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On the classical limit of self-interacting quantum field

Hamiltonians with cutoffs
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Abstract. We study, using Hepp’s method, the propagation of coherent states for

a general class of self interacting bosonic quantum field theories with spatial cutoffs.

This includes models with non-polynomial interactions in the field variables. We show

indeed that the time evolution of coherent states, in the classical limit, is well approx-

imated by time-dependent affine Bogoliubov unitary transformations. Our analysis

relies on a non-polynomial Wick quantization and a specific hypercontractive estimate.
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1. Introduction

In the early days of quantum mechanics Niels Bohr formulated the corre-
spondence principle stating that classical physics and quantum physics agree
in the limit of large quantum numbers. Later Erwin Schrödinger discovered
the so-called coherent states which provide a bridge between the quantum
and the classical theory. The quantum dynamics of these states are indeed
closely localized around the classical trajectories although the uncertainty
principle asserts that it is not possible to find a compactly supported wave
function both in the position and the impulsion representation. Neverthe-
less, coherent states are the best minimizers of the uncertainty inequality
with respect to the position and momentum observables and hence they are
the most classically localized states in the phase-space.

The physical intuition behind the coherent states and its usefulness for
the classical limit was put on a firm mathematical ground by K. Hepp in
his remarkable work [16]. Nowadays coherent states are widely used in
physics, for instance in quantum optics [23], as well as in the mathematical
literature [7]. It is in a certain sense an effective and yet simple tool for
microlocalisation (see for instance [8], [15], [20], [31]).

It was noticed in [16] that the classical limit can be derived not only
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for one particle Schrödinger dynamics but also for many-body Hamiltoni-
ans and models of quantum field theory (see also [10]). Thus, the coherent
states method is also effective for infinite dimensional phase-space analysis.
However, the classical limit of quantum field theories attracted a less atten-
tion compared to the successful semiclassical analysis in finite dimensions
and to the fast growing subject of mean field theory (see [2], [13], [26] and
references therein).

The purpose of the present paper is to study, through propagation of
coherent states, the classical limit of self interacting Bose field theories. We
extend indeed the result of [16] so that it holds true for all coherent states, for
all times and for a general class of quantum field Hamiltonians with possibly
unbounded non-polynomial interactions. We also clarify the classical field
equation obtained in the limit which seems to be set inaccurately in [16]. Our
results apply to the models (ϕ4)2, (ϕ2n)2 and more generally P (ϕ)2 boson
field Hamiltonians as well as some variant of the Høegh-Krohn model (see
[17], [18]) and some recently studied models in [11], [12]. The construction of
such Hamiltonians was one of the beautiful results of mathematical physics
established by the late sixties (see e.g. [14], [19], [27], [28], [30]).

More precisely we show that the quantum evolution of a coherent state
localized around a point ϕ0 on the phase-space is well approximated in the
classical limit by a sequezeed coherent states centered around ϕt (the classi-
cal orbit starting from ϕ0 a time t = 0) and deformed by a time-dependent
unitary Bogoliubov transformation. As a consequence the classical limit of
the expectation values of the Weyl operators on time-evolved coherent states
are the exponentials of the classical field orbit in phase space.

The classical limit can be addressed either from a dynamical point of
view or a variational perspective. Here we focus on dynamical issues while
variational questions were studied in [1], [4]. It is also worth mentioning that
an alternative method was developed in [3], extending Wigner (or semiclas-
sical) measures to the infinite dimensional phase-space framework. However,
it was applied only to many-body Hamiltonians with conserved number of
particles. Its adaptation to models of quantum field theory will be consid-
ered elsewhere.

Overview of the paper: In Section 2 we fix some notations and state
our main results on propagation of coherent states in the classical limit.
The proof of the main theorem (Theorem 2.1) is presented in Section 4
where we also establish existence of global solutions for the classical equation
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and study a related time-dependent quadratic dynamic. In Section 3 we
introduce a specific Wick quantization, establish an hypercontractivity type
inequality and present some models of quantum field Hamiltonians covered
by the present analysis.

2. Preliminaries and main results

The Hamiltonians of quantum field models can be described either in
the particle or in the wave representation. In fact, the free Bose fields
Hamiltonians are simply expressed in the symmetric Fock space while the
interaction is a multiplication by a measurable function on a space L2(M, µ)
related to the representation of random Gaussian processes indexed by real
Hilbert spaces.

The general framework is as follows. Let Z denote a separable Hilbert
space with a scalar product 〈·, ·〉 which is anti-linear in the left argument and
with the associated norm |z| =

√
〈z, z〉. We assume that Z is equipped with

a complex conjugation c : z 7→ c(z) compatible with the Hilbert structure
(i.e., c is antilinear, c ◦ c(z) = z and |c(z)| = |z|). From now on we denote

z := c(z), ∀z ∈ Z,

and consider Z0 to be the real subspace of Z, i.e.,

Z0 := {z ∈ Z; z̄ = z}. (2.1)

The symmetric Fock space over Z is the direct Hilbert sum

Γs(Z) =
∞⊕

n=0

⊗n
s Z. (2.2)

A particularly convenient dense subspace of Γs(Z) is the space of finite
particle states given by the algebraic direct sum

Df =
alg⊕
n=0

⊗n
s Z. (2.3)

It is well-known that Γs(Z) carries a Fock unitary representation of the Weyl
commutation relations, namely there exists a mapping f 7→ W (f) from Z
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into unitary operators on Γs(Z) satisfying

W (f1)W (f2) = e−(iε/2)Im〈f1,f2〉W (f1 + f2), ∀f1, f2 ∈ Z. (2.4)

Here ε is a positive sufficiently small (semiclassical) parameter and Im〈·, ·〉
is the imaginary part of the scalar product on Z which is in particular a
symplectic form. The so-called Weyl operators W (f) are given by W (f) =
eiΦs(f) for all f ∈ Z where Φs(f) = (1/

√
2)(a∗(f)+a(f)) are the Segal field

operators and a∗(·), a(·) are the ε-dependent creation-annihilation operators
satisfying

[a(f), a∗(g)] = ε〈f, g〉1l, [a(f), a(g)] = 0 = [a∗(f), a∗(g)], ∀f, g ∈ Z.

In this framework, the coherent states are the total family of vectors in
the Fock space Γs(Z) given by

W

(
− i

√
2

ε
z

)
Ω = e−(|z|2/2ε)

∞∑
n=0

ε−(n/2) z⊗n

√
n!

, ∀z ∈ Z, (2.5)

where Ω is the vacuum vector (i.e., Ω = (1, 0, . . . ) ∈ Γs(Z)).
The free Bose field Hamiltonian in this representation is given by the

second quantized operator dΓ(A) defined for any self-adjoint operator A on
Z as

dΓ(A)|⊗n
sZ := ε

n∑

i=1

1l⊗ · · · ⊗ A︸︷︷︸
ith position

⊗ · · · ⊗ 1l. (2.6)

In particular the ε-dependent number operator is defined by N = dΓ(1l).
We will sometimes use the lifting operation of an operator A on Z

to Γs(Z) given by Γ(A)|⊗n
sZ := A ⊗ · · · ⊗ A. For instance Γ(c) defines a

conjugation on the Fock space Γs(Z).

It is also well-known that there exist a probability space (M, T, µ) and
an ε-independent unitary map R : Γs(Z) → L2(M, µ) such that RΩ = 1
and Z0 3 f 7→ Φ(f) =

√
2/εRΦs(f)R∗ is an R-linear mapping taking val-

ues into centered gaussian random variables on M with variance |f |2 (see
Theorem 3.9). This means that any Φ(f) =

√
2/εRΦs(f)R∗ is a (self-

adjoint) multiplication operator on the space L2(M, µ) for every f ∈ Z0.
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The mapping R provides an unitary equivalent Fock representation of the
Weyl commutation relations on the space L2(M, µ) called the wave repre-
sentation. We observe that for any V ∈ Γs(Z) satisfying Γ(c)V = V , R(V )
is a real-valued function belonging to L2(M, µ). Therefore R(V ) can be
considered as a self-adjoint multiplication operator on L2(M, µ) which we
denote by MR(V ). It turns that these operators MR(V ) on L2(M, µ) are
Wick operators when they are transformed to the Fock space Γs(Z) via the
unitary transform R. Indeed, we have the relation

RFWick
V R∗ = MR(Γ(

√
ε)V ),

where FWick
V is an ε-dependent Wick operator (possibly non-polynomial)

with an explicit Wick symbol given by

FV (z) =
∞∑

n=0

〈
(z + z̄)⊗n

√
n!

, V (n)

〉
and

V (n) ∈ ⊗n
sZ with V =

∞⊕
n=0

V (n) ∈ Γs(Z). (2.7)

The relation between symbols and Wick operators is studied in details in Sec-
tion 3. We warn the reader that the Wick quantization here is ε-dependent.

We shall consider the general class of Hamiltonians given by the “sum”

H := dΓ(A) + FWick
V , (2.8)

where A is a self-adjoint operator on Z satisfying:

(A1) cA = Ac and A ≥ m1l for some m > 0.

The multiplication operator MR(Γ(
√

ε)V ) by the function R(Γ(
√

ε)V ) on
the wave representation, which transforms unitarily to FWick

V on the Fock
representation, verifies

(A2) R(Γ(
√

ε)V ) is a real-valued function in Lq(M, µ) for some q > 2 and
e−tR(Γ(

√
ε)V ) ∈ L1(M, µ) for any t > 0 and ε ∈ (0, 1).

Here R is the transform given by Theorem 3.9. The operator H depends
on the parameter ε and it is self-adjoint under assumptions (A1) and (A2)
(see Theorem 3.19).
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Our main result is the following theorem.

