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Discrete Green Potentials with Finite Energy
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Abstract. For a hyperbolic infinite network, it is well-known that Green potentials

with finite energy are Dirichlet potentials. Conversely, if a Dirichlet potential has

non-positive Laplacian, then it is a Green potential with finite energy. In this paper,

we study whether a Dirichlet potential can be expressed as a difference of two Green

potentials with finite energy. Comparisons of the Dirichlet sum of a function and that

of its Laplacian play important roles in our study. As a by-product, we obtain a Riesz

decomposition of a function whose Laplacian is a Dirichlet function.

Key words: discrete potential theory, Dirichlet potential, Green potential, Riesz rep-
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1. Introduction with preliminaries

Let N = {V, E, K, r} be an infinite network which is connected and
locally finite and has no self-loop, where V is the set of nodes, E is the set
of arcs, and the resistance r is a strictly positive function on E. For x ∈ V

and for e ∈ E the node-arc incidence matrix K is defined by K(x, e) = 1
if x is the initial node of e; K(x, e) = −1 if x is the terminal node of e;
K(x, e) = 0 otherwise. Let L(V ) be the set of all real valued functions on
V , L+(V ) the set of all non-negative real valued functions on V , and L0(V )
the set of all u ∈ L(V ) with finite support. We similarly define L(E), L+(E),
and L0(E). For u ∈ L(V ) we define the discrete derivative ∇u ∈ L(E) and
the Laplacian ∆u ∈ L(V ) as

∇u(e) = −r(e)−1
∑

x∈V

K(x, e)u(x),

∆u(x) =
∑

e∈E

K(x, e)∇u(e).

For convenience we give specific forms. For e ∈ E let x+ ∈ V be the initial
node of e and x− ∈ V the terminal node of e. Then
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∇u(e) =
u(x−)− u(x+)

r(e)
.

For x ∈ V let {e1, . . . , ed} be the set of edges adjacent to x and yj the other
node of ej . Then

∆u(x) =
d∑

j=1

u(yj)− u(x)
r(ej)

.

For u, v ∈ L(V ) and for ϕ,ψ ∈ L(E), we put

〈ϕ,ψ〉 =
∑

e∈E

r(e)ϕ(e)ψ(e),

(u, v) = 〈∇u,∇v〉,
‖u‖ = (u, u)1/2,

and call (u, v) the Dirichlet mutual sum of u and v and ‖u‖ the Dirichlet
seminorm of u.

We define some classes of functions on V as

D = {u ∈ L(V ) | ‖u‖ < ∞},
H = {u ∈ D | ∆u ≡ 0},

D(2) = {u ∈ L(V ) | ∆u ∈ D},
H(2) = {u ∈ D(2) | ∆u ∈ H}.

The space L2(E) = {ϕ ∈ L(E) | 〈ϕ,ϕ〉 < ∞} is a Hilbert space with respect
to the inner product 〈ϕ,ψ〉; actually, this space is the same as the space l2

of square-summable sequences. On the other hand, (u, v) is a degenerate
bilinear form in D; for example, (1V , u) = 0 and ‖u + 1V ‖ = ‖u‖ for u ∈ D,
where 1V is the constant 1 on V . It is shown in [7, Theorem 1.1] that D is a
Hilbert space with respect to the inner product (u, v) + u(o)v(o) for a fixed
node o ∈ V . We easily verify that a sequence {un}n ⊂ D converges to u in
D if and only if limn→∞ ‖un − u‖ = 0 and {un}n converges pointwise to u.
Denote by D0 the closure of L0(V ) in D. We call a function in D (resp. in
D0) a Dirichlet function (resp. a Dirichlet potential). Let
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D(2)
0 = {u ∈ L(V ) | ∆u ∈ D0}.

We shall use the following results in [7]:

Lemma 1.1 The following statements are equivalent to each other.

(1) N is hyperbolic;
(2) D0 6= D;
(3) 1V /∈ D0;
(4) D0 ∩H = {0};
(5) For each a ∈ V there exists a unique function ga such that ga ∈ D0 and

∆ga = −δa.

Here δa denotes the characteristic function of {a}.
We call ga of the above lemma the Green function of N with pole at a.

Note that ga ≥ 0 on V . It is well-known that the difference of two Green
potentials (see Section 3 for the definition) with finite energy is a Dirichlet
potential. The converse is not true in general; see [2, Example 4.9]. We study
some conditions to assure that a Dirichlet potential can be represented as
the difference of two Green potentials.

