
[14], Siersma proves that LV (f),0 has the homotopy-type of a bouquet of γ

(n− 1)-spheres.
It is important to note that the isomorphism

Hk
(
B◦

ε (0) ∩ f−1(v), B◦
ε (0) ∩ t−1(c) ∩ f−1(v); Z

)

∼= Hk
(
B◦

ε (0) ∩ f−1(v), B◦
ε (0) ∩ V (t) ∩ f−1(v); Z

)

is not natural. In particular, the Milnor monodromy of f – the monodromy
as the value of v travels in a circle around the origin – acts differently on
these two modules.
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4. IPA-deformations

In Section 3, we avoided referring to hypercohomology and vanishing
cycles in our statements of results. In this section, that is not possible.
However, we shall give some examples which will, hopefully, make the results
more accessible.

Definition 4.1 Let W be an open neighborhood of the origin in Cn, and
suppose we have a complex analytic function f0 : (W,0) → (C, 0). Then,
a deformation of f0 with isolated polar activity at 0, or an IPA-
deformation of f0, with parameter t, is a complex analytic f : D◦×W →
C, where D◦ is an open disk around the origin in C, such that, if t denotes
the projection onto D◦ and we identify W with {0} × W, then f0 = f|V (t)

and dim0

∣∣Γf,t

∣∣ ∩ V (t) ≤ 0 (or, equivalently, dim0

∣∣Γf,t

∣∣ ∩ V (f) ≤ 0).
A null IPA-deformation is an IPA-deformation for which 0 6∈ ∣∣Γf,t

∣∣.
Throughout the remainder of this paper, we assume that f is

an IPA-deformation of f0 : (W,0) → (C, 0) at 0, where W is an open
neighborhood of the origin in Cn.

The following proposition tells us that the critical locus is well-behaved
in IPA-deformations.

Proposition 4.2 The following cases can occur :

• If 0 6∈ Σf , then, in a neighborhood of the origin, Σ(f0) = |Γf,t|∩V (t),
and so either 0 6∈ Σf0 or dim0 Σ(f0) = 0.

• If 0 ∈ Σf , then in a neighborhood of the origin, Σ(f0) = Σf ∩ V (t)
and, if dim0 Σf ≥ 1, then dim0 Σf ∩ V (t) = dim0 Σf − 1.

Proof. We use (t, z1, . . . , zn) for coordinates on U . Then,

Σ(f0) = V

(
∂f

∂z1
, . . . ,

∂f

∂zn
, t

)

=
(
Σf ∪ |Γf,t|

) ∩ V (t) =
(
Σf ∩ V (t)

) ∪ (|Γf,t| ∩ V (t)
)
.

As we are assuming that dim0 |Γf,t|∩V (t) ≤ 0, all of the conclusions follow,
with the exception of the final dimension claim.

The only way that we can have dim0 Σf ∩ V (t) 6= dim0 Σf − 1 is if
V (t) contains an irreducible component Y of Σf which contains the origin.
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However, Proposition 2.3 tells us that T ∗Yreg
U ⊆ T ∗f U . Furthermore, Y ⊆

V (t) implies that π
(
T ∗Yreg

U ∩ im dt
)

= Y . But this implies that Y ⊆ |Γf,t| ∩
V (t). This would contradict that the dimension of Y is at least 1 and that
f is an IPA-deformation. ¤

Below, we will use the Milnor fiber, Ft,0, of t at the origin, and consider
the space

Ft,0 ∩ Σf = B◦
ε (0) ∩ Σf ∩ t−1(a),

where 0 < |a| ¿ ε ¿ 1. This should be thought of as the “complex link of
Σf at 0” (with respect to t).

The vanishing cycles along f are denoted by φf , and H denotes hyper-
cohomology with respect to a complex of sheaves.

Theorem 4.3 There are isomorphisms:
For k 6= n− 1,

H̃k(Ff0,0;Z) ∼= Hk
(
Ft,0 ∩ Σf ;φfZ•U

)
,

and

H̃n−1(Ff0,0;Z) ∼= Zγ ⊕Hn−1
(
Ft,0 ∩ Σf ;φfZ•U

)
,

where γ := (Γ1
f,t · V (t))0.

In particular, rank H̃n−1(Ff0,0;Z) ≥ γ.

Proof. This is precisely Item 3 of Corollary 4.6 of [7], with F• = Z•U [n+1],
noting that

ψt[−1]Z•U [n + 1] ∼= Z•|V (t)
[n],

since φt[−1]Z•U [n + 1] = 0 as t has no critical points. ¤

As an immediate corollary, we have:

Corollary 4.4 Suppose that Hn−1(Ff0,0;Z) = 0. Then f is a null IPA-
deformation.