Theorem 2.1 Assume (A1)–(A2) and that V ∈ D(eαΓ(λ)) for some
λ > 1 and α > 0. Let ϕ0 ∈ Z and Ψ ∈ Df then there exists for every t ∈ R
a finite ε-independent bound c(t,Ψ) > 0 such that the inequality

∥∥∥∥e−i(t/ε)HW

(
− i

√
2

ε
ϕ0

)
Ψ− ei(ω(t)/ε)W

(
− i

√
2

ε
ϕt

)
U2(t, 0)Ψ

∥∥∥∥
Γs(Z)

≤ c(t, Ψ)
√

ε,

holds uniformly in ε ∈ (0, 1) as long as ϕt is the mild solution of the field
equation

i∂tϕt = Aϕt + ∂z̄FV (ϕt) (2.9)

with initial data ϕ0, the function ω(t) is given by

ω(t) =
∫ t

0

∞∑

k=0

(k − 2)
2

〈
(ϕs + ϕ̄s)⊗k

√
k!

, V (k)

〉
ds,

and U2(t, s) is the unitary propagator of a time-dependent quadratic Hamil-
tonian given by Corollary 4.6.

Remark 2.2 ( i ) Explicitly the assumption V ∈ D(eαΓ(λ)) means∑∞
n=0 e2αλn‖V (n)‖2 < ∞. It is mainly due to the weak regularity

properties of U2(t, s), see Proposition 4.5.
( ii ) Using hypercontractive estimates (see Lemma 3.13), the condition

V ∈ D(eαΓ(λ)) implies R(V ) ∈ ⋂
p≥2 Lp(M, µ) and hence R(Γ(

√
ε)V )

∈ ⋂
p≥2 Lp(M, µ).

(iii) We give an example fulfilling the assumptions. Let V =∑∞
n=0 b2nε−nΦs(ϕ)2nΩ with ϕ ∈ Z, 0 ≤ b2n ≤ e−βλ2n

for some
λ > 1 and β > α > 0. Then the Wick ordering implies that
V =

⊕∞
n=0 a2nϕ⊗2n such that am ≥ 0 and

∑∞
m=0 a2

me2αλm |ϕ|2m <

∞. Hence V ∈ D(eαΓ(λ)) and assumption (A2) is satisfied since
R(V ) ≥ 0 and Γ(

√
ε) is a positivity preserving operator. Moreover

R(V ) /∈ L∞(M, µ) if V 6= 0.
(iv) The above theorem holds with the following explicit bound for t > 0
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(with similar bound if t < 0)

c(t,Ψ) = C‖eαλN/ε

V ‖
∫ t

0

e4‖ϕs‖2Z

×
[∥∥∥∥

√
gs

(
N

ε

)
Ψ

∥∥∥∥
2

+ g′s(0)
∫ s

0

‖V2(r)‖dr‖Ψ‖2
]1/2

ds,

with C > 0 depending only on (α, λ) and V2(r) ∈ ⊗2
sZ is defined by

(4.6). The functions gt and g′t are given by

gt(r) =
∞∑

k=0

e−α0λk

e2
√

2λk
0

R t
0 ‖V2(s)‖ds(r + 1)k and g′t(r) =

d

dr
gt(r),

for arbitrary λ0 and α0 such that 1 < λ0 < λ and 0 < α0λ
2 < α.

( v ) Furthermore, V2(r) ∈ ⊗2
sZ given by (4.6) satisfies

‖V2(r)‖Γs(Z) ≤
∥∥∥∥
(

N

ε

)4

V

∥∥∥∥
Γs(Z)

e4‖ϕr‖2Z .

Corollary 2.3 Assume (A1)–(A2) and that V ∈ D(eαΓ(λ)) for some
λ > 1 and α > 0. We have for any ξ ∈ Z and ϕ0 ∈ Z the strong limit

s− lim
ε→0

W

(
− i

√
2

ε
ϕ0

)∗
ei(t/ε)HW (ξ)e−i(t/ε)HW

(
− i

√
2

ε
ϕ0

)

= ei
√

2Re〈ξ,ϕt〉1l,

with ϕt solving the classical field equation (2.9) with initial data ϕ0.

Proof. It is enough to prove the limit

lim
ε→0

〈
e−i(t/ε)HW

(
− i

√
2

ε
ϕ0

)
Ψ,W (ξ)e−i(t/ε)HW

(
− i

√
2

ε
ϕ0

)
Φ

〉

= ei
√

2Re(ξ,ϕt)〈Ψ,Φ〉,

for any Ψ,Φ ∈ Df . Now applying Theorem 2.1 for a fixed time t yields
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〈
e−i(t/ε)HW

(√
2

iε
ϕ0

)
Ψ,W (ξ)e−i(t/ε)HW

(√
2

iε
ϕ0

)
Φ

〉

=
〈

W

(√
2

iε
ϕt

)
U2(t, 0)Ψ,W (ξ)W

(√
2

iε
ϕt

)
U2(t, 0)Φ

〉
+ O(

√
ε).

But using the Weyl commutation relations (2.4) we obtain

〈
W

(√
2

iε
ϕt

)
U2(t, 0)Ψ,W (ξ)W

(√
2

iε
ϕt

)
U2(t, 0)Φ

〉

= 〈U2(t, 0)Ψ,W (ξ)U2(t, 0)Φ〉ei
√

2Re〈ξ,ϕt〉.

Thus, we obtain the claimed limit since s− limε→0 W (ξ) = 1l and U2(t, 0) is
ε-independent unitary operator. ¤

Outline of the proof of Theorem 2.1. The proof of our main result relies
on a Taylor expansion of the Hamiltonian H around the classical orbit ϕt

satisfying the field equation (2.9). Formally the Hamiltonian H is a Wick
quantization of the function

h(z) = 〈z, Az〉+ FV (z).

The symbol of the translated operator h(z + ϕt)Wick of H in the phase-
space can be expanded as a sum of three terms h(ϕt), a field operator
and a time-dependent quadratic Hamiltonian, plus higher order terms on
creation-annihilation operators. The first and the second terms provide an
approximation for the evolution of coherent states. More precisely to show
Theorem 2.1, we formally differentiate the quantity

Y(t) = ei(t/ε)Hei(ω(t)/ε)W

(
− i

√
2

ε
ϕt

)
U2(t, 0).

So, we obtain

−iε∂tY(t) = ei(t/ε)Hei(ω(t)/ε)W

(
− i

√
2

ε
ϕt

)

× [
h(z + ϕt)Wick −A0(t)−

√
εA1(t)− εA2(t)

]
U2(t, 0),
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where we have used W (−i(
√

2/ε)ϕt)∗HW (−i(
√

2/ε)ϕt) = h(z + ϕt)Wick

and A0(t), A1(t), A2(t) are ε-independent Wick monomials. It turns that
FWick

R(t) = h(z + ϕt)Wick − A0(t) −
√

εA1(t) − εA2(t) is a Wick operator of
order ε3/2. This leads to the formal estimate for t > 0

∥∥∥∥Y(t)Ψ−W

(
− i

√
2

ε
ϕ0

)
Ψ

∥∥∥∥
Γs(Z)

≤ ε−1

∫ t

0

∥∥FWick
R(s) U2(s, 0)Ψ

∥∥
Γs(Z)

ds.

(2.10)

Hence, we get the expected estimate. However, there are several domain
problems that need to be handled carefully. In particular, the regularity
with respect to powers of the number operator for the propagator U2(t, s)
is crucial.

3. Wick quantization

We first recall the definition of Wick monomials on the Fock space.
For further information we refer the reader to [3], [9]. Later on, we will
use the wave representation in order to extend the Wick quantization to
non-polynomial symbols.

3.1. Polynomial Wick operators
Definition 3.1 We say that a function b : Z → C is a continuous (p, q)-
homogeneous polynomial in the class Pp,q(Z) if and only if there exists a
hermitian form Q : ⊗q

sZ ×⊗p
sZ → C such that

∃C > 0,
∣∣Q(ζ, η)

∣∣ ≤ C‖ζ‖⊗q
sZ · ‖η‖⊗p

sZ , ∀(ζ, η) ∈ ⊗q
sZ ×⊗p

sZ (3.1)

Q(λζ, µη) = λ
q
µpQ(ζ, η), ∀(ζ, η) ∈ ⊗q

sZ ×⊗p
sZ, ∀λ, µ ∈ C (3.2)

and

b(z) = Q(z⊗q, z⊗p), ∀z ∈ Z. (3.3)

The vector space spanned by all these polynomials will be denoted by P.

We notice that the hermitian form Q associated to b in the above defini-
tion is unique by a polarization identity. Consequently, for any b ∈ Pp,q(Z)
there exists a unique bounded operator b̃ ∈ L(⊗p

sZ,⊗q
sZ) such that
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b(z) = 〈z⊗q, b̃z⊗p〉, ∀z ∈ Z. (3.4)

Next we recall the definition of Wick quantization for symbols in Pp,q(Z),
p, q ∈ N. The whole analysis depends on a small parameter ε which we can
choose sufficiently small or at least in (0, 1]. Let Sn denote the orthogonal
projection on the symmetric tensor product ⊗n

sZ given by

Sn(ζ1 ⊗ ζ2 · · · ⊗ ζn) =
1
n!

∑

σ∈Sn

ζσ(1) ⊗ ζσ(2) ⊗ · · · ⊗ ζσ(n), (3.5)

where Sn is the symmetric group of n elements.

Definition 3.2 The Wick monomial of a symbol b ∈ Pp,q(Z) is the closure
of the ε-dependent linear operator bWick : Df → Df ⊂ Γs(Z) defined by

bWick
|⊗n

sZ = 1[p,+∞)(n)

√
n!(n + q − p)!

(n− p)!
ε(p+q)/2Sn−p+q

(
b̃⊗ 1l⊗(n−p)

)
, (3.6)

where b̃ ∈ L(⊗p
sZ,⊗q

sZ) verifying (3.4).

