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Rigidity theorems for compact Bach-flat manifolds

with positive constant scalar curvature
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Abstract. In this paper, we prove some rigidity theorems for compact Bach-flat n-

manifold with the positive constant scalar curvature. In particular, our conditions in

Theorem 2 have the additional properties of being sharp.

Key words: Bach-flat, constant curvature space, Weyl curvature tensor, trace-free

Riemannian curvature tensor.

1. Introduction

Let (Mn, g) (n ≥ 3) be an n-dimensional Riemannian manifold with
the Riemannian curvature tensor Rm = {Rijkl}, the Weyl curvature tensor
W = {Wijkl}, the Ricci tensor Ric = {Rij} and the scalar curvature R. For
any manifold of dimension n ≥ 4, the Bach tensor, introduced by Bach [2],
is defined as

Bij ≡ 1
n− 3

∇k∇lWikjl +
1

n− 2
RklWikjl. (1.1)

Here and hereafter the Einstein convention of summing over the repeated
indices will be adopted. In [20], Korzynski and Lewandowski proved that
the Bach tensor can be identified with the Yang-mills current of the Cartan
normal conformal connection. Recall that a metric g is called Bach-flat if
the Bach tensor vanishes. It is easy to see that Bij = 0 if (Mn, g) is either
locally conformally flat, or an Einstein manifold. In the case of n = 4, g is
Bach-flat if and only if it is a critical metric of the functional (see [3], [15])

W : g 7→
∫

M

|Wg|2dVg.
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Now we introduce the definition of the Yamabe constant. Given a com-
plete Riemannian n-manifold (Mn, g) of dimension n ≥ 3, the Yamabe
constant Y (M, [g]) ([g] is the conformal class of g) is defined as

Y (M, [g]) ≡ inf
g̃∈[g]

∫

M

Rg̃dVg̃

( ∫

M

dVg̃

)(n−2)/n

= inf
0 6=u∈C∞0 (Mn)

∫

M

(
4(n− 1)
n− 2

|∇u|2 + Ru2

)
dVg

( ∫

M

|u|2n/(n−2)dVg

)(n−2)/n
.

The important works of Aubin [1], Schoen [23], Trudinger [27] and Yamabe
[28] showed that for compact manifolds the infimum in the above is always
achieved. There are noncompact complete Riemannian manifolds of negative
scalar curvature with positive Yamabe constant. For example, any simply
connected complete locally conformally flat manifold has positive Yamabe
constant (see [25]). Furthermore, for compact manifolds, Y (M, [g]) is deter-
mined by the sign of the scalar curvature R (see [1]), and for noncompact
manifolds, Y (M, [g]) is always positive if R vanishes (see [10]).

The curvature pinching phenomenon plays an important role in global
differential geometry. Some isolation theorems of Weyl curvature tensor
of positive Einstein manifolds are given in [17], [19], [26], when its L

n
2 -

norm is small. Recently, two rigidity theorems of Weyl curvature tensor of
positive Einstein manifolds are given in [5], [13], [14], which improve results
due to [17], [19], [26]. The first author and Xiao have studied compact
manifolds with harmonic curvature to obtain some rigidity results in [11],
[12]. Here when a Riemannian manifold satisfies δRm = {∇lRijkl} = 0, we
call it a manifold with harmonic curvature. Bach-flat manifolds have been
studied by many authors. For any complete Bach-flat manifold, Kim [21]
has studied their rigidity phenomena and derived that a complete Bach-flat
4-manifold M4 with nonnegative constant scalar curvature and the positive
Yamabe constant is an Einstein manifold if the L2-norm of the trace-free
Riemannian curvature tensor R̊m is small enough. Later, Chu [6] improved
Kim’s result and showed that M4 is in fact a space of constant curvature



Rigidity theorems for compact Bach-flat manifolds 583

under the same assumptions. Chu and Feng [7] proved the rigidity result
for n-dimensional Bach-flat manifolds with constant scalar curvature and
positive Yamabe constant. For a compact Bach-flat manifold M4 with the
positive Yamabe constant, Chang et al. [9] proved that M4 is conformal
equivalent to the standard four-sphere provided that the L2-norm of the
Weyl curvature tensor W is small enough, and also showed that there is
only finite diffeomorphism class with a bounded L2-norm of W .

Now, we are interested in Lp pinching problems for compact Bach-flat
manifolds with positive constant scalar curvature. In this paper, under
some Lp pinching conditions, we show that the compact Bach-flat manifold
with positive constant scalar curvature is spherical space form or Einstein
manifold. More precisely, we have the following theorems:

Theorem 1 Let (Mn, g)(n ≥ 4) be an n-dimensional compact Bach-flat
Riemannian manifold with positive constant scalar curvature. For p ≥ n/2,
if

( ∫

M

|R̊m|pdVg

)1/p

< ε(n)Y (M, [g])n/2pR1−n/2p,

where ε(n) is a constant depending only on n, i.e.,

ε(n) =





n− 2

4(n− 1)
(

C(n) + (n− 2)
√

n− 2
2(n− 1)

) , if n = 4, 5 and p =
n

2
,

[
(n−2)(2p−n)

n(6− n)

]n/2p (6− n)p

2(n−1)(2p−n)
(

C(n) + (n−2)
√

n− 2
2(n−1)

) ,

if n = 4, 5 and
n

2
< p <

2n

n− 2
,

1

(n− 1)
(

C(n) + (n− 2)
√

n− 2
2(n− 1)

) ,

if n ≥ 6 and p ≥ n

2
or if n = 4, 5 and p ≥ 2n

n− 2
,

and C(n) is defined in Lemma 1, then (Mn, g) is isometric to a quotient of
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the round Sn.