We wish now to give two examples.



IPA-deformations of functions on affine space 671

Example 4.5 Suppose dim0 Σ(f0) = 0.
If dim0 Σf ≤ 0, then Ft,0 ∩Σf = ∅ and Hk(Ft,0 ∩Σf ;φfZ•U ) = 0 for all

k.
If dim0 Σf = 1, then

• Ft,0 ∩ Σf consists of a finite number of points {p1, . . . , pm},
• Hk(Ft,0 ∩ Σf ;φfZ•U ) = 0 for k 6= n− 1, and
• Hn−1(Ft,0 ∩ Σf ;φfZ•U ) =

⊕
i Z

µpi
(f|V (t−t(pi))

).

Thus, we arrive at the well-known, easy result that

µ0(f0) = (Γ1
f,t · V (t))0 +

∑

p∈Ft,0∩Σf

µp(f|V (t−t(p))
).

Example 4.6 Suppose dim0 Σ(f0) = 1. Then, Proposition 4.2 tells us
that dim0 Σf = 2 and, hence, Ft,0 ∩ Σf is 1-dimensional. Calculating
Hk(Ft,0 ∩ Σf ;φfZ•U ) in this case is generally highly non-trivial. But, in
this example, we will look at a special case.

First, we need to discuss the cohomology of the Milnor fiber at the origin
of

g(x, y, s) := y2 − xb − sxa,

where b > a ≥ 2. This does not use IPA-deformations.
By the Sebastiani-Thom result [12], the Milnor fiber Fg,0 is, up to

homotopy, the suspension of the Milnor fiber of h(x, s) := −xb − sxa =
−xa(xb−a +s). After an analytic change of coordinates at the origin, letting
ŝ := xb−a + s, we find that h becomes ĥ(x, ŝ) = −xaŝ. This is a homoge-
neous polynomial, and so, by Lemma 9.4 of [11], Fĥ,0

∼= ĥ−1(1). But this
is simply the graph of the function k : C∗ → C2 given by k(x) = −1/xa,
which is isomorphic to C∗. Thus, we find that, regardless of the values of a

and b, Fg,0 has the homotopy-type of S2 and so, for k 6= 2, H̃k(Fg,0;Z) = 0
and H̃2(Fg,0;Z) ∼= Z.

Now consider f0(x, y, s) := y2−xb− smxa, where b > a ≥ 2 and m ≥ 2.
Again, this is a suspension, but we can no longer perform an analytic change
of coordinates on −xa(xb−a + sm) to immediately determine the homotopy-
type or cohomology of Ff0,0. It may be true that we could analyze this by
other techniques, but, instead we will use IPA-deformations.
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We claim that f(x, y, s, t) := y2−xb−smxa +txa is an IPA-deformation
of f0 and that Theorem 4.3 allows us to calculate H∗(Ff0,0;Z).

We first want to produce an af stratification of V (f). It is trivial to
verify that Σf = V (x, y). Now, consider the 2-parameter family of isolated
critical points given by

fs,t(x, y) := y2 − xb − smxa + txa.

The partial derivatives are

∂fs,t

∂x
= −bxb−1 − asmxa−1 + atxa−1 = −xa−1

(
bxb−a + a(sm − t)

)
and

∂fs,t

∂y
= 2y,

and we find that the Milnor numbers of fs,t at (x, y) = (0, 0) are given by

µ0(fs,t) =

{
a− 1, if sm − t 6= 0,

b− 1, if sm − t = 0.

By Theorem 6.8 of [8], this implies that

S := {V (f)− V (x, y), V (x, y)− V (sm − t), V (x, y, sm − t)}

is an af stratification of V (f). Furthermore, V (t) clearly transversely inter-
sects V (f)−V (x, y) and V (x, y)−V (sm−t) and also, vacuously, transversely
intersects V (x, y, sm − t) in C4 − {0}. Therefore, by Item (5) of Proposi-
tion 2.6, f is an IPA-deformation of f0.