Remark 3.3 1) For any b ∈ Pp,q(Z) the monomial b̄(z) := b(z) belongs
to Pq,p(Z) and the relation b̄Wick ⊂ (bWick)∗ holds. Therefore (3.6)
defines a closable operator on Γs(Z) and in all the sequel bWick denotes
a closed operator.

2) The ε-dependent annihilation-creation operators can be written as

a∗(f) = 〈z, f〉Wick, a(f) = 〈f, z〉Wick.

3) The Wick operator 〈z, z〉Wick is the number operator and more generally
dΓ(A) = 〈z, Az〉Wick.

The composition of two Wick polynomials with symbols in Pp,q(Z) is
meaningful in the subspace Df . In fact, one can show that for any bi ∈ P,
(i = 1, 2), there exists a unique c ∈ P such that

bWick
1 bWick

2 |Df
= cWick|Df

. (3.7)

The explicit formula of composition is presented in [3, Proposition 2.7].
The Wick quantization of the real canonical variables are the so-called
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Segal field operators Φs(f) =
√

2(Re〈f, z〉)Wick, which are self-adjoint. Fur-
thermore, we observe that for any b ∈ P, the polynomial z 7→ b(e−itAz)
belongs to P with the following formula holds true

ei(t/ε)dΓ(A)b(·)Wicke−i(t/ε)dΓ(A) =
(
b(e−itA·))Wick

.

We recall the standard number estimate (see e.g., [3, Lemma 2.5]). Uni-
formly in ε > 0, the inequality

∣∣〈Ψ, bWickΦ〉∣∣ ≤ ‖b̃‖L(⊗p
sZ,⊗q

sZ)‖〈N〉q/2Ψ‖ × ‖〈N〉p/2Φ‖, (3.8)

holds for any b ∈ Pp,q(Z).
We set

Dc := vect{W (ϕ)Ω; ϕ ∈ Z0}. (3.9)

Lemma 3.4 The subspace Dc is dense in the symmetric Fock space Γs(Z).

Proof. Let Ψ = {Ψ(n)}n≥0 be a vector in Γs(Z) orthogonal to the set Dc.
In particular, we have 〈Ψ,W (λϕ)Ω〉Γs(Z) = 0 for any λ ∈ R and ϕ ∈ Z0.
An explicit computation yields

〈Ψ,W (λϕ)Ω〉Γs(Z) = e−(ε/4)λ2|ϕ|2
∞∑

n=0

inεn/2〈Ψ(n), ϕ⊗n〉 λn

√
2nn!

,

and hence the function λ 7→ 〈Ψ,W (λϕ)Ω〉Γs(Z) is real-analytic. It follows
that 〈Ψ(n), ϕ⊗n〉 = 0 for all n ∈ N and ϕ ∈ Z0. Since the set {ϕ⊗n, ϕ ∈ Z0}
is total in ⊗n

sZ for all n ∈ N, we conclude that Ψ = 0. ¤

Lemma 3.5 For any b ∈ P the subspace Dc is a core for bWick.

Proof. It is enough to show this property only for Wick monomials and
with ε = 1. Recall that the subspace G0 := Vect{W (f)Ψ,Ψ ∈ Df , f ∈ Z}
is a core for bWick (see [3, Proposition 2.10]) and it contains Dc. The Wick
identity

[〈z + z̄, ϕ〉n]Wick =
[n/2]∑
r=0

(−1)r n!
r!(n− 2r)!

( |ϕ|√
2

)2r[〈z + z̄, ϕ〉Wick
]n−2r

,
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holds true for any ϕ ∈ Z0. In particular, we have

ϕ⊗n =
[〈

(z + z̄)⊗n

√
n!

, ϕ

〉]Wick

Ω

=
[n/2]∑
r=0

(−1)r

√
n!

r!(n− 2r)!

( |ϕ|√
2

)2r[〈z + z̄, ϕ〉Wick
]n−2rΩ

= lim
t→0

[n/2]∑
r=0

(−1)r

√
n!

r!(n− 2r)!

( |ϕ|√
2

)2r[
W (

√
2tϕ)− 1
it

]n−2r

Ω, (3.10)

where in the last equality we have used the fact that Ω is C∞-vector for the
field operator Φs(ϕ). Hence we have at hand an explicit sequence ϕ(t) ∈ Dc,
for t ∈ R \ {0}, given by (3.10) approximating each element of the total
family {ϕ⊗n, ϕ ∈ Z0, n ∈ N}. Moreover, limt→0 bWickϕ(t) = bWickϕ⊗n

since ϕ(t), ϕ⊗n ∈ D(bWick) and bWick is closed. Therefore it follows that
the closure of the graph of (bWick)|Dc

contains the graph of bWick. ¤

3.2. Non-polynomial Wick operators
We set

K :=
{

F : Z → C;∃V =
∞⊕

n=0

V (n) ∈ Γs(Z);F (z) =
∞∑

n=0

〈
(z + z̄)⊗n

√
n!

, V (n)

〉}
.

(3.11)

The mapping

Ξ : Γs(Z) −→ K

V =
∞⊕

n=0

V (n) 7−→ FV (z) :=
∞∑

n=0

〈
(z + z̄)⊗n

√
n!

, V (n)

〉
,

defines a Hilbert spaces isomorphism between Γs(Z) and K when the latter
is endowed with the scalar product

〈FV1 , FV2〉K := 〈V1, V2〉Γs(Z).

Moreover, we notice that (K, 〈·, ·〉K) is a reproducing kernel Hilbert space
with the explicit kernel K(z, w) := e〈z+z̄,w+w̄〉 satisfying the pointwise
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relation

〈K(w, ·), FV (·)〉K = FV (w)

for all FV ∈ K and w ∈ Z.
Below we give the definition of Wick operators with symbols in the class

K.

Definition 3.6 The Wick operator with symbol FV in K is the closure of
the ε-dependent linear operator defined by

FWick
V (W (ϕ)Ω) = W (ϕ)Γ(

√
ε)V, ∀ϕ ∈ Z0. (3.12)

We observe that for any collection ϕi, i = 1, . . . , n of distinct elements of
Z0 if

∑n
i=1 λiW (ϕi)Ω = 0 then λi = 0 for i = 1, . . . , n. This implies that

FWick
V is a well-defined linear operator on Dc.

Remark 3.7 1) Since Dc is dense in Γs(Z) the operator FWick
V , FV ∈ K,

is densely defined.
2) Notice that (FV )Wick

|Dc
⊂ (FWick

V )∗ then the operator given by (3.12) is
closable.

3) The Wick quantization procedure of Definition (3.2) and (3.6) coincide
for symbols in P ∩ K.

4) The classes K and P are different. In fact |z|2 belongs to P but not to
K and FW (ψ)Ω ∈ K for ψ 6= 0 and not in P.

The Wick quantization procedure given above have the following further
property.

Lemma 3.8 If FV ∈ K then for all ϕ ∈ Z0

W (ϕ)D(FWick
V ) = D(FWick

V ) and W (ϕ)∗FWick
V W (ϕ) = FWick

V .

Proof. By Definition 3.6 and using the fact that W (ϕ)Dc ⊂ Dc, we verify
that

FWick
V W (ϕ)|Dc

= W (ϕ)FWick
V |Dc

, for all ϕ ∈ Z0. (3.13)

Since Dc is a core for FWick
V , we see that W (ϕ)D(FWick

V ) ⊂ D(FWick
V ). Now

the fact that W (ϕ) is unitary with W (ϕ)∗ = W (−ϕ), ϕ ∈ Z0, yields the
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equality. Hence (3.13) extends to the domain of FWick
V . ¤

The Wick quantization of symbols in K gives multiplication operators
in the wave representation. Therefore it is convenient to switch to such
representation when it is advantageous. For reader’s convenience, we briefly
recall some facts about the wave representation (see [9], [30]).

Let (M, T, µ) be a probability space. A random variable X : M → R
with a finite variance σ2 ≥ 0 is called centered gaussian if and only if its
characteristic function is

∫

M

e−itXµ = e−(1/2)σ2t2 , t ∈ R.

Let H be a real Hilbert space. A gaussian random process indexed by H is
a map H 3 f 7→ Φ(f) into centered gaussian random variables on M with
variance |f |2 satisfying for any f1, f2, f ∈ H and λ ∈ R,

Φ(f1) + Φ(f2) = Φ(f1 + f2) and λΦ(f) = Φ(λf) a.e.

The process is called full if T is the smallest σ-algebra such that Φ(f), f ∈ H,
are measurable.

Let M be the abelian Von Neumann algebra generated by the Weyl op-
erators W (f), f ∈ Z0. The following theorem gives the wave representation
of the canonical commutation relations (see e.g. [30, Theorem I.1]).

Theorem 3.9 There exist a probability measure space (M, T, µ) and a
unitary map R : Γs(Z) → L2(M, µ) such that

(i) RΩ = 1, (ii) RMR∗ = L∞(M, µ), (iii) RΓ(c)ψ = Rψ.

Moreover, the map

Z0 3 f 7→ Φ(f) = R
√

2
ε
Φs(f)R∗,

is a gaussian full random process indexed by Z0.

This theorem allows to see the Wick operators with symbols in K as mul-
tiplication operators by unbounded measurable functions when represented
in the space L2(M, µ), see the following lemma.
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Lemma 3.10 For any FV ∈ K there exists a measurable function V ∈
L2(M, µ) such that

RFWick
V R∗ψ = Vψ, ∀ψ ∈ R(Dc) ⊂ L2(M, µ),

with V acting as a multiplication operator on L2(M, µ).

Thanks to such identification we obtain the following results.

Lemma 3.11 For any real-valued FV ∈ K, the corresponding Wick oper-
ator FWick

V is essentially self-adjoint on Dc.

Proof. This follows from the fact that RFWick
V R∗ is a densely defined

multiplication operator by a µ-a.e. finite real-valued function on L2(M, µ)
(see [25, Section VIII.3]). ¤

In the following lemma, we prove that the set of Wick operators with
symbols in K∩P is dense, with respect to the strong resolvent topology, in
the set of Wick operators with K symbols.