We said in [3] that N satisfies condition (LD) if there exists a constant
c > 0 such that

‖∆f‖ ≤ c‖f‖ for all f ∈ L0(V ). (LD)

Now we introduce the reverse inequality of condition (LD). We say that N
satisfies condition (CLD) if there exists a constant c > 0 such that

‖f‖ ≤ c‖∆f‖ for all f ∈ L0(V ). (CLD)

These conditions play important roles in our study. To assure condition
(CLD), we recall Poincaré-Sobolev inequality (PS) and related inequalities
(SPS) and (GPS) in Section 2. Our main results will be given in Section
3. We shall study some relations among these conditions more precisely in
Section 4 by giving some examples.

2. Conditions related to the Laplacian

We say thatN satisfies condition (PS) (the Poincaré-Sobolev inequality)
if there exists a constant c > 0 such that
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∑

x∈V

f(x)2 ≤ c
∑

e∈E

r(e)2(∇f(e))2 for all f ∈ L0(V ). (PS)

We say that N satisfies condition (SPS) (the strong Poincaré-Sobolev in-
equality) if there exists a constant c > 0 such that

∑

x∈V

f(x)2 ≤ c‖f‖2 for all f ∈ L0(V ). (SPS)

We said in [5] that N satisfies condition (GPS) (the generalized Poincaré-
Sobolev inequality) if there exists a constant c > 0 such that

∑

x∈V

ρ(x)f(x)2 ≤ c‖f‖2 for all f ∈ L0(V ), (GPS)

where

ρ(x) =
∑

e∈E

r(e)−1|K(x, e)|.

If 0 < c1 ≤ r(e) ≤ c2 < ∞ for all e ∈ E, then

c1‖f‖2 ≤
∑

e∈E

r(e)2(∇f(e))2 ≤ c2‖f‖2.

Thus we have

Proposition 2.1 If {r(e) | e ∈ E} is bounded above, then condition (PS)
implies condition (SPS). If {r(e) | e ∈ E} is bounded below from 0, then
condition (SPS) implies condition (PS).

If 0 < ρ1 ≤ ρ(x) ≤ ρ2 < ∞ for all x ∈ V , then

ρ1

∑

x∈V

f(x)2 ≤
∑

x∈V

ρ(x)f(x)2 ≤ ρ2

∑

x∈V

f(x)2.

Thus we have

Proposition 2.2 If {ρ(x) | x ∈ V } is bounded above, then condition (SPS)
implies condition (GPS). If {ρ(x) | x ∈ V } is bounded below from 0, then
condition (GPS) implies condition (SPS).
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Remark 2.1 If {ρ(x) | x ∈ V } is bounded above, then {r(e) | e ∈ E} is
bounded below from 0. If {r(e) | e ∈ E} is bounded above, then {ρ(x) | x ∈
V } is bounded below from 0.

Lemma 2.1 If N satisfies condition (SPS), then there exists c > 0 such
that

∑

x∈V

u(x)2 ≤ c‖u‖2 for all u ∈ D0.

Proof. Let u ∈ D0. There exists a sequence {fn}n in L0(V ) such that
limn→∞ ‖u− fn‖ = 0 and {fn}n converges pointwise to u. Since N satisfies
condition (SPS), there exists c > 0 such that

∑
x∈V fn(x)2 ≤ c‖fn‖2 for all

n. By Fatou’s lemma, we have

∑

x∈V

u(x)2 ≤ lim inf
n→∞

∑

x∈V

fn(x)2 ≤ lim
n→∞

c‖fn‖2 = c‖u‖2.

This completes the proof. ¤

Corollary 2.1 If N satisfies condition (SPS), then N is hyperbolic and
there exists the biharmonic Green function for each a ∈ V .

Proof. Since
∑

x∈V 1V (x)2 = ∞ and ‖1V ‖ = 0, Lemma 2.1 shows that
1V 6∈ D0. Lemma 1.1 implies that N is hyperbolic and there exists the
Green function ga ∈ D0 of N with pole at a ∈ V . By Lemma 2.1 again,
there exists c > 0 such that

∑
x∈V ga(x)2 ≤ c‖ga‖2 < ∞. By [8, Theorem

2.3] the biharmonic Green function exists. ¤

Proposition 2.3 Condition (SPS) implies condition (CLD).

