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The influence of nonnormal noncyclic subgroups

on the structure of finite groups
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Abstract. We obtain a complete classification of finite groups in which all noncyclic
proper subgroups are nonnormal, and we apply this classification to investigate some
structures of finite groups.
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1. Introduction

In this paper all groups are assumed to be finite. It is known that a
group G is called a Dedekind-group if all subgroups of G are normal in G
(see [6, Theorem 5.3.7]), and a group G is said to be a simple group if all
nontrivial subgroups of G are nonnormal in GG. As generalizations, it is
natural to investigate the normality of some particular subgroups. In [1],
Buckley characterized groups in which all minimal subgroups are normal,
such groups are called PN-groups. Note that a group in which all cyclic
subgroups are normal is also a Dedekind-group. For the noncyclic subgroups,
[2] and [5] classified all p-groups in which all noncyclic subgroups are normal.
And in [3], Kutnar, Marusi¢ and the authors classified noncyclic groups in
which all supersolvable noncyclic subgroups are selfnormalizing.

As a further study of the normality of noncyclic subgroups, the main goal
of this paper is to classify groups in which all noncyclic proper subgroups
are nonnormal. For convenience, we call a group G an NCNN-group if G has
at least one noncyclic proper subgroup and all noncyclic proper subgroups
of G are nonnormal in G.
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For NCNN-groups, we have the following result, the proof of which is
given in Section 2.

Theorem 1.1 A group G is an NCNN-group if and only if one of the
following statements holds:

(1) G/®(G) is a nonabelian simple group with ¢(G) = Z(G) being
cyclic, where ®(G) is the Frattini subgroup of G and Z(G) is the center of
G;

(2) G = {(a,b | a™ =b"" = 1,b"tab = a"), wherem >r >1,n>1
are positive integers and q is the smallest prime divisor of |G| such that
((r—=1)¢g,m)=1 and r? =1 (mod m).

Next we will apply Theorem 1.1 to investigate some structures of groups.

Lemma 1.2 ([3, Theorem 1.2]) Let G be a group having at least one
noncyclic proper subgroup. Then all noncyclic proper subgroups of G are
selfnormalizing in G if and only if G = {a,b | ™ = b9 = 1,b"tab = a"),
where m > r > 1, n > 1 are positive integers and q is the smallest prime
divisor of |G| such that ((r —1)g,m) =1 and r? = 1 (mod m).

Combining Theorem 1.1 and Lemma 1.2 together, we obtain the follow-
ing interesting result for noncyclic subgroups.

Theorem 1.3 Let G be a solvable group having at least one noncyclic
proper subgroup. Then all noncyclic proper subgroups of G are nonnormal

in G if and only if all noncyclic proper subgroups of G are selfnormalizing
in G.

The alternating group As shows that Theorem 1.3 is not true if G is a
nonsolvable group.

Note that all PN-groups are solvable by [1]. Then we can easily get the
following theorem by Theorem 1.1.

Theorem 1.4 Let G be a PN-group having at least one noncyclic proper
subgroup. Then all noncyclic proper subgroups of G are nonnormal in G
if and only if G = (a,b | a™ = b7 = 1,b~'ab = a”), where m > r > 1,
n > 2 are positive integers and q is the smallest prime divisor of |G| such
that ((r —1)g,m) =1 and r? =1 (mod m).

The following three corollaries are direct consequences of Theorem 1.1.

Corollary 1.5 Let G be a group having at least one noncyclic proper
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subgroup. Then all noncyclic proper subgroups of G are not subnormal in G
if and only if one of the following statements holds:

(1) G/2(G) is a nonabelian simple group with ®(G) = Z(G) being
cyclic;

(2) G = (a,b]a™ =b"" =1,b"'ab = a"), wherem >r >1,n>1
are positive integers and q 1is the smallest prime divisor of |G| such that
((r—=1)¢g,m) =1 and r? =1 (mod m).

Corollary 1.6 Let G be a group having at least one noncyclic proper
subgroup. Then for any noncyclic proper subgroup H of G we always have
that Hg (the largest normal subgroup of G that is contained in H) is cyclic
if and only if one of the following statements holds:

(1) G/®(G) is a nonabelian simple group with &(G) = Z(G) being
cyclic;

(2) G = (a,b ]| a™ =b"" =1,b" ab = a”), wherem >r >1,n>1
are positive integers and q is the smallest prime divisor of |G| such that
((r—=1)¢g,m) =1 and r? =1 (mod m).

Corollary 1.7 Let G be an NCNN-group. If G is solvable, then G 1is
supersolvable.

Note that a group having at most three conjugacy classes of noncyclic
proper subgroups is solvable by [4]. Combining Corollary 1.7 and [4] to-
gether, we have the following corollary.

Corollary 1.8 Let G be an NCNN-group. If G has at most three conjugacy
classes of noncyclic proper subgroups, then G is supersolvable.

2. Proof of Theorem 1.1

Proof. (1) For the necessity part.