Lemma 3.12 Let FV be a real-valued function in K, V =
⊕∞

n=0 V (n) ∈
Γs(Z). For κ integer we set Vκ =

⊕κ
n=0 V (n) and FVκ(z) =

∑κ
n=0

·〈(z + z̄)⊗n/
√

n!, V (n)〉. Then the sequence of self-adjoint Wick polynomials
FWick

Vκ
converges to FWick

V in the strong resolvent sense.

Proof. By the above lemma we know that FWick
Vκ

and FWick
V are self-adjoint

operators with a common core Dc. Therefore, it is enough to prove that

lim
κ→∞

FWick
Vκ

Ψ = FWick
V Ψ, (3.14)

for any Ψ ∈ Dc in order to get the strong resolvent convergence (see [25,
Theorem VIII.25]). Since FVκ ∈ K we can apply Lemma 3.8 and hence
obtain

FWick
Vκ

W (ϕ)Ω = W (ϕ)FWick
Vκ

Ω = W (ϕ)
κ∑

n=0

εn/2V (n).

Taking κ → ∞, we get limκ→∞ FWick
Vκ

W (ϕ)Ω = W (ϕ)Γ(
√

ε)V =
FWick

V W (ϕ)Ω. ¤
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3.3. Hypercontractive estimates
We recall the well-known hypercontractive inequality (see [30, Theorem

I.17]).

Lemma 3.13 Let 1 < p ≤ q < ∞ and 0 < α ≤
√

(p− 1)/(q − 1). Then
for any Ψ ∈ Γs(Z),

‖RΓ(α)Ψ‖Lq(M,µ) ≤ ‖RΨ‖Lp(M,µ). (3.15)

The following lemma provides an information on the domain of Wick
operators with symbols in K.

Lemma 3.14 Let V ∈ Γs(Z) and λ ≥ √
3. Then for all ε ∈ (0, 1/3] and

Ψ ∈ D(Γ(λ)):

∥∥FWick
V Ψ

∥∥
Γs(Z)

≤ ‖V ‖Γs(Z)‖Γ(λ)Ψ‖Γs(Z).

Proof. Let FV ∈ K, V ∈ Γs(Z). Using Hölder inequality, we get for any
Ψ ∈ D(Γ(λ))

∥∥FWick
V Ψ

∥∥
Γs(Z)

=
∥∥RFWick

V R∗RΨ
∥∥

L2(M,µ)

=
∥∥(RΓ(

√
ε)V ).(RΨ)

∥∥
L2(M,µ)

≤ ∥∥RΓ(
√

ε)V
∥∥

L4(M,µ)
‖RΨ‖L4(M,µ).

The hypercontractive bound of Lemma 3.13 with p = 2 and q = 4 yields

∥∥FWick
V Ψ

∥∥
Γs(Z)

≤ ‖RV ‖L2(M,µ)‖RΓ(λ)Ψ‖L2(M,µ)

≤ ‖V ‖Γs(Z)‖Γ(λ)Ψ‖Γs(Z). ¤

Remark 3.15 ( i ) In the case ε ∈ [1/3, 1], we can show the inequality

∥∥FWick
V Ψ

∥∥
Γs(Z)

≤
∥∥Γ(

√
3)V

∥∥
Γs(Z)

∥∥Γ(
√

3)Ψ
∥∥

Γs(Z)
.

( ii ) A crude inequality can be easily proved using the bound Ck
n ≤ 2n and

without resorting to hypercontractivity. Indeed for α > 2, we can
show that
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∥∥FWick
V Ψ

∥∥ ≤ 2√
1− 4/α2

∥∥Γ(
√

2)V
∥∥

Γs(Z)
‖Γ(α)Ψ‖Γs(Z).

Proposition 3.16 Let V =
⊕∞

n=0 V (n) ∈ Γs(Z) and set Vκ =
⊕κ

n=0 V (n).
Then for ε ∈ (0, 1/3] :

( i ) Df is a core for FWick
V .

( ii ) For any Ψ ∈ Df the sequence (FWick
Vκ

Ψ)κ∈N converges to FWick
V Ψ.

Proof. (i) Since Df ⊂ D(Γ(λ)) for any λ > 0 we see that Df ⊂ D(FWick
V )

by Lemma 3.14. The explicit formula (2.5) shows that any coherent vector
W (ϕ)Ω, ϕ ∈ Z0, belongs to D(Γ(λ)). Moreover the sequence

Ψκ = e−|ϕ|
2/4

κ∑
n=0

inεn/2

√
2nn!

ϕ⊗
n ∈ Df

converges to W (ϕ)Ω, when κ →∞, with respect to the graph norm of Γ(λ).
Therefore, Lemma 3.14 proves that limκ FWick

V Ψκ = FWick
V W (ϕ)Ω. So that

FV
Wick
|Dc

⊂ FV
Wick
|Df

⊂ FWick
V and FWick

V = FV
Wick
|Dc

.

(ii) The inequality in Lemma 3.14 yields

∥∥(FWick
V − FWick

Vκ
)Ψ

∥∥
Γs(Z)

≤ ‖V − Vκ‖Γs(Z)

∥∥Γ(
√

3)Ψ
∥∥

Γs(Z)
. (3.16)

¤

A more specific inequality is needed.

Proposition 3.17 Let S(λ) =
∑∞

k=0 akλk be an entire function on C such
that ak > 0 for all k ∈ N. For λ1 > 8e there exists C > 0 such that the
inequality

∥∥FWick
V Ψ

∥∥ ≤ 2
∥∥Γ(

√
ε)V

∥∥‖Ψ‖

+ C

( ∞∑
n=0

(λ1ε)n

an+2
‖V (n)‖2⊗n

sZ

)1/2∥∥∥∥

√
S

(
N

ε

)
Ψ

∥∥∥∥ (3.17)

holds whenever the right hand side is finite.

Proof. For Ψ, V ∈ Df we write the decomposition
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FWick
V Ψ = FWick

V (0) Ψ + FWickL
n≥1 V (n)Ψ(0) + FWickL

n≥1 V (0)

(⊕

n≥1

Ψ(n)

)
.

The first and second term are bounded by

‖V (0)‖‖Ψ‖+
∥∥∥∥
⊕

n≥1

εn/2V (n)

∥∥∥∥‖Ψ(0)‖ ≤ 2
∥∥Γ(

√
ε)V

∥∥
Γs(Z)

‖Ψ‖Γs(Z).

Now we can suppose that V (0) = 0 and Ψ(0) = 0 and write a Taylor expan-
sion

FWick
V Ψ =

∑

n≥1

εn/2

√
n!

n∑

k=0

Ck
n

∑

m≥n−k

√
m!(m + 2k − n)!
(m + k − n)!

Sm+2k−nV
(n)
n−k,k

⊗ 1l(m+k−n)Ψ(m),

with V
(n)
n−k,k ∈ L(⊗n−k

s Z,⊗k
sZ). Using the bound

√
m!(m + 2k − n)!/

(m + k − n)! ≤ √
m

n−k√
m + n

k, we get

∥∥FWick
V Ψ

∥∥
Γs(Z)

≤
∑

n≥1

εn/2

√
n!

n∑

k=0

Ck
n

∑

m≥n−k

√
m

n−k√
m + n

k‖V (n)‖‖Ψ(m)‖

≤
∑

n≥1

εn/2

√
n!
‖V (n)‖

∑

m≥1

(√
m +

√
m + n

)n‖Ψ(m)‖.

Cauchy-Schwarz inequality gives

∑

m≥1

(√
m +

√
m + n

)n‖Ψ(m)‖

≤
( ∑

m≥1

(
√

m +
√

m + n)2n

S(m)

)1/2( ∑

m≥1

S(m)‖Ψ(m)‖2
)1/2

.

Since S(m) ≥ an+2m
n+2 and m + n ≤ 2nm for n,m positive integers, we

get the estimate

(
√

m +
√

m + n)2n

S(m)
≤ 23nnn

an+2 m2
.
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Hence by Cauchy-Schwarz

∥∥FWick
V Ψ

∥∥
Γs(Z)

≤ π√
6

∑

n≥1

εn/2

√
n!

√
2
3n

nn/2

√
an+2

‖V (n)‖
∥∥∥∥S

(
N

ε

)1/2

Ψ
∥∥∥∥

≤ π√
6

( ∞∑
n=1

a−1
n+2λ

n
1 εn‖V (n)‖2⊗n

sZ

)1/2( ∑

n≥1

23nnn

λn
1n!

)1/2∥∥∥∥S

(
N

ε

)1/2

Ψ
∥∥∥∥.

Since λ1 > 8e the sum
∑

n≥1(2
3nnn/λn

1n!) is convergent. By Proposition
3.16 the inequality extends to any V ∈ Γs(Z) such that

∑∞
n=0 a−1

n+2(λ1ε)n

·‖V (n)‖2⊗n
sZ is finite and Ψ ∈ Df and then to any Ψ ∈ D(

√
S(N/ε)). ¤

Later we will need to shift by translation a symbol FV ∈ K (i.e., z 7→
FV (z + ϕ), ϕ ∈ Z). Therefore it would be convenient if the translated
symbol still in K. Below, we provide a simple sufficient condition ensuring
such stability.

Lemma 3.18 Let FV be in K, V =
⊕∞

n=0 V (n) ∈ Γs(Z) and assume that

∥∥Γ(
√

2)V
∥∥

Γs(Z)
=

√√√√
∞∑

n=0

2n‖V (n)‖2⊗n
sZ < ∞. (3.18)

Then for any ϕ ∈ Z the function z 7→ FV (z + ϕ) belongs to K. Moreover,
for ε ∈ (0, 1/3] the following relation holds true

W

(
− i

√
2

ε
ϕ

)∗
FV (·)WickW

(
− i

√
2

ε
ϕ

)
= (FV (·+ ϕ))Wick. (3.19)

Proof. Let F be in K, F = Ξ(V ) and V =
⊕∞

n=0 V (n) ∈ Γs(Z), such that
the sequence (V (n))n≥0 satisfies (3.18). For ϕ ∈ Z, we have

F (z + ϕ) =
∞∑

n=0

1√
n!