Corollary 1 Let (Mn, g) (n ≥ 4) be an n-dimensional compact Bach-flat
Riemannian manifold with positive constant scalar curvature. If

( ∫

M

|R̊m|n/2dVg

)2/n

< ε(n)Y (M, [g]),

where

ε(n) =





n− 2

4(n− 1)
(

C(n) + (n− 2)
√

n− 2
2(n− 1)

) , if n = 4, 5,

1

(n− 1)
(

C(n) + (n− 2)
√

n− 2
2(n− 1)

) , if n ≥ 6,

then (Mn, g) is isometric to a quotient of the round Sn.

Remark 1 The above Lp-pinching condition in Theorem 1 is invariant
under any homothety. Ln/2 trace-free Riemannian curvature pinching theo-
rems have been shown by Kim [21], Chu [5], and Chu and Feng [7], in which
the pinching constant are not explicit, respectively. Theorem 1 extends the
Lp trace-free Riemannian curvature pinching theorems given by [5], [7], [21]
in power p = n/2 to p ≥ n/2.

Theorem 2 Let (Mn, g) (n ≥ 4) be an n-dimensional compact Bach-flat
Riemannian manifold with positive constant scalar curvature. If

( ∫

M

∣∣∣∣W +
√

n

2
√

2(n− 2)
R̊ic ©∧ g

∣∣∣∣
n/2

dVg

)2/n

< C1(n)Y (M, [g]), (1.2)

where

C1(n) =





√
n− 2

32(n− 1)
, if n = 4, 5,

1√
2(n− 2)(n− 1)

, if n ≥ 6,
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then (Mn, g) is an Einstein manifold. In particular, for n = 4, 5, then
(Mn, g) is isometric to a quotient of the round Sn; for n ≥ 6, if the pinching
constant in (1.2) is weakened to 2Y (M, [g])/nC2(n), where C2(n) is defined
in Lemma 2.1 of [14], then (Mn, g) is isometric to a quotient of the round
Sn.

Remark 2 When n ≥ 6, the inequality (1.2) of this theorem is optimal.
The critical case is given by the following example. If (S1(t) × Sn−1, gt)
is the product of the circle of radius t with Sn−1, and if gt is the stan-
dard product metric normalized such that V ol(gt) = 1, we have W = 0,
gt is a Yamabe metric for small t (see [24]), and

( ∫
M
|R̊ic|n/2dVg

)2/n =
Y (M, [g])/

√
n(n− 1), which is the critical case of the inequality (1.2) in

Theorem 2. We know that (S1(t)× Sn−1, gt) is not Einstein.

Corollary 2 Let (M4, g) be a 4-dimensional compact Bach-flat Rieman-
nian manifold with positive constant scalar curvature. If

∫

M

|W |2dVg +
5
4

∫

M

|R̊ic|2dVg ≤ 1
48

∫

M

R2dVg, (1.3)

then (M4, g) is isometric to a quotient of the round S4.

Remark 3 By the Chern-Gauss-Bonnet formula, the pinching condition
(1.3) in Corollary 2 is equivalent to the following

∫

M

|W |2dVg +
2
39

∫

M

R2dVg ≤ 160
13

π2χ(M), (1.4)

where χ(M) is the Euler-Poincaré characteristic of M .

Theorem 3 Let (Mn, g) be an n-dimensional compact Bach-flat Rieman-
nian manifold with positive constant scalar curvature. If

|W |2 +
n

2(n− 2)
|R̊ic|2 ≤ 1

2(n− 2)(n− 1)
R2, (1.5)

then (Mn, g) is isometric to either an Einstein manifold or a quotient of
S1 × Sn−1 with the product metric.

Corollary 3 Let (Mn, g) be an n = 4 or 5-dimensional compact Bach-flat
Riemannian manifold with positive constant scalar curvature. If
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|W |2 +
n

2(n− 2)
|R̊ic|2 ≤ 1

2(n− 2)(n− 1)
R2,

then (Mn, g) is isometric to either a quotient of the round Sn or a quotient
of S1 × Sn−1 with the product metric.

2. Proof of Theorem 1

Let (Mn, g) (n ≥ 3) be an n-dimensional complete Riemannian man-
ifold with the metric g = {gij}. Denote by Ric = {Rij} and R the Ricci
tensor and the scalar curvature, respectively. It is well known that the Rie-
mannian curvature tensor Rm = {Rijkl} of Mn can be decomposed into
three orthogonal components which have the same symmetries as Rm

Rijkl = Wijkl + Vijkl + Uijkl,

Vijkl =
1

n− 2
(
R̊ikgjl − R̊ilgjk + R̊jlgik − R̊jkgil

)
,

Uijkl =
R

n(n− 1)
(gikgjl − gilgjk),

where W = {Wijkl}, V = {Vijkl} and U = {Uijkl} denote the Weyl curva-
ture tensor, the traceless Ricci part and the scalar curvature part, respec-
tively, and R̊ic = {R̊ij} = {Rij − (R/n)gij} is the trace-free Ricci tensor.
Denote by R̊m = {R̊ijkl} = {Rijkl − Uijkl} the trace-free Riemannian cur-
vature tensor. In local coordinates, the norm of a (0, 4)-type tensor T is
defined as

|T |2 = |Tijkl|2 = gimgjngksgltTijklTmnst.