Proof. Interchanging the order of summation, we have

(f, g) = −
∑

x∈V

f(x)∆g(x) for f, g ∈ L0(V ).

Let f ∈ L0(V ). Then ∆f is also in L0(V ). Condition (SPS) implies

‖f‖2 = −
∑

x∈V

f(x)∆f(x) ≤
(∑

x∈V

f(x)2
)1/2(∑

x∈V

(∆f(x))2
)1/2



612 H. Kurata and M. Yamasaki

≤ (
c‖f‖2)1/2(

c‖∆f‖2)1/2 = c‖f‖‖∆f‖,

so that ‖f‖ ≤ c‖∆f‖. ¤

We recall three lemmas.

Lemma 2.2 ([4, Lemma 3.2]) If N satisfies condition (LD), then there
exists a constant c > 0 such that

‖∆u‖ ≤ c‖u‖ for all u ∈ D0.

Lemma 2.3 ([3, Lemma 6.1]) If N satisfies condition (LD), then ∆u ∈ D0

for u ∈ D0.

Lemma 2.4 ([4, Theorem 3.1]) If N satisfies condition (LD), then D ⊂
D(2).

Proposition 2.4 Assume that N satisfies conditions (LD) and (CLD).
Then there exists a constant c > 0 such that

‖u‖ ≤ c‖∆u‖ for all u ∈ D0.

Proof. Let u ∈ D0. There exists a sequence {fn}n ⊂ L0(V ) such that
limn→∞ ‖u−fn‖ = 0 and {fn}n converges pointwise to u. Then ‖fn‖ → ‖u‖
as n → ∞. Since N satisfies condition (LD), Lemma 2.2 shows that there
exists c1 > 0 such that ‖∆u−∆fn‖ ≤ c1‖u− fn‖, so that ‖∆fn‖ → ‖∆u‖
as n → ∞. By condition (CLD), there exists a constant c2 > 0 such that
‖fn‖ ≤ c2‖∆fn‖ for all n. Therefore ‖u‖ ≤ c2‖∆u‖. ¤

3. Representations of the space D0

In this section we always assume that N is hyperbolic. For µ ∈ L+(V ),
we define the Green potential Gµ ∈ L(V ) of µ by

Gµ(x) =
∑

y∈V

gx(y)µ(y),

where gx denotes the Green function of N with pole at x ∈ V . For µ, ν ∈
L+(V ), the mutual Green energy G(µ, ν) is defined by
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G(µ, ν) =
∑

x∈V

Gµ(x)ν(x).

Since ga(b) = gb(a) for all a, b ∈ V , we have G(µ, ν) = G(ν, µ). We call
G(µ, µ) the Green energy of µ. Let us put

E(G) = {µ ∈ L+(V ) | G(µ, µ) < ∞}.

We know the following

Lemma 3.1 ([7, Lemma 5.2]) For µ ∈ E(G), we have ∆(Gµ) = −µ.

Lemma 3.2 ([7, Lemma 5.4]) For µ, ν ∈ L0(V ) ∩ L+(V ), we have
(Gµ,Gν) = G(µ, ν).

Lemma 3.3 ([7, Theorem 5.2]) For µ ∈ E(G) we have Gµ ∈ D0 and
∆Gµ ≤ 0. Conversely, if u ∈ D0 satisfies ∆u ≤ 0, then there exists µ ∈
E(G) such that u = Gµ.

We shall prepare

Lemma 3.4 For µ ∈ E(G), there exists {µn}n ⊂ L0(V ) ∩ L+(V ) such
that {Gµn}n converges to Gµ in D and {µn}n converges pointwise to µ.

Proof. Let {Nn}n be an exhaustion of N with Nn = {Vn, En,Kn, rn}.
We put µn = µ on Vn and µn = 0 on V \ Vn. Clearly, {µn(x)}n increases
monotonically and converges to µ(x) for each x ∈ V . We have 0 ≤ Gµn(x) ≤
Gµn+1(x) ≤ Gµ(x) for x ∈ V . Fatou’s lemma shows that

Gµ(x) ≤ lim inf
n→∞

Gµn(x) = lim
n→∞

Gµn(x) ≤ Gµ(x).

This means that {Gµn}n converges pointwise to Gµ.
Let m < n. We have

G(µm, µm) ≤ G(µm, µn) ≤ G(µn, µn) ≤ G(µ, µ).