(i) Suppose that G is nonsolvable. By [6, Exercise 10.5.7], we have
that all maximal subgroups of G are noncyclic. If G is a nonabelian simple
group, then G clearly satisfies the hypothesis. Next we assume that G is not
a nonabelian simple group. Let IV be a maximal nontrivial normal subgroup
of G. By the hypothesis, we have that N is cyclic. Then G/N must be a
nonabelian simple group. We claim that

N < &(G).
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Otherwise, assume N ¢ &(G). Let M be a maximal subgroup of G such
that N £ M. Then G = NM. It is obvious that N N M < M. Moreover,
NN M <N since N is cyclic. So NN M 9G. We have G/(N N M) =
N/(NNM)x M/(NNM). Let G = G/(NNM), N=N/(NN M) and
M = M/(N N M). It is obvious that M = G/N is a nonabelian simple
group. By N/C-theorem, G/Cgs(N) = Ng(N)/Cq(N) < Aut(N). Since
N is cyclic, we have that Aut(N) is abelian. However, since G/Cg(N) =
(G/N)/(C&(N)/N) and G/N = M is a nonabelian simple group, it follows
that C5(N) = G. That is, N < Z(G). Thus M <G. Tt implies that M <G.
By the hypothesis, we have that M is cyclic. Then it is easy to see that G
is solvable, a contradiction. Hence N < &(G).

Since G/N is a nonabelian simple group, it follows that N = &#(G). So
G/ ®(G) is a nonabelian simple group, where #(G) is cyclic. Moreover, we
can easily get ¢(G) = Z(G) by N/C-theorem.

(ii) Suppose that G is solvable. If G is nilpotent, then all maximal
subgroups of G are normal in G. By the hypothesis, we have that all maximal
subgroups of GG are cyclic, this contradicts that G has at least one noncyclic
proper subgroup.

Thus G is nonnilpotent. Since G is solvable, one has that G has a
maximal subgroup L such that L < G. By the hypothesis, we have that
L is cyclic. Assume G/L = Z., where e is a prime divisor of |G|. Let
E € Syl.(G). Then G = LE. Let K be a ¢/-Hall subgroup of L. It is
obvious that K < G since L is cyclic. Thus G = K x E. We claim that

FE is cyclic.

Otherwise, assume that E is noncyclic. Let Fy and Es be two distinct
maximal subgroups of E. It is easy to see that K x Fy and K X Fs are normal
in KxF = G. By the hypothesis, we have that K x F; and K x Es are cyclic.
It follows that F1 < Cq(K) and Ey < Cg(K). So E = E1Ey < Cg(K). Tt
implies that G is nilpotent, a contradiction. Hence E is cyclic.

Thus G is a group in which all Sylow subgroups are cyclic. By [6,
Theorem 10.1.10], we have G = (a, b | a™ = b* = 1, b= 'ab = a"), where m
and s are positive integers such that ((r —1)s, m) = 1 and r®* = 1 (mod m).
We claim that

s is a prime-power.
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Otherwise, assume that ¢; and ¢y are two distinct prime divisors of s.
Then (b) and (b'2) are two distinct maximal subgroups of (b). It is easy
to see that (a) x (b'*) and (a) x (b*?) are normal in (a) x (b)) = G. By
the hypothesis, we have that (a) x (b'1) and (a) x (b'2) are cyclic. Then
(b") < Cg({a)) and (b") < Ca((a). Thus (b) = (b")(b") < Ce((a)). It
follows that G is cyclic, a contradiction. So s is a prime-power.

Assume s = ¢", where ¢ is a prime and n > 1. Since (a) x (b?) is normal
in (a) x (b) = G. By the hypothesis, we have that (a) x (b?) is cyclic. Thus
r? =1 (mod m).

Next we claim that

q is the smallest prime divisor of |G|.

Otherwise, let f be the smallest prime divisor of |G| and f # ¢. Let
F € Syly(G). By above argument, F is cyclic. Then G is f-nilpotent by [6,
Theorem 10.1.9]. That is, there exists a normal subgroup T' of G such that
G =T x F. By the hypothesis, T is cyclic. Since g # f, we have (b) < T.
Thus (b) JG. It follows that G is cyclic, a contradiction. So ¢ is the smallest
prime divisor of |G|.

(2) For the sufficiency part.

If G/ #( (@) is a nonabelian simple group with ¢(G) = Z(G) being cyclic,
it is easy to show that all noncyclic proper subgroups of G are nonnormal
in G.

Next assume G = (a,b | a™ = b?" = 1,b~'ab = a"), where m > 1,
n > 1 are positive integers and ¢ is the smallest prime divisor of |G| such
that ((r — 1)¢g,m) = 1 and r? = 1 (mod m). Let R be a noncyclic proper
subgroup of G. By the definition of G, it is easy to show that R = (a*) x (b*)
for some x € G and some positive integer i such that (a’) < (a). If R <G,
then G/R = (a) x (b%)/{a®) x (b") is cyclic. It follows that G’ < R. Since
b=lab = a", one has [a,b] = a~'b"tab = a'~". Thus a'~" € R. Tt follows
that (a"~1) < R. Since (r —1,m) = 1, we have (a"~!) = (a). Then (a) < R,
this contradicts that (a’) < (a). Hence all noncyclic proper subgroups of G
are nonnormal in G. g
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