The following equalities are easily obtained from the properties of Rie-
mannian curvature tensor:

gikR̊ijkl = R̊jl, (2.1)

R̊ijkl + R̊iljk + R̊iklj = 0, (2.2)

R̊ijkl = R̊klij = −R̊jikl = −R̊ijlk, (2.3)

|R̊m|2 = |W |2 + |V |2 = |W |2 +
4

n− 2
|R̊ic|2. (2.4)
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Moreover, under the assumption of constant scalar curvature, we get

∇hR̊ijkl +∇lR̊ijhk +∇kR̊ijlh = 0, (2.5)

and

∇lWijkl = ∇lRijkl −∇lVijkl −∇lUijkl

= ∇lR̊ijkl −∇lVijkl

=
n− 3
n− 2

(∇jR̊ik −∇iR̊jk

)

=
n− 3
n− 2

∇lR̊ijkl. (2.6)

Since n ≥ 3, from (2.4) we see that

∣∣R̊ic
∣∣2 ≤ n− 2

4

∣∣R̊m
∣∣2. (2.7)

Let Λ2(M) and ⊗2(M) denote the space of skew symmetric 2-tensors
and 2-tensors, respectively. It is easy to know that the dimension of Λ2(M)
and ⊗2(M) is n(n− 1)/2 and n2, respectively. Let T = {Tijkl} be a tensor
with the same symmetries as the Riemannian curvature tensor. It defines a
symmetric operator T : Λ2(M) → Λ2(M) by

(Tω)kl := Tijklωij ,

with ω ∈ Λ2(M). Similarly, it also defines a symmetric operator T :
⊗2(M) → ⊗2(M) by

(Tθ)kl := Tkiljθij ,

with θ ∈ ⊗2(M).
In order to prove Theorem 1, we need the following lemma:

Lemma 1 Let (Mn, g) (n ≥ 3) be an n-dimensional Riemannian manifold
with constant scalar curvature, then

R̊ijkl∆R̊ijkl ≥ −C(n)|R̊m|3 + 2R̊ijkl∇l∇mR̊ijkm + A(n)R|R̊m|2, (2.8)
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where

A(n) =





1
n− 1

, if R ≥ 0,

2
n

, if R < 0,

and C(n) = 4(n2 − 2)/n
√

n2 − 1 + (n2 − n− 4)/
√

(n− 2)n(n2 − 1) +√
(n− 2)(n− 1)/n.

Remark 4 Although Lemma 1 and the explicit coefficient of the term
|R̊m|3 of (2.8) have been proved in [6] and [12] respectively, for completeness,
we also write it out.

Proof. To simplify the notations, we will compute at an arbitrarily chosen
point p ∈ M in normal coordinates centered at p so that gij = δij . We
obtain from (2.3) and (2.5) that

R̊ijkl∆R̊ijkl = R̊ijkl∇m∇mR̊ijkl

= 2R̊ijkl∇m∇lR̊ijkm

= 2R̊ijkl

(∇l∇mR̊ijkm + RhilmR̊hjkm + RhjlmR̊ihkm

+ RhklmR̊ijhm + RhmlmR̊ijkh

)
, (2.9)

where the Ricci identities are used in the last equality of (2.9). By the
definition of trace-free Riemannian curvature tensor and (2.1), from (2.9)
we get

R̊ijkl∆R̊ijkl

= 2R̊ijkl∇l∇mR̊ijkm + 2R̊ijkl

(
RhilmR̊hjkm+RhjlmR̊ihkm+RhklmR̊ijhm

)

+ 2RhlR̊ijklR̊ijkh

= 2R̊ijkl∇l∇mR̊ijkm + 2R̊ijkl

(
R̊hilmR̊hjkm+R̊hjlmR̊ihkm+R̊hklmR̊ijhm

)

+ 2R̊ijklR̊ijkhR̊hl +
2R

n
|R̊m|2

+
2R

n(n− 1)
R̊ijkl

(
R̊ljki+R̊ilkj +R̊ijlk+R̊jkδli−R̊ikδlj

)
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= 2R̊ijkl∇l∇mR̊ijkm + 2R̊ijkl

(
R̊hilmR̊hjkm+R̊hjlmR̊ihkm+R̊hklmR̊ijhm

)

+ 2R̊ijklR̊ijkhR̊hl − 4R

n(n− 1)

∣∣R̊ic
∣∣2 +

2R

n

∣∣R̊m
∣∣2

= 2R̊ijkl∇l∇mR̊ijkm − 2
(

2R̊ijlkR̊ihlmR̊hjmk +
1
2
R̊ijklR̊ijhmR̊hmkl

)

+ 2R̊ijklR̊ijkhR̊hl − 4R

n(n− 1)

∣∣R̊ic
∣∣2 +

2R

n

∣∣R̊m
∣∣2. (2.10)

We consider R̊m as a trace-free symmetric operator on Λ2(M) and
⊗2(M). By the algebraic inequalities tr(T 3) ≤ ((m − 2)/

√
m(m− 1))|T |3

for trace-free symmetric m-matrices T and λi ≤
√

(m− 1)/m|T | for the
eigenvalues λi of T in [18], we get

∣∣∣∣2R̊ijlkR̊ihlmR̊hjmk +
1
2
R̊ijklR̊ijhmR̊hmkl

∣∣∣∣

≤ 2
∣∣R̊ijlkR̊ihlmR̊hjmk

∣∣ +
1
2

∣∣R̊ijklR̊ijhmR̊hmkl

∣∣

≤
(

2(n2 − 2)
n
√

n2 − 1
+

n2 − n− 4
2
√

(n− 2)n(n2 − 1)