〈
(z + z̄ + ϕ + ϕ̄)⊗n, V (n)

〉

=
∞∑

p=0

〈
(z + z̄)⊗p

√
p!

,
∞∑

n=p

√
n!
p!

1
(n− p)!

V (n)
p

〉
,
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where V
(n)
p are the vectors in ⊗p

sZ given by

V (n)
p := Sp

〈
(ϕ + ϕ̄)⊗n−p

∣∣⊗ 1l(p)V (n).

In order to have F (z + ϕ) ∈ K it is enough to show that Vϕ =
⊕∞

p=0

·∑∞
n=p

√
n!/p!(1/(n−p)!)V (n)

p belongs to Γs(Z), (i.e.,
∑∞

p=0

∥∥∑∞
n=p

√
n!/p!

·(1/(n− p)!)V (n)
p

∥∥
⊗p

sZ < ∞). Indeed, we have by Cauchy-Schwarz inequal-
ity

∞∑
p=0

∥∥∥∥
∞∑

n=p

√
n!
p!

1
(n− p)!

V (n)
p

∥∥∥∥
2

≤
∞∑

p=0

[ ∞∑
n=p

√
2n

(n− p)!
(2‖ϕ‖)n−p‖V (n)‖

]2

≤
∞∑

p=0

2p

[ ∞∑
n=p

2n−p

(n− p)!
(2‖ϕ‖)2(n−p)

] ∞∑
n=p

‖V (n)‖2

≤ e8‖ϕ‖2
∞∑

n=0

‖V (n)‖2
( n∑

p=0

2p

)

≤ 2e8‖ϕ‖2
∞∑

n=0

2n‖V (n)‖2.

Our next task is to show (3.19). Let ϕ ∈ Z and Vκ =
⊕κ

n=0 V (n) with
κ ∈ N. By [3, Proposition 2.10], we know that for any Ψ ∈ Dc

W

(
− i

√
2

ε
ϕ

)∗
FWick

Vκ
W

(
− i

√
2

ε
ϕ

)
Ψ = FVκ

(·+ ϕ)WickΨ.

Using the inequality (3.16), we see that the above identity extends to V

instead of Vκ. Indeed, we can take the limit κ → ∞ in the left and right
hand side since W (−i(

√
2/ε)ϕ)Ψ belongs to the domain of Γ(

√
3) without

any assumption on ϕ. ¤

3.4. Models of quantum field theory
Our analysis is particulary motivated by two models of quantum field

theory, namely the P (ϕ)2 model and the Høegh-Krohn model. The first is an
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example of scalar boson quantum field theory in two-dimensional space-time
with a self interaction given by an even positive polynomial on the neutral
field with a spatial cutoff. While the second model is less physical but it
has some interest. In particular it provides an example of a non polynomial
interaction.

Before presenting these two models we recall a cornerstone result in
this subject which provides the essential self-adjointness of the sum (2.8)
under some assumptions. The final statement is the theorem below due to
I. Segal (see [28, Theorem 2]). It sums up several remarkable contributions
by E. Nelson, A. Jaffe, J. Glimm, L. Rosen and many others (see e.g. [14],
[19], [27], [28], [30]). It is also one of the beautiful results of mathematical
physics which have had an impact on other fields (see [5]).

Theorem 3.19 Let A be a self-adjoint operator on Z satisfying (A1) and
FV ∈ K verifying the assumption (A2). Then the operator

H = dΓ(A) + FWick
V , (3.20)

defined on D(dΓ(A)) ∩ D(FWick
V ) is essentially self-adjoint.

P(ϕ)2 model: Consider the following one variable real polynomial

P (x) =
2n∑

j=0

αjx
j , (α2n > 0).

Let ϕ(x) be the neutral scalar-field of mass m0 > 0, i.e.:

ϕ(x) :=
∫

R
e−ikx[a∗(k)+a(−k)]

dk√
ω(k)

, where ω(k) =
√

m2
0 + k2, m0 > 0.

Let g a nonnegative function in L1(R)∩L2(R) such that g(x) = g(−x). We
define G as the following real-valued polynomial

G(z) :=
2n∑

j=0

αj

∫

R

[〈
z,

e−ikx

√
ω(k)

〉
+

〈
e−ikx

√
ω(k)

, z

〉]j

g(x)dx,

for z ∈ L2

(
R,

dk√
ω(k)

)
. (3.21)
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Lemma 3.20 The polynomial G given by (3.21) has a continuous exten-
sion over Z belonging to the class K.

Proof. Let c(z) = z(−k) be a conjugation on L2(R). For z ∈ L2(R) with
compact support we can write

G(z) =
2n∑

j=0

αj

〈
(z + c(z))⊗j ;

∫

R

(
e−ikxχ(k)√

ω(k)

)⊗j

g(x)dx

〉
,

where χ is a smooth cutoff function verifying χ(k)z(k) = z(k). One can
prove that if g ∈ L1(R) ∩ L2(R) then

∫
R(e

−ikx/
√

ω(k))⊗jg(x)dx is a sym-
metric function belonging to L2(Rj) (see [9, Lemma 6.1]). This shows that

G(z) =
2n∑

j=0

αj

〈
(z + c(z))⊗j ;χ(k)⊗j

∫

R

(
e−ikx

√
ω(k)

)⊗j

g(x)dx

〉

=
2n∑

j=0

αj

〈
(z + c(z))⊗j ;

∫

R

(
e−ikx

√
ω(k)

)⊗j

g(x)dx

〉
. ¤

The spatially cutoff Hamiltonian of self-interacting Bose fields in two dimen-
sional space time is given by

H = dΓ(ω) + G(z)Wick

on D(dΓ(ω))∩D(G(z)Wick). Therefore, applying Theorem 3.19 we see that
H is essential self-adjointness on D(G(z)Wick) ∩ D(dΓ(ω)). For further de-
tails on how to check the assumptions of Theorem 3.19 we refer the reader
to [9], [14], [19], [28]. Thanks to Lemma 3.20 the symbol G(z) has the form

G(z) =
2n∑

j=0

〈
(z + z)⊗j

√
j!

;V (j)

〉
with

V (j) =
√

j!αj

∫

R

(
e−ikx

√
ω(k)

)⊗j

g(x)dx ∈ ⊗j
sL

2(R)

More general, we could consider instead of G(z) a Wick symbol of the form
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FV (z) =
∞∑

n=0

〈
(z + z̄)⊗n

√
n!

, V (n)

〉
.

with V =
⊕∞

n=0 V (n) in the Fock space.

Høegh-Krohn model: This model is due to Høegh-Krohn (see [17], [18]).
Let ϕ(x) be the neutral scalar-field on Rd of mass m0 > 0, i.e.,

ϕ(x) :=
∫

Rd

e−ipx[a∗(p) + a(−p)]
dp√
ω(p)

,

where ω(p) =
√

m2
0 + p2, m0 > 0.

Let g be in C∞0 (Rd) such that g ≥ 0, g(x) = g(−x),
∫

g(x)dx = 1 with
support in the open ball of radius 1 centered at the origin. The cut-off field
operator is given by

ϕκ(x) =
∫

Rd

gκ(x− y)ϕ(y)dy, with gκ(x) = κ−dg(κ−1x).

For every x ∈ Rd the operator ϕκ(x) is self-adjoint. Let V be a bounded
continuous real function. We define the Høegh-Krohn Hamiltonian as

H = dΓ(ω) +
∫

|x|≤r

V (ϕκ(x))dx. (3.22)

It is clearly a self-adjoint operator since the interaction is bounded. Instead
of taking V a bounded function we may consider V a real entire function
V (λ) =

∑∞
n=0 anλn. This formally leads to the interaction

∞∑
n=0

an

∫

|x|≤r

(ϕκ(x))ndx.

In order to avoid possible infinities we replace (ϕκ(x))n by its normal or-
dering. This makes indeed the interaction well defined and so it is given
by

( ∞∑
n=0

〈
(z + c(z))⊗n; an

∫

|x|≤r

(
eipx ĝκ(p)√

ω(p)

)⊗n

dx

〉)Wick

,
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whenever
∑∞

n=0 n!a2
n‖ĝκ/

√
ω‖2L2(Rd) < ∞. So that the modified Hamilto-

nian has the form

H = dΓ(ω) + FWick
W ,

with

W =
∞∑

n=0

√
n!an

∫

|x|≤r

(
eipx ĝκ(p)√

ω(p)

)⊗n

dx ∈ Γs(L2(Rd)).

The raison why we did not stick to the original model is that we are more
interested in “analytic” perturbations on the field operators rather than
bounded interactions. Moreover, the strategy will be different from the one
employed here if the latter is considered.

4. Propagation of coherent states

4.1. Classical field equation
The classical limit relates models of quantum field theory to classical

field equations. For instance the P (ϕ)2 dynamics, in the limit ε → 0, leads
to a nonlinear Klein-Gordon equation. In this subsection we establish global
existence and uniqueness of classical dynamics as primary information for
the study of propagation of coherent states. Although this relays on stan-
dard arguments we provide, for reader convenience, a short proof.

The classical energy functional h associated formally to the quantum
Hamiltonian H defined in (3.20) is given by

h(z) := 〈z, Az〉+ FV (z), (4.1)

for z ∈ D(A) and FV ∈ K. So that we have at hand the nonlinear evolution
equation

i∂tϕ = Aϕ + ∂z̄FV (ϕ),

with initial data ϕ|t=0 = ϕ0 ∈ D(A). In fact we only need to construct mild
solutions for (2.9). So we rather focus on the integral equation associated
to (2.9), namely

ϕt = e−itAϕ0 − i

∫ t

0

e−i(t−s)A∂z̄FV (ϕs)ds. (4.2)
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A fixed point argument shows the local existence of a unique continuous
solution in C0(R,Z). Then a nonlinear Gronwall inequality allows to prove
global existence. We can also apply [24, Theorem 1] or [25, Theorem X.72]
in order to show local existence.