Lemma 3.2 implies that {‖Gµn‖}n converges and that

‖Gµm‖2 ≤ G(µm, µn).

We have
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‖Gµn −Gµm‖2 = ‖Gµn‖2 − 2(Gµn, Gµm) + ‖Gµm‖2

≤ ‖Gµn‖2 − ‖Gµm‖2,

so that {Gµn}n is a Cauchy sequence in D. Therefore {Gµn}n converges
to some v in D. Since {Gµn}n converges pointwise to both Gµ and v, we
conclude that {Gµn}n converges to Gµ in D. ¤

Proposition 3.1 Let {µn}n ⊂ E(G). If {Gµn}n converges to a function
u in D, then there exists µ ∈ E(G) such that u = Gµ.

Proof. Lemma 3.3 implies that {Gµn}n ⊂ D0, so that u ∈ D0. Lemma
3.1 implies

∆u(x) = lim
n→∞

∆Gµn(x) = − lim
n→∞

µn(x) ≤ 0.

Lemma 3.3 shows that u = Gµ for some µ ∈ E(G). ¤

We show the following

Lemma 3.5 D0 is a Hilbert space with respect to the inner product (·, ·).
Proof. Suppose that u ∈ D0 and ‖u‖ = 0. Then u is a constant function.
Since N is hyperbolic, Lemma 1.1 shows that u = 0. Thus (·, ·) is an
inner product on D0. Assume that {un}n is a Cauchy sequence in D0 with
respect to the norm ‖·‖, i.e., ‖un−um‖ → 0 as n,m →∞. Then {‖un‖}n is
bounded. We show that {un}n is bounded. Suppose that, on the contrary,
there exists x0 ∈ V such that |un(x0)| → ∞ by choosing a subsequence if
necessary. Put vn = un/un(x0). Then vn ∈ D0, vn(x0) = 1, and

‖vn − 1V ‖ = ‖vn‖ =
‖un‖
|un(x0)| → 0

as n → ∞, so that {vn} converges to 1V in D. This means 1V ∈ D0,
which contradicts Lemma 1.1. Therefore {un}n is bounded. By the diagonal
process, we may assume that {un}n converges pointwise to u ∈ L(V ). Hence
{un}n is a Cauchy sequence in D and converges to u in D. We conclude
that u ∈ D0. ¤

Corollary 3.1 Let {un}n ⊂ D0 and u ∈ D0. If ‖un− u‖ → 0 as n →∞,
then {un}n converges to u in D.
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Lemma 3.6 Let {un}n be a sequence in D such that {‖un‖}n is
bounded and that {un}n converges pointwise to a function u ∈ D. Then
limn→∞(un, v) = (u, v) for v ∈ D.

Proof. We take M with ‖un‖ ≤ M for all n. Fatou’s lemma shows that

‖u‖ ≤ lim inf
n→∞

‖un‖ ≤ M.

Let v ∈ D and ε > 0. We find a finite subset E0 of E such that∑
e∈E\E0

r(e)|∇v(e)|2 < ε. Since {∇un(e)}n converges to ∇u(e) for each
e ∈ E and E0 is a finite set,

∑
e∈E0

r(e)|∇un(e)−∇u(e)|2 < ε for sufficiently
large n. We have

∑

e∈E0

r(e)|∇v(e)||∇un(e)−∇u(e)|

≤
( ∑

e∈E0

r(e)|∇v(e)|2
)1/2( ∑

e∈E0

r(e)|∇un(e)−∇u(e)|2
)1/2

≤ ‖v‖ε1/2

and
∑

e∈E\E0

r(e)|∇v(e)||∇un(e)−∇u(e)|

≤
( ∑

e∈E\E0

r(e)|∇v(e)|2
)1/2( ∑

e∈E\E0

r(e)|∇un(e)−∇u(e)|2
)1/2

≤ ε1/2

( ∑

e∈E\E0

r(e) · 2(|∇un(e)|2 + |∇u(e)|2)
)1/2

≤ ε1/2(2‖un‖2 + 2‖u‖2)1/2

≤ ε1/2(4M2)1/2 = 2ε1/2M.

We have



616 H. Kurata and M. Yamasaki

|(v, un − u)| ≤
∑

e∈E

r(e)|∇v(e)||∇un(e)−∇u(e)|

≤ ‖v‖ε1/2 + 2ε1/2M.