)∣∣R̊m
∣∣3, (2.11)

and

∣∣R̊ijklR̊ijkhR̊hl

∣∣ ≤
√

n− 1
n

∣∣R̊ic
∣∣∣∣R̊m

∣∣2. (2.12)

Combining with (2.7), (2.10), (2.11) and (2.12), we get

R̊ijkl∆R̊ijkl

≥ −
(√

(n− 1)(n− 2)
n

+
4(n2 − 2)
n
√

n2 − 1
+

n2 − n− 4√
(n− 2)n(n2 − 1)

)∣∣R̊m
∣∣3

+ 2R̊ijkl∇l∇mR̊ijkm + A(n)R
∣∣R̊m

∣∣2. (2.13)

Proof of Theorem 1. For simplicity of natation, we denote by (δR̊m)ijk =
∇lR̊ijkl the divergence of the trace-free Riemannian curvature tensor and
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u = |R̊m|. By the Kato inequality |∇R̊m|2 ≥ |∇|R̊m||2, we get

R̊ijkl∆R̊ijkl ≤ R̊ijkl∆R̊ijkl +
∣∣∇R̊m

∣∣2 − ∣∣∇|R̊m|∣∣2

=
1
2
∆

∣∣R̊m
∣∣2 − ∣∣∇|R̊m|∣∣2

=
∣∣R̊m

∣∣∆∣∣R̊m
∣∣ = u∆u, (2.14)

which together with Lemma 1 and integrating on Mn give
∫

M

u∆udVg ≥ −C(n)
∫

M

u3dVg + 2
∫

M

R̊ijkl∇l∇mR̊ijkmdVg

+
R

n− 1

∫

M

u2dVg.

Moreover, using the Stokes’s theorem, we get
∫

M

|∇u|2dVg ≤ C(n)
∫

M

u3dVg + 2
∫

M

∣∣δR̊m
∣∣2dVg − R

n− 1

∫

M

u2dVg.

(2.15)

Since Mn is Bach-flat, we have

Bij =
1

n− 3
∇k∇lWikjl +

1
n− 2

RklWikjl = 0.

Multiplying the above equality by R̊ij and integrating on Mn give

0 =
1

n− 3

∫

M

R̊ij∇k∇lWikjldVg +
1

n− 2

∫

M

R̊ijRklWikjldVg

= − 1
n− 2

∫

M

∇kR̊ij∇lR̊ikjldVg +
1

n− 2

∫

M

R̊ijR̊klWikjldVg

= − 1
n− 2

∫

M

1
2
(∇kR̊ij −∇iR̊kj

)∇lR̊ikjldVg +
1

n− 2

∫

M

R̊ijR̊klWikjldVg

= − 1
2(n− 2)

∫

M

∣∣δR̊m
∣∣2dVg +

1
n− 2

∫

M

R̊ijR̊klWikjldVg, (2.16)

where (2.6) and the second Bianchi identities are used in the second line and



Rigidity theorems for compact Bach-flat manifolds 591

the third line of (2.16) respectively. Using (2.7) and the Huisken inequality
(see Lemma 3.4 of [18])

∣∣R̊ikR̊jlWijkl

∣∣ ≤
√

n− 2
2(n− 1)

|W |
∣∣R̊ic

∣∣2,

we have

∫

M

∣∣δR̊m
∣∣2dVg ≤ n− 2

2

√
n− 2

2(n− 1)

∫

M

u3dVg. (2.17)

Combining with (2.15) and (2.17), we obtain

∫

M

|∇u|2dVg ≤ E(n)
∫

M

u3dVg − R

n− 1

∫

M

u2dVg, (2.18)

where E(n) = C(n) +
√

(n− 2)3/2(n− 1). From (2.18), using Young’s
inequality and the Hölder inequality, we get

∫

M

|∇u|2dVg ≤ nE(n)
2p

ε−(2p−n)/n

∫

M

u2+2p/ndVg

+
(

(2p− n)εE(n)
2p

− R

n− 1

) ∫

M

u2dVg

≤ nE(n)
2p

ε−(2p−n)/n

( ∫

M

u2n/(n−2)dVg

)(n−2)/n( ∫

M

updVg

)2/n

+
(

(2p− n)εE(n)
2p

− R

n− 1

) ∫

M

u2dVg, (2.19)

where ε is a positive constant. By the definition of Yamabe constant
Y (M, [g]), we get

n− 2
4(n− 1)

Y (M, [g])
( ∫

M

u2n/(n−2)dVg

)(n−2)/n

≤
∫

M

|∇u|2dVg +
(n− 2)R
4(n− 1)

∫

M

u2dVg
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≤ (1 + η)
∫

M

|∇u|2dVg +
(n− 2)R
4(n− 1)

∫

M

u2dVg, (2.20)

where η ≥ 0 is a constant. Substituting (2.19) into (2.20), we conclude that

{
n− 2

4(n− 1)
Y (M, [g])− (1 + η)

nE(n)
2p

ε−(2p−n)/n

( ∫

M

updVg

)2/n}

×
( ∫

M

u2n/(n−2)dVg

)(n−2)/n

≤
{

(n− 2)R
4(n− 1)

+ (1 + η)
(

(2p− n)εE(n)
2p

− R

n− 1

)} ∫

M

u2dVg. (2.21)

How we select (ε, η) to maximize
( ∫

M
updVg

)2/n in (2.21) is equivalent
to a problem of finding (ε, η) on a domain D which minimizes a function

F (ε, η) :=
nE(n)

2p
(1 + η)ε−(2p−n)/n.