Theorem 4.1 Let A be a self-adjoint operator on Z and FV ∈ K. Then
for any ϕ0 ∈ Z the integral equation (4.2) admits a unique solution ϕt in
C0(R,Z). Moreover, the mapping t 7→ ϕ̃t := eitAϕt ∈ Z is norm differen-
tiable and satisfies

i∂tϕ̃t = ∂z̄FV (ϕ̃t).

Proof. The nonlinearity ∂z̄FV satisfies the explicit estimate

‖∂z̄FV (ϕ)− ∂z̄FV (ψ)‖ ≤ 2‖V ‖Γs(Z)g(max(‖ϕ‖, ‖ψ‖))‖ϕ− ψ‖,

where g(t) =
√

1 +
∑∞

n=2(4n−2n(n− 1)/(n− 2)!)t2(n−2) is an increasing
positive function.

For T > 0, we consider on C0([0, T ),Z) the mapping

T (ϕ)(t) = e−itAϕ0 − i

∫ t

0

e−i(t−s)A∂z̄FV (ϕs)ds.

For any ϕ and ψ in the closed ball B of radius α > 0 and centered at e−itAϕ0,
a direct computation yields

sup
t∈[0,T )

‖T (ϕ)(t)− T (ψ)(t)‖ ≤ 2‖V ‖Γs(Z)T g(‖ϕ0‖+ α) sup
t∈[0,T )

‖ϕ(t)− ψ(t)‖.

Taking T < α g(‖ϕ0‖+ α)−1/2‖V ‖(1 + α + ‖ϕ0‖) makes T a contraction
on the closed ball B and hence it admits a unique fixed point. This proves
existence and uniqueness of local solutions for (4.2). A similar estimate
yields

‖ϕt‖ ≤ ‖ϕ0‖+
∫ t

0

‖∂z̄FV (ϕs)‖ds

≤ ‖ϕ0‖+
∫ t

0

2‖V ‖Γs(Z)g(‖ϕs‖)ds.
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So applying a nonlinear Gronwall lemma, known as Bihari’s inequality [6],
we conclude that ‖ϕt‖ is bounded on any finite interval. Therefore the
integral equation (4.2) admits a unique global solution ϕt in C0(R,Z). ¤

4.2. Time-dependent quadratic dynamics
We consider in this subsection the dynamics of time-dependent

quadratic Hamiltonians. This will be a steep towards the study of the semi-
classical approximation of coherent states propagation.

Let Qt be a real-valued time-dependent quadratic polynomial given by

Qt(z) =
1√
2

〈
(e−itAz + eitAz̄)⊗2, wt

〉
, t ∈ R, (4.3)

such that the map t 7→ wt ∈ ⊗2
sZ is norm continuous. Notice that Qt is no

more in K since the factor eitA has distorted the symmetry of the symbol
wt. However with an appropriate choice of the conjugation ctz := e2itAz̄ the
symbol Qt(z) belongs to Kct with respect to ct. As a consequence we have
the self-adjointness of the operators QWick

t by Lemma 3.11 since

Γ(ct)(eitA ⊗ eitAwt) = (eitA ⊗ eitA)wt.

Next we will use the Hilbert spaces,

D+,k := D(Nk/2), k ≥ 1,

which are ε-independent vector spaces equipped with the inner product

〈Ψ1,Ψ2〉D+,k
:=

∞∑
n=0

(nk + 1)
〈
Ψ(n)

1 ,Ψ(n)
2

〉
⊗n

sZ
.

We define the Hilbert space D−,k as the completion of Γs(Z) with respect
to the inner product

〈Ψ1,Ψ2〉D−,k
:=

∞∑
n=0

(nk + 1)−1
〈
Ψ(n)

1 ,Ψ(n)
2

〉
⊗n

sZ
.

Thus, we have a Hilbert rigging

D+,k ⊂ Γs(Z) ⊂ D−,k.
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Lemma 4.2 Let Qt be the quadratic polynomial given by (4.3) such that
t 7→ wt ∈ ⊗2

sZ is norm continuous. Then the mapping

R 3 t 7→ QWick
t ∈ L(D+,k,D−,k)

is strongly continuous.

Proof. By the number estimate (3.8), it follows that QWick
t is a bounded

operator in L(D+,k,D−,k) for each t ∈ R and k positive integer. More
explicitly, we have

∥∥∥∥
〈

(e−itAz + eitAz̄)⊗2

√
2

, wt

〉Wick

Ψ
∥∥∥∥

2

D−,k

≤ 3
2
[∥∥〈(e−itAz)⊗2, wt〉WickΨ

∥∥2

D−,k
+

∥∥〈(eitAz̄)⊗2, wt〉WickΨ
∥∥2

D−,k

+ 4
∥∥〈e−itAz ⊗ eitAz̄, wt〉WickΨ

∥∥2

D−,k

]
.

We estimate each of the three terms in the r.h.s in the same way as for the
following one

∥∥〈z⊗2, eitA ⊗ eitAwt〉WickΨ
∥∥2

D−,k

≤ ε2
∞∑

n=0

(n + 1)(n + 2)
((n + 2)k + 1)

∥∥Sn+2(eitA ⊗ eitA wt)⊗Ψ(n)
∥∥2

Γs(Z)

≤ ε2‖wt‖2⊗2
sZ‖Ψ‖

2
D+,k

.

Putting w̃t = eitA ⊗ eitAwt, we obtain

∥∥〈z⊗2, w̃t − w̃s〉WickΨ
∥∥
D−,k

≤ ε‖wt − ws‖⊗2
sZ‖Ψ‖D+,k

. ¤

Lemma 4.3 Let Qt be the quadratic polynomial given by (4.3) such that
t 7→ wt ∈ ⊗2

sZ is norm continuous. Then for any k ≥ 1 there exist Ck > 0
such that for any Ψ,Φ ∈ Df

∣∣∣∣
〈(

N

ε

)k

Ψ, QWick
t Φ

〉
−

〈
QWick

t Ψ,

(
N

ε

)k

Φ
〉∣∣∣∣ ≤ Ckε‖wt‖⊗2

sZ‖Ψ‖D+,k
‖Φ‖D+,k

.
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Proof. We give the proof only for k = 1, the case k > 1 is similar. Actually,
we will consider more carefully such an estimate in the proof of Proposition
4.5, where we need to explicit the dependence in k of the bound Ck. A
simple computation yields

〈
NΨ, QWick

t Φ
〉− 〈

QWick
t Ψ, NΦ

〉

= ε2

[ ∞∑
n=0

√
2(n + 1)(n + 2)

〈
Ψ(n+2), (eitA ⊗ eitAwt)⊗ Φ(n)

〉

−
∞∑

n=0

√
2(n + 1)(n + 2)

〈
(eitA ⊗ eitAwt)⊗Ψ(n),Φ(n+2)

〉]
.

By Cauchy-Schwarz inequality we get

∣∣〈NΨ, QWick
t Φ〉 − 〈QWick

t Ψ, NΦ〉∣∣

≤ 2
√

2ε2‖wt‖
[ ∞∑

n=0

(n + 1)‖Φ(n)‖2
]1/2[ ∞∑

n=0

(n + 1)‖Ψ(n)‖2
]1/2

. ¤

There exist several results on non-autonomous abstract linear
Schrödinger equations (see e.g. [21], [22], [29] and also [13]). We will use a
result in [2, Corollary C.4] which is quite adapted to quadratic Hamiltonians
of quantum field theory.

We say that the map R × R 3 (t, s) 7→ U(t, s) is a unitary propagator
of the non-autonomous Schrödinger equation

{
iε∂tu = QWick

t u, t ∈ R
u(t = 0) = u0 ∈ D+,1,

(4.4)

if and only if

(a) U(t, s) is unitary on Γs(Z),
(b) U(t, t) = 1 and U(t, s)U(s, r) = U(t, r) for all t, s, r ∈ R,
(c) The map t ∈ R 7→ U(t, s) belongs to C0(R,L(D+,1)) ∩

C1(R,L(D+,1,D−,1)), and satisfies

iε∂tU(t, s)ψ = QWick
t U(t, s)ψ, ∀ψ ∈ D+,1, ∀t, s ∈ R.
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Here Ck(I,B) denotes the space of k-continuously differentiable B-valued
functions where B is endowed with the strong operator topology.

Theorem 4.4 Let Qt be the quadratic polynomial given by (4.3) such that :

• t ∈ R 7→ wt ∈ ⊗2
sZ is norm continuous,

• Γ(c)wt = wt for any t ∈ R.

Then the non-autonomous Cauchy problem (4.4) admits a unique unitary
propagator U(t, s). Moreover for every k ≥ 1 there exists Ck > 0 such that
for all s, t ∈ R

‖U(t, s)‖L(D+,k) ≤ eCk|
R t

s
‖wτ‖dτ |. (4.5)

Proof. It follows by direct application of [2, Corollary C.4] and using
Lemma 4.2–4.3. ¤

The regularity property (4.5) of the propagator U(t, s) contains the
bound Ck which we need to explicit its dependence in k. Actually, this
can be done using [2, Corollary C.4]. However, we prefer to give such an
inequality with a direct proof.

Proposition 4.5 Assume the same hypothesis as in Theorem 4.4. Then
for any λ > 1 there exists c > 0 such that for any integer k

∥∥∥∥
(

N

ε
+ 1

)k/2

U(t, 0)Ψ
∥∥∥∥

Γs(Z)

≤ e
√

2kλk| R t
0 ‖ws‖ds|

[
ck

∣∣∣∣
∫ t

0

‖ws‖ds

∣∣∣∣‖Ψ‖2 +
∥∥∥∥
(

N

ε
+ 1

)k/2

Ψ
∥∥∥∥

2

Γs(Z)

]1/2

.