Since ε is arbitrary, we have limn→∞ |(v, un − u)| = 0. ¤

Lemma 3.7 If µ ∈ D0∩L+(V ), then there exists {µn}n ⊂ L0(V )∩L+(V )
which converges to µ in D.

Proof. Since µ ∈ D0, there exists a sequence {fn}n in L0(V ) which con-
verges to µ in D. Let µn = max{fn, 0}. Then ‖µn‖ ≤ ‖fn‖. Since µ ≥ 0,
{µn}n converges pointwise to µ. By Fatou’s lemma, we have

‖µ‖ ≤ lim inf
n→∞

‖µn‖ ≤ lim sup
n→∞

‖µn‖ ≤ lim
n→∞

‖fn‖ = ‖µ‖.

This implies that {‖µn‖}n is bounded. Lemma 3.6 shows that (µn, v) →
(µ, v) as n →∞ for every v ∈ D. Thus we have

‖µ− µn‖2 = ‖µ‖2 − 2(µ, µn) + ‖µn‖2 → 0

as n →∞. Therefore {µn}n converges to µ in D. ¤

Theorem 3.1 If condition (LD) is satisfied, then E(G) ⊂ D0 ∩ L+(V )
holds.

Proof. By definition, E(G) ⊂ L+(V ). Let µ ∈ E(G). By Lemma 3.4, there
exists {µn}n ⊂ L0(V )∩L+(V ) such that {Gµn}n converges to Gµ in D and
{µn}n converges pointwise to µ. By Lemmas 3.1, 3.3, and 2.2

‖µ− µn‖ = ‖∆Gµn −∆Gµ‖ ≤ c‖Gµn −Gµ‖ → 0

as n →∞. We see that {µn}n converges to µ in D. Thus µ ∈ D0. ¤

Theorem 3.2 If conditions (LD) and (CLD) are fulfilled, then E(G) =
D0 ∩ L+(V ).

Proof. By virtue of Theorem 3.1, it suffices to show that D0 ∩ L+(V ) ⊂
E(G). Let µ ∈ D0 ∩ L+(V ). By Lemma 3.7, there exists {µn}n ⊂ L0(V ) ∩
L+(V ) which converges to µ in D. Lemma 3.3 implies {Gµn}n ⊂ D0.
Proposition 2.4 and Lemma 3.1 show that
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‖Gµn −Gµm‖ ≤ c‖∆(Gµn −Gµm)‖ = c‖µm − µn‖ → 0

as n,m → ∞. By Lemma 3.5 and its corollary, we see that there exists
u ∈ D0 such that {Gµn}n converges to u in D. Lemma 3.1 implies

∆u(x) = lim
n→∞

∆Gµn(x) = − lim
n→∞

µn(x) = −µ(x)

for each x ∈ V , so that ∆u = −µ. By Fatou’s lemma and Lemma 3.2, we
have

G(µ, µ) ≤ lim inf
n→∞

G(µn, µn) = lim
n→∞

‖Gµn‖2 = ‖u‖2 < ∞.

Namely µ ∈ E(G). ¤

For any u ∈ L(V ), we define Gu by Gu = Gu+ −Gu− if both Gu+ and
Gu− converge, where u+ = max{u, 0} and u− = −min{u, 0}.
Theorem 3.3 If N satisfies conditions (LD) and (CLD), then D0 =
E(G)−E(G).

Proof. By Theorem 3.1 E(G) − E(G) ⊂ D0. For u ∈ D0 we have u =
u+ − u− and u+, u− ∈ D0 ∩ L+(V ) = E(G) by Theorem 3.2. ¤

Theorem 3.4 Let u ∈ D0. If conditions (LD) and (CLD) are fulfilled,
then Gu ∈ D0 and ∆Gu = −u.

Proof. Theorem 3.2 shows that u+, u− ∈ D0∩L+(V ) = E(G). By Lemma
3.3 we have that Gu = Gu+ − Gu− ∈ D0. Lemma 3.1 shows that ∆Gu =
∆Gu+ −∆Gu− = −u+ + u− = −u. ¤

Corollary 3.2 {Gu | u ∈ D0} ⊂ D0 if conditions (LD) and (CLD) are
fulfilled.

Theorem 3.5 Assume that conditions (LD) and (CLD) are fulfilled. Then
G∆u = −u for u ∈ D0.