Here, the domain D consists of points (ε, η) which satisfies inequalities

G(ε, η) :=
(n− 2)R
4(n− 1)

+ (1 + η)
(

(2p− n)εE(n)
2p

− R

n− 1

)
≤ 0,

ε > 0, η ≥ 0.

In the case of p = n/2, since we have

F (ε, η) = E(n)(1 + η) and G(ε, η) =
R

n− 1

(
n− 6

4
− η

)
,

we can set

η =





n− 6
4

, if n ≥ 6,

0, if n = 4, 5
, ε = (any positive number).

In the case of p > n/2. In order to minimize F (ε, η) and G(ε, η) = 0, we can
set
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η =





(n− 2)p− 2n

2n
, if n = 4, 5 and p ≥ 2n

n− 2
or n ≥ 6

0, if n = 4, 5 and
n

2
< p <

2n

n− 2

,

ε =





R

(n− 1)E(n)
, if n = 4, 5 and p ≥ 2n

n− 2
or n ≥ 6

p(6− n)R
2(n− 1)(2p− n)E(n)

, if n = 4, 5 and
n

2
< p <

2n

n− 2
.

In conclusion, we can choose
( ∫

M
updVg

)1/p
< ε(n)Y (M, [g])n/2pR1−n/2p

such that (2.21) implies
( ∫

M
u2n/(n−2)dVg

)(n−2)/n = 0, i.e., R̊m = 0. Hence
(Mn, g) is isometric to a quotient of the round Sn. ¤

3. Proof of Theorem 2

Now, we compute the Laplacian of |R̊ic|2.
Lemma 2 Let (Mn, g) (n ≥ 4) be a complete Bach-flat n-manifold with
constant scalar curvature, then

∆
∣∣R̊ic

∣∣2 = 2
∣∣∇R̊ic

∣∣2 − 4R̊ijR̊klWikjl +
2n

n− 2
R̊ijR̊jkR̊ik +

2R

n− 1

∣∣R̊ic
∣∣2.
(3.1)

Remark 5 Although Lemma 2 has been proved in [8], for completeness,
we also write it out.

Proof. We obtain from (2.3) and (2.5) that

∆|R̊ic|2 = 2
∣∣∇R̊ic

∣∣2 + 2R̊ij∇k∇kR̊ij

= 2
∣∣∇R̊ic

∣∣2 + 2R̊ij∇k

(∇jR̊ik −∇lR̊ilkj

)

= 2
∣∣∇R̊ic

∣∣2 + 2R̊ij∇k∇jR̊ik + 2R̊ij∇k∇lR̊ikjl. (3.2)

Since the scalar curvature is constant, by the Ricci identities, we get

R̊ij∇k∇jR̊ik = R̊ij

(∇j∇kR̊ik + R̊hkRhijk + R̊ihRhkjk

)

= R̊ijR̊hkRhijk + R̊ijR̊ihRhj
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= R̊ijR̊hk

[
Whijk +

1
n− 2

(
R̊ikδhj + R̊hjδik − R̊ijδhk − R̊hkδij

)

+
R

n(n− 1)
(δikδjh − δijδhk)

]
+ R̊ijR̊ihR̊hj +

R

n

∣∣R̊ic
∣∣2

= R̊ijR̊hkWhijk +
n

n− 2
R̊ijR̊jkR̊ik +

R

n− 1

∣∣R̊ic
∣∣2, (3.3)

and

R̊ij∇k∇lR̊ikjl

= R̊ij∇k∇lWikjl +
1

n− 2
R̊ij∇k∇l

(
R̊ijδkl + R̊klδij − R̊ilδjk − R̊jkδil

)

= R̊ij∇k∇lWikjl +
1

n− 2
(
R̊ij∆R̊ij − R̊ij∇j∇lR̊il − R̊ij∇k∇iR̊kj

)

= R̊ij∇k∇lWikjl +
1

n− 2
[
R̊ij∆R̊ij − R̊ij∇k

(∇kR̊ij +∇lR̊jlki

)]

= R̊ij∇k∇lWikjl +
1

n− 2
R̊ij∇k∇lR̊ikjl.

Since Mn is Bach-flat, we get from the above equation that

R̊ij∇k∇lR̊ikjl = −R̊ijR̊klWikjl. (3.4)

Combining with (3.2), (3.3) and (3.4), we obtain

∆
∣∣R̊ic

∣∣2 = 2
∣∣∇R̊ic

∣∣2 − 4R̊ijR̊klWikjl +
2n

n− 2
R̊ijR̊jkR̊ik +

2R

n− 1

∣∣R̊ic
∣∣2.

This completes the proof of Lemma 2. ¤

Lemma 3 On every n-dimensional Riemannian manifold, the following
estimate holds

∣∣∣∣−WijklR̊ikR̊jl +
n

2(n− 2)
R̊ijR̊jkR̊ik

∣∣∣∣

≤
√

n− 2
2(n− 1)

∣∣R̊ic
∣∣2

(
|W |2 +

n

2(n− 2)

∣∣R̊ic
∣∣2

)1/2

.
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Remark 6 We follow these proofs of Proposition 2.1 in [5] and Lemma
4.7 in [4] to prove this lemma. For completeness, we also write it out. In
general, according to the proof of Lemma 3, we can obtain

∣∣−WijklR̊ikR̊jl + KR̊ijR̊jkR̊ik

∣∣

≤
√

n− 2
2(n− 1)

∣∣R̊ic
∣∣2

(
|W |2 +

2(n− 2)K2

n

∣∣R̊ic
∣∣2

)1/2

,

where K is a constant.