Proof. By Theorem 4.4 we know that U(t, s) preserves the domains
D(Nk/2) for any k ≥ 1. Differentiating the function u(t) = ‖(N/ε +
1)k/2U(t, 0)Ψ‖2Γs(Z) for Ψ ∈ Df , we get

u′(t) =
〈

U(t, 0)Ψ,
i

ε

[
QWick

t ,

(
N

ε
+ 1

)k]
U(t, 0)Ψ

〉
.

We decompose QWick
t = BWick

1 + CWick + BWick
2 with B1(z) = (1/

√
2)

·〈e−itAz ⊗ e−itAz, wt〉, C(z) =
√

2〈e−itAz ⊗ eitAz̄, wt〉 and B2(z) = B1(z).
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The polynomial Wick calculus yields

[
QWick

t ,

(
N

ε
+ 1

)k]
=

((
N

ε
− 1

)k

−
(

N

ε
+ 1

)k)
BWick

1

+ BWick
2

((
N

ε
− 1

)k

−
(

N

ε
+ 1

)k)
.

Let Φ = U(t, 0)Ψ then by explicit computations and Cauchy-Schwarz in-
equality, we get

±
〈

Φ,
i

ε

[
QWick

t , (N + 1)k
]
Φ

〉

≤ 4
∣∣∣∣
∞∑

n=2

〈
Φ(n), [(n + 1)k−1 + · · ·+ (n− 1)k−1](BWick

1 Φ)(n)
〉∣∣∣∣

≤ 4
‖wt‖√

2

∞∑
n=2

k(n + 1)k‖Φ(n)‖‖Φ(n−2)‖

≤ 4k
‖wt‖√

2

√√√√
∞∑

n=2

(n + 1)k‖Φ(n)‖2
√√√√

∞∑
n=0

(n + 3)k‖Φ(n−2)‖2.

For λ > 0 there exists n0 ∈ N such that

∞∑
n=0

(n + 3)k‖Φ(n−2)‖2 ≤ (n0 + 3)‖Ψ‖2 + λk
∞∑

n=n0+1

(n + 1)k‖Φ(n−2)‖2.

So that we obtain

±u′(t) ≤ 4kλk ‖wt‖√
2

u(t) + 4k
‖wt‖√

2
(n0 + 3)‖Ψ‖2.

The Gronwall lemma ends up the proof. ¤

We will use the previous result with a specific choice of wt ∈ ⊗2
sZ

related to the problem at hand. Consider a symbol FV ∈ K and let ϕt be a
solution of the field equation (2.9) with an initial data ϕ0 ∈ Z. We define a
real-valued polynomial symbol FV2(t) ∈ K by
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FV2(t)[z] :=
∞∑

n=2

n(n− 1)√
n!

〈
(ϕt + ϕ̄t)⊗(n−2) ⊗ (z + z̄)⊗2, V (n)

〉

=
〈

(z + z̄)⊗2

√
2

, V2(t)
〉
∈ P ∩ K.

We check by direct computation that

V2(t) =
√

2
∞∑

n=2

n(n− 1)√
n!

S2

〈
(ϕt + ϕ̄t)⊗(n−2)

∣∣⊗ 1(2)V (n) ∈ ⊗2
sZ. (4.6)

Corollary 4.6 Let ϕ0 ∈ Z, FV ∈ K and V2(t) given by (4.6). Consider
the family of polynomials

F ct

Ṽ2(t)
(z) =

1√
2

〈
(e−itAz + eitAz̄)⊗2, V2(t)

〉 ∈ Kct .

Then the non-autonomous Cauchy problem

{
iε∂tu =

(
F ct

Ṽ2(t)

)Wick
u, t ∈ R,

u(t = s) = us ∈ D+,1,
(4.7)

admits a unique unitary propagator Ũ2(t, s) on Γs(Z). Furthermore, there
exists c > 0 depending only on ϕ0 such that

‖Ũ2(t, s)‖L(D+,1) ≤ exp
(

c

∫ t

s

dr‖V2(r)‖⊗2
sZ

)
.

Moreover U2(t, s) = e−i(t/ε)dΓ(A)Ũ2(t, s)ei(s/ε)dΓ(A) is a mild solution of the
Cauchy problem

{
iε∂tu =

(
dΓ(A) + FWick

V2(t)

)
u, t ∈ R,

u(t = s) = us ∈ D+,1,
(4.8)

The quantum quadratic dynamics U2(t, s) can be interpreted as a time
dependent Bogoliubov transform of the Weyl commutation relations (2.4).

Proposition 4.7 Let ϕ0 ∈ Z and consider the propagator Ũ2(t, 0) given
in Corollary 4.6. For a given ξ0 ∈ Z, we have
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Ũ2(t, 0)W (iξ0)Ũ2(0, t) = W (iβ(t, 0)ξ0)

where β(t, 0) is the symplectic propagator on Z solving the equation

{
i∂tξt(x) = eitA∂z̄F

ct

Ṽ2(t)
[ξt],

ξ|t=0 = ξ0,
(4.9)

such that β(t, 0)ξ0 = ξt.

Proof. The Cauchy problem (4.9) admits a unique solution ξt ∈ C0(R,Z)
given by a time-ordered Dyson series since the mappings Lt : u 7→
eitA∂z̄F

ct

Ṽ2(t)
[u] re bounded R-linear operators on Z with the estimate

‖Lt(u)‖ ≤ c‖u‖‖V2(t)‖⊗2
sZ

satisfied for all times. Therefore we have a well defined non-autonomous
dynamical system β(t, s) such that β(t, s)ξs = ξt verifying

β(s, s) = 1, β(t, s)β(s, r) = β(t, r) for all t, r, s ∈ R.

Moreover β(t, s) are symplectic transforms on Z for any t, s ∈ R which
can be checked by differentiating Im〈β(t, s)ξ, β(t, s)η〉 with respect to t for
ξ, η ∈ Z.

Differentiate with respect to t the quantity

Ũ2(0, t)W
(
− i

√
2

ε
ξt

)
Ũ2(t, 0)

in the sense of quadratic forms on D+,1, we get

iε∂t

[
Ũ2(0, t)W

(
− i

√
2

ε
ξt

)
Ũ2(t, 0)

]

= Ũ2(0, t)W
(
− i

√
2

ε
ξt

)[(
F ct

Ṽ2(t)

)Wick −W

(
− i

√
2

ε
ξt

)∗(
F ct

Ṽ2(t)

)Wick

×W

(
− i

√
2

ε
ξt

)
+

(
Re〈ξt, i∂tξt〉+ 2Re〈z, i∂tξt〉Wick

)]
Ũ2(t, s).

(4.10)
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Using [3, Lemma 2.10], we see that

W

(
− i

√
2

ε
ξt

)∗(
F ct

Ṽ2(t)

)Wick
W

(
− i

√
2

ε
ξt

)
=

(
F ct

Ṽ2(t)
[z + ξt]

)Wick
.

Hence the right hand side of (4.10) vanishes since

F ct

Ṽ2(t)
[z + ξt]− F ct

Ṽ2(t)
− Re〈ξt, i∂tξt〉 − 2Re〈z, i∂tξt〉 = 0. ¤

4.3. Proof of the main result
In this subsection we give the proof of our main result (Theorem 2.1).

Let FV be a real-valued function in K with V ∈ Γs(Z), i.e.,

FV (z) =
∞∑

n=0

〈
(z + z̄)⊗n

√
n!

, V (n)

〉
and V =

∞⊕
n=0

V (n) with V (n) ∈ ⊗n
sZ.

We consider the symbol F ct

V (t) ∈ Kct , with respect to the conjugation ctz :=
e2itAz̄, obtained from V ∈ Γs(Z) as follows

F ct

V (t)(z) =
∞∑

n=0

〈
(e−itAz + eitAz̄)⊗n

√
n!

, V (n)

〉
. (4.11)

We first prove some preliminary lemmas.

Lemma 4.8 The map R 3 t 7→ ei(t/ε)He−i(t/ε)dΓ(A)Ψ is norm differ-
entiable in Γs(Z) for any Ψ ∈ D(Γ(λ)), with λ ≥ √

3 and ε ∈ (0, 1/3].
Moreover, the following identity holds

iε∂te
i(t/ε)He−i(t/ε)dΓ(A)Ψ = −ei(t/ε)He−i(t/ε)dΓ(A)

(
F ct

V (t)

)WickΨ.

Proof. By Lemma 3.14, we know that if λ ≥ √
3 then D(Γ(λ)) ⊂

D(FWick
V ). Hence for Ψ ∈ D(dΓ(A)) ∩ D(Γ(λ)) with λ ≥ √

3, we have

−iεei(t/ε)He−i(t/ε)dΓ(A)Ψ = ei(t/ε)H(H − dΓ(A))e−i(t/ε)dΓ(A)Ψ

= ei(t/ε)HFWick
V e−i(t/ε)dΓ(A)Ψ

= ei(t/ε)He−i(t/ε)dΓ(A)
(
F ct

V (t)

)WickΨ.
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The two last equalities hold using the fact that H = dΓ(A) + FWick
V when

restricted to D(dΓ(A)) ∩D(λN ). Now, for Ψ ∈ D(Γ(λ)) we take a sequence
Ψκ ∈ D(dΓ(A)) ∩ D(Γ(λ)) such that Ψκ → Ψ when κ →∞. Therefore, we
can write

ei(t/ε)He−i(t/ε)dΓ(A)Ψκ

= Ψκ +
i

ε

∫ t

0

ei(s/ε)He−i(s/ε)dΓ(A)
(
F ct

V (s)

)WickΨκds. (4.12)

Letting κ →∞ that the same identity holds for Ψ instead of Ψκ. This yields
that

t 7→ ei(t/ε)He−i(t/ε)dΓ(A)Ψ

is norm differentiable in Γs(Z) for any Ψ ∈ D(Γ(λ)), λ ≥ √
3. ¤

Lemma 4.9 For any V ∈ D(eαΓ(λ)) with λ > 1, α > 0 and any ϕ ∈ Z it
holds for ε ∈ (0, 1/3]:

( i ) W (−i(
√

2/ε)ϕ)U2(t, 0)Df ⊂ D(FWick
V ).