Proof. Let u ∈ D0. Lemma 2.3 shows that v := ∆u ∈ D0. Theorem 3.4
shows that Gv ∈ D0 and ∆(u+Gv) = v−v = 0. Therefore u+Gv ∈ D0∩H.
Lemma 1.1 implies that u = −Gv. ¤

Corollary 3.3 If conditions (LD) and (CLD) are fulfilled, D0 = {Gµ −
Gν | µ, ν ∈ E(G)}.
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Proof. Lemma 3.3 implies that {Gµ−Gν | µ, ν ∈ E(G)} ⊂ D0. We show
the converse. Let u ∈ D0. We put v = −∆u. Theorem 3.5 shows that
u = Gv = Gv+ −Gv−. ¤

As an application of our results, we shall give a version of Riesz decom-
position of u ∈ D(2):

Theorem 3.6 Assume that conditions (LD) and (CLD) hold. Then, for
every u ∈ D(2), there exist a unique v ∈ D0 and a unique w ∈ H(2) such
that u = Gv + w.

Proof. Let u ∈ D(2). We use Royden’s decomposition for ∆u ∈ D, i.e.,

∆u = −v + h with v ∈ D0 and h ∈ H.

Theorem 3.4 and Lemma 2.4 show that Gv ∈ D0 ⊂ D ⊂ D(2) and ∆Gv =
−v ∈ D0. We see that Gv ∈ D(2)

0 . Let w = u−Gv ∈ D(2). We have

∆w = ∆u−∆Gv = ∆u + v = h,

so that w ∈ H(2).
To show the uniqueness, we assume that u = Gv1 + w1 = Gv2 + w2

with v1, v2 ∈ D0 and w1, w2 ∈ H(2). Theorem 3.4 shows that w1 − w2 =
Gv2−Gv1 ∈ D0. Lemma 2.3 implies ∆(w1−w2) ∈ D0. On the other hand,
since w1 − w2 ∈ H(2), we have ∆(w1 − w2) ∈ H. Lemma 1.1 shows that
∆(w1 − w2) = 0, so that w1 − w2 ∈ D0 ∩H. Again by Lemma 1.1 we have
w1 = w2, so that Gv1 = Gv2. Theorem 3.4 gives v1 = −∆Gv1 = −∆Gv2 =
v2. ¤

Corollary 3.4 D(2) = D(2)
0 + H(2) if conditions (LD) and (CLD) are

fulfilled.

Proof. Clearly D(2)
0 + H(2) ⊂ D(2). We show the converse. Let u ∈ D(2).

By Theorem 3.6 we take v ∈ D0 and w ∈ H(2) such that u = Gv + w.
Theorem 3.4 shows that ∆Gv = −v ∈ D0, so that Gv ∈ D(2)

0 . ¤

4. Supplementary remarks

We shall study conditions (PS), (SPS), and (GPS) introduced in Section
2 by giving examples. For a finite subset A of V , denote by ∂A the set of
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arcs e ∈ E whose one endpoint belongs to A and another does to V \A. Let
|A| and |∂A| be the cardinality of the sets A and ∂A, respectively.

We say that the strong isoperimetric inequality (SI) holds if there exists
a constant c > 0 such that

|A| ≤ c|∂A| for all finite subsets A ⊂ V . (SI)

We recall ρ(x) =
∑

e∈E r(e)−1|K(x, e)| for x ∈ V . Let

ρ(A) =
∑

x∈A

ρ(x), R(∂A) =
∑

e∈∂A

r(e)−1.

A generalized strong isoperimetric inequality (GSI) is defined in [5] as that
there exists a constant c > 0 such that

ρ(A) ≤ cR(∂A) for all finite subsets A ⊂ V . (GSI)

We have

Lemma 4.1 ([5, Theorem 2.1]) Condition (GPS) holds if and only if
condition (GSI) holds.

Lemma 4.2 ([1, Proposition 4.4]) Suppose that N has a bounded degree;
i.e., supx∈V

∑
e∈E |K(x, e)| < ∞. Then condition (PS) holds if and only if

condition (SI) holds.

Example 4.1 ((SPS) and (GPS), but not (PS)) Let N = {V, E, K, r} be
a half linear network; i.e., let V = {x0, x1, x2, . . . } and E = {e1, e2, . . . }.
Let K(xn−1, en) = 1 and K(xn, en) = −1 for n = 1, 2, . . . ; let K(x, e) = 0
for any other pair (x, e) ∈ V × E. Let r(en) = 2−n.