Proof. First of all we have

(
R̊ic ©∧ g

)
ijkl

= R̊ikgjl − R̊ilgjk + R̊jlgik − R̊jkgil,

(
R̊ic ©∧ R̊ic

)
ijkl

= 2
(
R̊ikR̊jl − R̊ilR̊jk

)
,

where ©∧ denotes the Kulkarni-Nomizu product. An easy computation
shows

WijklR̊ikR̊jl =
1
4
Wijkl

(
R̊ic ©∧ R̊ic

)
ijkl

,

R̊ijR̊jkR̊ik = −1
8
(
R̊ic ©∧ g

)
ijkl

(
R̊ic ©∧ R̊ic

)
ijkl

.

Hence we get the following identity

−WijklR̊ikR̊jl +
n

2(n− 2)
R̊ijR̊jkR̊ik

= −1
4

(
W +

n

4(n− 2)
R̊ic ©∧ g

)

ijkl

(
R̊ic ©∧ R̊ic

)
ijkl

. (3.5)

Since R̊ic ©∧ R̊ic has the same symmetries of the Riemannian curvature
tensor, it can be orthogonally decomposed as

R̊ic ©∧ R̊ic = T + V ′ + U ′,

where T is totally trace-free and
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V ′
ijkl = − 2

n− 2

(
R̊ic

2
©∧ g

)

ijkl

+
2

n(n− 2)

∣∣R̊ic
∣∣2(g ©∧ g)ijkl,

U ′
ijkl = − 1

n(n− 1)

∣∣R̊ic
∣∣2(g ©∧ g)ijkl,

where
(
R̊ic

2)
ik

= R̊ipR̊kp. Taking the squared norm one obtains

∣∣R̊ic ©∧ R̊ic
∣∣2 = 8

∣∣R̊ic
∣∣4 − 8

∣∣R̊ic
2∣∣2,

|V ′|2 =
16

n− 2

∣∣R̊ic
2∣∣2 − 16

n(n− 2)

∣∣R̊ic
∣∣4,

|U ′|2 =
8

n(n− 1)

∣∣R̊ic
∣∣4.

In particular, one has

|T |2 +
n

2
|V ′|2 =

∣∣R̊ic ©∧ R̊ic
∣∣2 +

n− 2
2

|V ′|2 − |U ′|2 =
8(n− 2)
n− 1

∣∣R̊ic
∣∣4.

We now estimate the right hand side of (3.5). Using the fact that W and T

are totally trace-free and the Cauchy-Schwarz inequality we obtain

∣∣∣∣
(

W +
n

4(n− 2)
R̊ic ©∧ g

)

ijkl

(
R̊ic ©∧ R̊ic

)
ijkl

∣∣∣∣
2

=
∣∣∣∣
(

W +
n

4(n− 2)
R̊ic ©∧ g

)

ijkl

(T + V ′)ijkl

∣∣∣∣
2

=
∣∣∣∣
(

W +
√

2n

4(n− 2)
R̊ic ©∧ g

)

ijkl

(
T +

√
n

2
V ′

)

ijkl

∣∣∣∣
2

≤
∣∣∣∣W +

√
2n

4(n− 2)
R̊ic ©∧ g

∣∣∣∣
2(
|T |2 +

n

2
|V ′|2

)

=
8(n− 2)
n− 1

∣∣R̊ic
∣∣4

(
|W |2 +

n

2(n− 2)

∣∣R̊ic
∣∣2

)
.

This estimate together with (3.5) concludes this proof. ¤
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Proof of Theorem 2. By Lemmas 2 and 3 and the Kato inequality∣∣∇R̊ic
∣∣2 ≥ ∣∣∇|R̊ic|∣∣2, we get

∣∣R̊ic
∣∣∆∣∣R̊ic

∣∣ ≥ −
√

2(n− 2)
n− 1

∣∣R̊ic
∣∣2

(
|W |2 +

n

2(n− 2)

∣∣R̊ic
∣∣2

)1/2

+
R

n− 1

∣∣R̊ic
∣∣2. (3.6)

Set u =
∣∣R̊ic

∣∣. By (3.6), we compute

uα∆uα = uα
(
α(α− 1)uα−2|∇u|2 + αuα−1∆u

)

=
α− 1

α
|∇uα|2 + αu2α−2u∆u

≥ α− 1
α

|∇uα|2 − α

√
2(n− 2)
n− 1

(
|W |2 +

n

2(n− 2)
u2

)1/2

u2α

+
αR

n− 1
u2α. (3.7)

Integrating (3.7) on Mn and using Stoke’s theorem, we have

0 ≥
(

2− 1
α

) ∫

M

|∇uα|2dVg

− α

√
2(n− 2)
n− 1

∫

M

(
|W |2 +

n

2(n− 2)
u2

)1/2

u2αdVg

+
αR

n− 1

∫

M

u2αdVg. (3.8)

For 2−1/α > 0, by the definition of Yamabe constant and Höider inequality,
we obtain from (3.8) that