Thus, Theorem 4.3 tells us that:
for k 6= 2,

H̃k(Ff0,0;Z) ∼= Hk
(
Ft,0 ∩ Σf ;φfZ•U

)
,

and

H̃2(Ff0,0;Z) ∼= Zγ ⊕H2
(
Ft,0 ∩ Σf ;φfZ•U

)
,

where γ := (Γ1
f,t · V (t))0.
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Items (2) and (3) of Proposition 2.6 tell us how to calculate Γ1
f,t. First,

we have

Σf ∪ |Γf,t| = V

(
∂f

∂x
,
∂f

∂y
,
∂f

∂s

)

= V
(− xa−1(bxb−a + a(sm − t)), 2y, −msm−1xa

)

= V (x, y) ∪ V
(
bxb−a + a(sm − t), y, sm−1

)
,

and we see that

|Γf,t| = V
(
bxb−a + a(sm − t), y, sm−1

)
.

However, above, we were careful to preserve the cycle structure on |Γf,t| in
our calculation. Thus, we find

Γ1
f,t =

[
V

(
bxb−a + a(sm − t), y, sm−1

)]
= (m− 1)V (bxb−a − at, y, s)

and
(
Γ1

f,t · V (t)
)
0

=
(
(m− 1)V (bxb−a − at, y, s) · V (t)

)
0

= (m− 1)(b− a).

It remains for us to calculate Hk(Ft,0 ∩ Σf ;φfZ•U ).
For 0 < |c| ¿ ε ¿ 1,

Ft,0 ∩ Σf = B◦
ε (0) ∩ Σf ∩ V (t− c)

is an open disk D containing the origin in the copy of the s-plane where
x = 0, y = 0, and t = c. By our earlier calculation of µ0(fs,t), we know
that the restriction to D of φfZ•U is locally constant, with stalk cohomology
which is non-zero only in degree 1, on D − {p1, . . . , pm}, where the pi’s are
the m distinct m-th roots of c; the stalk cohomology of this local system in
degree 1 is isomorphic to Za−1. In addition, our earlier calculation of the
cohomology of the Milnor fiber of g(x, y, s) := y2 − xb − sxa at 0 tells us
that, at each pi, the stalk cohomology at pi of the restriction to D of φfZ•U is
zero in all degrees other than degree 2, where the cohomology is isomorphic
to Z.

Now, an easy induction on m, using the Mayer-Vietoris long exact se-
quence for hypercohomology, tells us that, for k 6= 2, Hk(Ft,0∩Σf ;φfZ•U ) =



674 D. B. Massey

0 and H2(Ft,0 ∩ Σf ;φfZ•U ) ∼= Z(m−1)a+1. Therefore, we conclude that, for
k 6= 2, H̃k(Ff0,0;Z) = 0, and

H̃2(Ff0,0;Z) ∼= Z(m−1)(b−a) ⊕ Z(m−1)a+1 ∼= Z(m−1)b+1.

Note that, when m = 1, we obtain our previous result for Fg,0. Also
note that, when a = 2, one obtains from [13], and the calculation of the
Euler characteristic via [4], that Ff0,0 has the homotopy-type of a bouquet
of (m− 1)b + 1 two-spheres.

5. Comments and Future Directions

Comment 1: The reduced cohomology of the Milnor fiber Ff0,0 is the
cohomology of a chain complex

0 → Zλs
f0,z(0) → Zλs−1

f0,z(0) → · · · → Zλ0
f0,z(0) → 0,

where λi
f0,z(0) is the i-th Lê number of f0 at the origin with respect to

the coordinates z = (z1, . . . , zn). See [8].
The isomorphisms in Theorem 4.3 may be thought of as refinements

of the formulas, given in Proposition 1.21 of [8], for the Lê numbers of a
function restricted to a hyperplane slice:
For all k ≥ 1,

λk
f|V (t)

,z(0) = λk+1
f,(t,z)(0).

and

λ0
f|V (t)

,z(0) =
(
Γ1

f,t · V (t)
)
0

+ λ1
f,(t,z)(0).

Comment 2: Example 4.6 is very special. In general, it is unclear precisely
when one can explicitly calculate Hk(Ft,0∩Σf ;φfZ•U ) or even obtain better
general bounds than are currently known.

Comment 3: Perhaps the next “easiest” case where one can specialize the
results of [7] is the case where X is a local complete intersection (LCI) and
we want to deform f0 : X → C via f : X̃ → C, where X̃ is again an LCI.
The point is that X̃ being a purely d-dimensional LCI implies Z•eX [d] is a
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perverse sheaf, which simplifies the results of [7].
However, the LCI case is still much more complicated than the affine

case. First, because the vanishing cycles φtZ•eX [d] need not be zero and,

second, because the data that we would need about X̃ – before considering
f – is the characteristic cycle CC(X̃). This is highly non-trivial data, which
is not easy to calculate given the defining functions for X̃.
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