Let Xn = {x0, x1, . . . , xn}. Then |Xn| = n + 1 and |∂Xn| = 1. Lemma
4.2 shows that condition (PS) does not hold.

Let A be a non-empty finite subset of V . Let n be the smallest number
with A ⊂ Xn. We claim ρ(A) ≤ 3R(∂A) by induction on n. If n = 0, then
A is a singleton, and so ρ(A) = R(∂A). We assume that ρ(B) ≤ 3R(∂B)
for B ⊂ Xn−1 and suppose that xn ∈ A ⊂ Xn. Let A1 = A \ {xn} and
A2 = {xn}. By the induction hypothesis ρ(A1) ≤ 3R(∂A1). Since A2 is a
singleton, we have ρ(A2) = R(∂A2). Also we have ρ(A) = ρ(A1) + ρ(A2)
and R(∂A) ≥ R(∂A1) + R(∂A2)− 2r(en)−1. Since
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ρ(A2) = ρ(xn) = r(en)−1 + r(en+1)−1 = 2n + 2n+1 = 3 · 2n = 3r(en)−1,

we have

ρ(A) = ρ(A1) + ρ(A2) ≤ 3R(∂A1) + 3R(∂A2)− 2ρ(A2)

= 3(R(∂A1) + R(∂A2)− 2r(en)−1) ≤ 3R(∂A).

Lemma 4.1 and Proposition 2.2 show that conditions (GPS) and (SPS) hold.
¤

Lemma 4.3 Let N = {V, E, K, r} be a binary tree network, i.e.,

V =
∞⋃

n=0

Vn, Vn = {x(n)
i | i = 0, 1, . . . , 2n − 1},

E =
∞⋃

n=1

En, En = {e(n)
i | i = 0, 1, . . . , 2n − 1}.

We define K(x(n)
i , e

(n)
i ) = −1 for n = 1, 2, . . . and for i = 0, 1, . . . , 2n − 1;

K(x(n)
i , e

(n+1)
i ) = K(x(n)

i , e
(n+1)
i+2n ) = 1 for n = 0, 1, . . . and for i =

0, 1, . . . , 2n − 1; K(x, e) = 0 for any other pair (x, e) ∈ V × E. Let A be
a non-empty finite subset of V . Then |∂A| ≥ |A| + 1. Especially condition
(PS) holds.

Proof. Let m = |A|. We show |∂A| ≥ m + 1 by induction on m. If m = 1,
then |∂A| is two or three, and so |∂A| ≥ m+1. Assume that |∂B| ≥ |B|+1 if
|B| < m and suppose |A| = m. Let n be the largest number with Vn∩A 6= ∅
and let x

(n)
i ∈ A. Let B = A \ {x(n)

i }. Since |B| = m − 1, we have
|∂B| ≥ m. Since ∂B \ ∂A ⊂ {e(n)

i } and ∂A \ ∂B ⊃ {e(n+1)
i , e

(n+1)
i+2n }, we have

|∂A| ≥ |∂B|+ 1 ≥ m + 1. Lemma 4.2 shows that condition (PS) holds. ¤

Example 4.2 ((PS) and (SPS), but not (GPS)) Let V , E, and K be
the same as those of Lemma 4.3. Let r(e(n)

0 ) = n−1 and r(e(n)
i ) = 1 for

n = 1, 2, . . . and for i = 1, 2, . . . , 2n − 1.
Lemma 4.3 and Proposition 2.1 show that conditions (PS) and (SPS)

hold.
Let An = {x(0)

0 , x
(1)
0 , . . . , x

(n)
0 }. Then
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ρ(An) =
n∑

k=0

ρ(x(k)
0 ) = 2 +

n∑

k=1

(
k + (k + 1) + 1

)

= 2 +
n∑

k=1

(2k + 2) = n2 + 3n + 2,

R(∂An) =
n+1∑

k=1

r
(
e
(k)