0 ≥
{(

2− 1
α

)
n− 2

4(n− 1)
Y (M, [g])

− α

√
2(n− 2)
n− 1

( ∫

M

(
|W |2 +

n

2(n− 2)
u2

)n/4

dVg

)2/n}
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×
( ∫

M

u2nα/(n−2)dVg

)(n−2)/n

+
4α2 − 2(n− 2)α + n− 2

4α(n− 1)
R

∫

M

u2αdVg. (3.9)

Case 1. when n ≥ 6, taking α =
(
(n− 2)(1 +

√
1− 4/(n− 2))

)
/4, from

(3.9), we get

0 ≥
{

Y (M, [g])√
2(n− 1)(n− 2)

−
( ∫

M

(
|W |2 +

n

2(n− 2)
u2

)n/4

dVg

)2/n}

×
( ∫

M

u2nα/(n−2)dVg

)(n−2)/n

. (3.10)

Since W is totally trace-free, one has

∣∣∣∣W +
√

n

2
√

2(n− 2)
R̊ic ©∧ g

∣∣∣∣
2

= |W |2 +
n

2(n− 2)

∣∣R̊ic
∣∣2

and the pinching condition (1.2) implies that Mn is Einstein.

Case 2. When n = 4, 5, we have (4α2 − 2(n− 2)α + n− 2)/4α(n− 1) > 0
for α > 1/2, and from (3.9), we get

0 ≥
{(

1−
(

1− 1
α

)2)√
n− 2

32(n− 1)
Y (M, [g])

−
( ∫

M

(
|W |2 +

n

2(n−2)
u2

)n/4

dVg

)2/n}( ∫

M

u2nα/(n−2)dVg

)(n−2)/n

.

Taking α = 1, we have

0 ≥
{√

n− 2
32(n− 1)

Y (M, [g])−
( ∫

M

(
|W |2 +

n

2(n− 2)
u2

)n/4

dVg

)2/n}

×
( ∫

M

u2n/(n−2)dVg

)(n−2)/n

. (3.11)
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Thus the pinching condition (1.2) implies that Mn is Einstein.

In particular, for n = 4, 5, the pinching condition (1.2) implies

( ∫

M

|W |n/2dVg

)2/n

<

√
n− 2

32(n− 1)
Y (M, [g]) <

2Y (M, [g])
C2(n)n

, (3.12)

where the constant

C2(n) =





√
6

2
, if n = 4,

8√
10

, if n = 5,

4(n2 − 2)
n
√

n2 − 1
+

n2 − n− 4√
(n− 2)(n− 1)n(n + 1)

, if n ≥ 6

is defined in Lemma 2.1 of [14]. By the rigidity result for positively curved
Einstein manifolds (see Theorem 1.1 of [14]), (3.12) implies that Mn is
isometric to a quotient of the round Sn.

For n ≥ 6, we can choose α such that (4α2 − 2(n − 2)α + n − 2)/
4α(n− 1) > 0 and

0 ≥
{

2Y (M, [g])
C2(n)n

−
( ∫

M

(
|W |2 +

n

2(n− 2)
u2

)n/4

dVg

)2/n}

×
( ∫

M

u2nα/(n−2)dVg

)(n−2)/n

.

From Case 1, the pinching condition (1.2) implies that Mn is Einstein.
Hence, the pinching condition (1.2) implies

( ∫

M

|W |n/2dVg

)2/n

<
2Y (M, [g])

C2(n)n
. (3.13)

By the rigidity result for positively curved Einstein manifolds (see Theorem
1.1 of [14]), (3.13) implies that Mn is isometric to a quotient of the round
Sn. ¤
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Proof of Corollary 2. To prove Corollary 2, we need the following lemma
which was proved by Gursky (see [16]). For completeness, we also write it’s
proof out.

Lemma 4 Let (M4, g) be a complete 4-dimensional manifold, then the
following estimate holds

∫

M

R2dVg − 12
∫

M

∣∣R̊ic
∣∣2dVg ≤ Y (M, [g])2,

moreover, the inequality is strict unless (M4, g) is comformally Einstein.

Proof. By the Chern-Gauss-Bonnet formula (see the Equation 6.31 of [3])

∫

M

|W |2dVg − 2
∫

M

∣∣R̊ic
∣∣2dVg +

1
6

∫

M

R2dVg = 32π2χ(M), (3.14)

and the conformal invariance of
∫

M
|W |2dVg, we find that −2

∫
M

∣∣R̊ic
∣∣2dVg+

(1/6)
∫

M
R2dVg is also conformally invariant. Let g̃ ∈ [g] be a Yamabe

metric. Then

Y (M, [g])2 =

( ∫

M

Rg̃dVg̃

)2

∫

M

dVg̃

=
∫

M

R2
g̃dVg̃

≥
∫

M

R2
g̃dVg̃ − 12

∫

M

∣∣R̊icg̃

∣∣2
g̃
dVg̃

=
∫

M

R2dVg − 12
∫

M

∣∣R̊ic
∣∣2dVg.

The equality case follows immediately. ¤

By Lemma 4, we get

∫

M

|W |2dVg +
∫

M

∣∣R̊ic
∣∣2dVg − Y (M, [g])2

48

≤
∫

M

|W |2dVg +
5
4

∫

M

∣∣R̊ic
∣∣2dVg − 1

48

∫

M

R2dVg. (3.15)
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Moreover, the inequality is strict unless (M4, g) is comformally Einstein. In
the first case “<”, Theorem 2 immediately implies Corollary 2; In the second
case “=”, g is conformally Einstein. Since g has constant scalar curvature,
g is Einstein from the proof of Obata Theorem (see Proposition 3.1 of [22]).
By the rigidity result for positively curved Einstein manifolds (see Theorem
1.1 of [14]), (3.15) implies that M4 is isometric to a quotient of the round
S4. ¤

4. Proof of Theorem 3

Proof of Theorem 3. From (3.1), by Lemma 3, we get

∆
∣∣R̊ic

∣∣2 ≥ 2
∣∣∇R̊ic

∣∣2 + 4

√
n− 2

2(n− 1)

∣∣R̊ic
∣∣2

×
{

R√
2(n− 1)(n− 2)

−
(
|W |2 +

n

2(n− 2)

∣∣R̊ic
∣∣2

)1/2}
. (4.1)

Note that (1.5) is equivalent that the second of RHS of (4.1) is nonnegative.
By the maximum principle, from (4.1) we get ∇R̊ic = 0. Since Mn has
positive constant scalar curvature, Mn is a manifold with parallel Ricci
tensor. Hence Mn is a manifold with harmonic curvature. Using the same
argument as in the proof of (3.1), we obtain a Weitzenböck formula (see
(2.20) in [11])

∆
∣∣R̊ic

∣∣2 = 2
∣∣∇R̊ic

∣∣2 − 2R̊ijR̊klWikjl +
2n

n− 2
R̊ijR̊jkR̊ik +

2R

n− 1

∣∣R̊ic
∣∣2.
(4.2)

By Remark 6, we get
∣∣∣∣−WijklR̊ikR̊jl +

n

n− 2
R̊ijR̊jkR̊ik

∣∣∣∣

≤
√

n− 2
2(n− 1)

∣∣R̊ic
∣∣2

(
|W |2 +

2n

n− 2

∣∣R̊ic
∣∣2

)1/2

. (4.3)

Combing (4.2) with (4.3), we have
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∆
∣∣R̊ic

∣∣2 ≥ 2
∣∣∇R̊ic

∣∣2 + 2
∣∣R̊ic

∣∣2

×
{

1
n− 1

R−
√

n− 2
2(n− 1)

(
|W |2 +

2n

n− 2

∣∣R̊ic
∣∣2

)1/2}
. (4.4)

Case 1. W 6= 0. By (4.4), the inequality (1.5) implies

0 ≥ 2

√
n− 2

2(n− 1)

∣∣R̊ic
∣∣2

{√
2

(n− 1)(n− 2)
R−

(
|W |2 +

2n

n− 2

∣∣R̊ic
∣∣2

)1/2}

≥ 2

√
n− 2

2(n− 1)

∣∣R̊ic
∣∣2

{(
4|W |2 +

2n

n− 2

∣∣R̊ic
∣∣2

)1/2

−
(
|W |2 +

2n

n− 2

∣∣R̊ic
∣∣2

)1/2}
. (4.5)

By (4.5), we get R̊ic = 0, i.e., (Mn, g) is Einstein.

Case 2. W = 0. Note that the inequality n(n− 1)|R̊ic|2 ≤ R2 is equivalent
to equation (1.5). From (4.4), we have

0 =
2n

n− 2
R̊ijR̊jkR̊ik +

2R

n− 1

∣∣R̊ic
∣∣2

≥ 2
n− 1

∣∣R̊ic
∣∣2(R−

√
(n− 1)n

∣∣R̊ic
∣∣) ≥ 0. (4.6)

Hence at every point, either R̊ic is null, i.e., Mn is Eninstein, and by
conformally flatness it has constant positive sectional curvature, or R −√

(n− 1)n|R̊ic| = 0, according to the estimation of trace-free symmetric
2-tensors, it has an eigenvalue of multiplicity (n− 1) and another of multi-
plicity 1. Since the Ricci tensor is parallel, by the de Rham decomposition
Theorem, Mn is covered isometrically by the product of Einstein manifolds.
We have R =

√
(n− 1)n|R̊ic|. Since Mn is conformally flat and has positive

scalar curvature, then the only possibility is that Mn is covered isometri-
cally by S1×Sn−1 with the product metric. So (Mn, g) is isometric to either
an Einstein manifold or a quotient of S1×Sn−1 with the product metric. ¤

Proof of Corollary 3. By Theorem 3, we consider the case that Mn is
Einstein. Using the same argument as in the proof of (3.1), we obtain a
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Weitzenböck formula for Einstein manifolds (see (5) in [14])

∆|W |2 = 2|∇W |2 − 2C3(n)|W |3 +
4R

n
|W |2, (4.7)

where C3(4) =
√

6/2 and C3(5) = 8/
√

10. From (4.7), the condition of
Corollary 3 implies that

∆|W |2 = 2|∇W |2 +
(

4R

n
− 2C3(n)|W |

)
|W |2 ≥ 0.

Hence W = 0, i.e., Mn is conformally flat. So (Mn, g) is isometric to a
quotient of the round Sn. This completes the proof of Corollary 3. ¤

Remark 7 Let (Mn, g) (n ≥ 4) be an n-dimensional compact Bach-flat
Riemannian manifold with positive constant scalar curvature. If

|W |2 +
n

2(n− 2)

∣∣R̊ic
∣∣2 <

1
2(n− 2)(n− 1)

R2,

then Mn is an Einstein manifold.

Acknowledgments The authors thank the referee for his helpful sugges-
tions.
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