2k−1

)−1 + r
(
e
(n+1)
0

)−1

= (n + 1) · 1 + (n + 1) = 2n + 2

Lemma 4.1 shows that condition (GPS) does not hold. ¤

Example 4.3 (hyperbolic, (PS), and (GPS), but not (SPS)) Let V , E,
and K be the same as those of Lemma 4.3. Let 1 < a < 2 and r(e(n)

i ) = an

for each n and i.
Lemma 4.3 shows that condition (PS) holds.
Let ϕ(e(n)

i ) = 2−n. Then

〈ϕ,ϕ〉 =
∞∑

n=1

2nan(2−n)2 =
∞∑

n=1

(a/2)n < ∞,

so that {V, E, K, r} is hyperbolic by [6, Theorem 4.3].
Let fn be the characteristic function of

⋃n
k=0 Vk. Then

∑

x∈V

fn(x)2 =
n∑

k=0

2k · 12 = 2n+1 − 1,

‖fn‖2 =
2n+1−1∑

i=0

r(e(n+1)
i )

(
r(e(n+1)

i )−1
)2 = (2/a)n+1.

This means that condition (SPS) does not hold.
For n = 1, 2, . . . let

ρn := ρ(x(n)
i ) = (an)−1 + 2(an+1)−1 = (a + 2)a−n−1.

Let c = (2+a)/(2−a). Note that (c−1)ρn = 2ca−n. Let A be a non-empty
finite subset of V and n the smallest number with A ⊂ ⋃n

k=0 Vk. We show
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that ρ(A) ≤ cR(∂A) by induction on n. If n = 0, then A is a singleton, so
that ρ(A) = R(∂A). We assume that ρ(B) ≤ cR(∂B) for B ⊂ ⋃n−1

k=0 Vk and
suppose that A ⊂ ⋃n

k=0 Vk. Let A1 = A ∩ (
⋃n−1

k=0 Vk) and A2 = A ∩ Vn. We
may assume that A2 6= ∅. By the induction hypothesis ρ(A1) ≤ cR(∂A1).
Let Q = ∂A1 ∩ ∂A2, q = |Q| and p = |A2|. Then q ≤ p. Also we have

ρ(A) = ρ(A1) + ρ(A2) = ρ(A1) + pρn

and

R(∂A) = R(∂A1) + R(∂A2)− 2
∑

e∈Q

r(e)−1 = R(∂A1) + pρn − 2qa−n

≥ R(∂A1) + pρn − 2pa−n.

We obtain

cR(∂A)− ρ(A) ≥ (cR(∂A1)− ρ(A1)) + cpρn − 2cpa−n − pρn

≥ (c− 1)pρn − 2cpa−n = 0.

Lemma 4.1 shows that condition (GPS) holds. ¤

Next we consider conditions (LD) and (CLD).

Example 4.4 ((LD) and (CLD)) Let V , E, and K be the same as those
of Lemma 4.3. Let r(e(n)

i ) = 1 for each n and i.
By [3, Proposition 6.1] condition (LD) holds.
Lemma 4.3, Propositions 2.1 and 2.3 show that condition (CLD) holds.

¤

Finally we address an open question and give a partially affirmative
answer.

Question 4.1 Does condition (CLD) imply condition (SPS)?

Proposition 4.1 Assume that N = {V, E, K, r} is a hyperbolic network
and that α := inf{ga(a) | a ∈ V } > 0. Also assume that there exists a
constant c > 0 such that ‖u‖ ≤ c‖∆u‖ for all u ∈ D0. Then condition
(SPS) holds.

Proof. Let f ∈ L0(V ). First assume that f ≥ 0. Lemma 3.3 shows that
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u := Gf ∈ D0. Using Lemmas 3.2 and 3.1, we have

G(f, f) = ‖Gf‖2 = ‖u‖2 ≤ c2‖∆u‖2 = c2‖f‖2

and

G(f, f) =
∑

x∈V

∑

y∈V

gx(y)f(x)f(y) ≥ α
∑

x∈V

f(x)2.

Thus
∑

x∈V f(x)2 ≤ c2α−1‖f‖2.
In the general case let f+ = max{f, 0} and f− = −min{f, 0}. Then

f = f+− f− and f+(x)f−(x) = 0 for each x ∈ V . Also, by [7, Lemma 1.4],
we have ‖f+‖ ≤ ‖f‖ and ‖f−‖ ≤ ‖f‖. Therefore

∑

x∈V

f(x)2 =
∑

x∈V

(f+(x)2 + f−(x)2) ≤ c2α−1(‖f+‖2 + ‖f−‖2)

≤ 2c2α−1‖f‖2,

and condition (SPS) holds. ¤
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