( ii ) There exist a (ε, V, t)-independent constant C > 0 such that for any
Ψ ∈ Df

∥∥FWick
V U2(t, 0)Ψ

∥∥ ≤ C
∥∥eαλN/ε

Γ(
√

ε)V
∥∥

Γs(Z)

×
[∥∥∥∥

√
gt

(
N

ε

)
Ψ

∥∥∥∥
2

+g′t(0)
∣∣∣∣
∫ t

0

‖V2(s)‖ds

∣∣∣∣‖Ψ‖2
]1/2

,

where gt(r) =
∑∞

k=0 e−α0λk

e2
√

2λk
0

R t
0 ‖V2(s)‖ds(r + 1)k for 1 < λ0 < λ,

0 < α0λ
2 < α and g′t(r) = (d/dr)gt(r).

Proof. We observe that Lemma 3.18 gives

W

(
− i

√
2

ε
ϕ

)∗
FWick

V W

(
− i

√
2

ε
ϕ

)
= FWick

Vϕ
,

with Vϕ satisfying the inequality ‖Vϕ‖ ≤ c‖Γ(
√

2)V ‖. Hence Vϕ ∈ D(eβΓ(λ))
with 0 < β < α and therefore it is enough to show that U2(t, 0)Df ⊂
D(FWick

V ) which follows by (ii).
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Let V, Ψ ∈ Df and S(x) =
∑∞

k=0 akxk be the entire series with ak =
e−α0λk

such that α0 > 0 and α0λ
2 < α. Writing

∥∥FWick
V U2(t, 0)Ψ

∥∥ ≤
∥∥∥∥FWick

V S

(
N

ε

)−1/2∥∥∥∥
∥∥∥∥S

(
N

ε

)1/2

U2(t, 0)Ψ
∥∥∥∥,

then applying Proposition 4.5 with 1 < λ0 < λ, we get

∥∥∥∥S

(
N

ε

)1/2

U2(t, 0)Ψ
∥∥∥∥

≤ c

[∥∥∥∥

√√√√
∞∑

k=0

ak(t)
(

N

ε
+ 1

)k

Ψ
∥∥∥∥

2

+
∞∑

k=0

kak(t)
∣∣∣∣
∫ t

0

‖V2(s)‖ds

∣∣∣∣‖Ψ‖2
]1/2

,

where ak(t) = ake
√

2kλk
0 |
R t
0 ‖V2(s)‖ds|. Since Ψ ∈ Df there exists m ∈ N such

that Ψ ∈ ⊕m
n=0⊗n

sZ and therefore the inequality

∥∥∥∥

√√√√
∞∑

k=0

ak(t)
(

N

ε
+ 1

)k

Ψ
∥∥∥∥ ≤

√√√√
∞∑

k=0

ak(t)(m + 1)k‖Ψ‖

holds with a finite right hand side. Using Proposition 3.17 we see that for
λ1 > 8e

∥∥∥∥FWick
V S

(
N

ε

)−1/2∥∥∥∥ ≤ C

√∑

k≥0

a−1
k+2(λ1ε)n‖V (k)‖2 ≤ C ′

∥∥eαλN/ε

Γ(
√

ε)V
∥∥.

¤

Proof of Theorem 2.1. Since the main quantity to be estimated in Theo-
rem 2.1 is bounded by 2, we can assume without restriction that ε is suffi-
ciently small. Let F ct

Ṽ2(t)
be a symbol in Kct , with respect to the conjugation

ctz := e2itAz̄, given by

F ct

Ṽ2(t)
:=

〈
(e−itAz + eitAz̄)⊗2

√
2

, V2(t)
〉
∈ P ∩ K, (4.13)

where V2(t) is defined by (4.6). For Ψ ∈ Df , we write
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Θ(t) := ei(t/ε)Hei(ω(t)/ε)W

(
− i

√
2

ε
ϕt

)
U2(t, 0)Ψ

= ei(t/ε)He−i(t/ε)dΓ(A)ei(ω(t)/ε)W

(
− i

√
2

ε
ϕ̃t

)
ei(t/ε)dΓ(A)U2(t, 0)Ψ.

We differentiate the above quantity with respect to time t. We recall the
formula

iε∂tW

(
− i

√
2

ε
ϕ̃t

)
Ψ

= W

(
− i

√
2

ε
ϕ̃t

)[
Re〈ϕ̃t, i∂tϕ̃t〉+ 2Re〈z, i∂tϕ̃t〉Wick

]
Ψ, (4.14)

where Ψ ∈ Df (see [2], [13]). Since ei(t/ε)dΓ(A) commutes with the num-
ber operator N we know, by Lemma 4.9, that the vector W (−i(

√
2/ε)ϕ̃t)

·ei(t/ε)dΓ(A)U2(t, 0)Ψ belongs to D(eαλN/ε

). Therefore, using Lemma
4.8, we can differentiate ei(t/ε)He−i(t/ε)dΓ(A) then differentiate ei(ω(t)/ε)W

·(−i(
√

2/ε)ϕ̃t) using (4.14) and finally differentiate ei(t/ε)dΓ(A)U2(t, 0)Ψ us-
ing Corollary 4.6. So that, we get

Θ′(t) =
i

ε
ei(t/ε)He−i(t/ε)dΓ(A)ei(ω(t)/ε)W

(
− i

√
2

ε
ϕ̃t

)

×
[
W

(
− i

√
2

ε
ϕ̃t

)∗(
F ct

V (t)

)Wick
W

(
− i

√
2

ε
ϕ̃t

)
+ ∂tω(t)

− Re〈ϕ̃t, i∂tϕ̃t〉 − 2Re〈z, i∂tϕ̃t〉Wick − (
F ct

Ṽ2(t)

)Wick
]

× ei(t/ε)dΓ(A)U2(t, 0)Ψ

=
i

ε
ei(t/ε)Hei(ω(t)/ε)W

(
− i

√
2

ε
ϕt

)

×
[
W

(
− i

√
2

ε
ϕt

)∗
FWick

V W

(
− i

√
2

ε
ϕt

)
+ ∂tω(t)

− Re〈ϕt, ∂z̄FV (ϕt)〉 − 2Re〈z, ∂z̄FV (ϕt)〉Wick − FWick
V2(t)

]
U2(t, 0)Ψ
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where F ct

V (t) and F ct

Ṽ2(t)
are given respectively by (4.11)–(4.13). By Lemma

3.18 we know that

W

(
− i

√
2

ε
ϕt

)∗
FWick

V W

(
− i

√
2

ε
ϕt

)
= FV (. + ϕt)Wick.

We define for any n, k ∈ N, k ≥ n

V (k)
n := Sn

〈
(ϕt + ϕt)

⊗(k−n)
∣∣⊗ 1l(n)V (k) ∈ ⊗n

sZ.

One can check by direct computation that
∑∞

n=0

∑∞
k=n

√
k!/n!(1/(k − n)!)

·V (k)
n ∈ Γs(Z). Hence expanding FV (. + ϕt) around ϕt we obtain

FV (z + ϕt) =
∞∑

n=0

〈
(z + z̄)⊗n

√
n!

,

∞∑

k=n

√
n!
k!

Cn
k V (k)

n

〉
,

where Cn
k = k!/n!(k − n)!. Using the fact that ∂z̄FV (ϕt) =

∑∞
k=1(k/

√
k!)

·〈(ϕt + ϕ̄t)⊗k−1| ⊗ 1lV (k) ∈ Z, we get

FV (z + ϕt) = FR(t)(z) + FV (ϕt) +
∞∑

k=1

k√
k!

〈
(z + z̄)⊗ (ϕt + ϕ̄t)⊗k−1, V (k)

〉

+
∞∑

k=2

C2
k√
k!
〈(z + z̄)⊗2 ⊗ (ϕt + ϕ̄t)⊗k−2, V (k)〉

= FR(t)(z) + FV (ϕt) + 2Re〈z, ∂z̄FV (ϕt)〉+ FV2(t)(z),

where FR(t) is
∑∞

n=3

〈
(z + z̄)⊗n/

√
n!,

∑∞
k=n

√
n!/k!Cn

k V
(n)
k

〉
. This im-

plies that the t-vector Θ′(t) is given by Θ′(t) = (i/ε)ei(t/ε)Hei(ω(t)/ε)W

·(−i(
√

2/ε)ϕt)FWick
R(t) U2(t, 0)Ψ, if we choose ω such that

∂tω = Re〈ϕt, ∂z̄FV (ϕt)〉 − FV (ϕt).

This holds with

ω(t) =
∫ t

0

∞∑

k=0

(k − 2)
2

〈
(ϕs + ϕ̄s)⊗k

√
k!

, V (k)

〉
ds.
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Hence we conclude that

ei(t/ε)Hei(ω(t)/ε)W

(
− i

√
2

ε
ϕt

)
U2(t, 0)Ψ−W

(
− i

√
2

ε
ϕ0

)
Ψ

=
i

ε

∫ t

0

ei(s/ε)Hei(ω(s)/ε)W

(
− i

√
2

ε
ϕs

)
FWick

R(s) U2(s, 0)Ψ ds.

We observe that R(t) ∈ ⊕
n≥3⊗n

sZ and proceed to estimate the right hand
side. So we have (for t > 0)

∥∥∥∥e−i(t/ε)HW

(
− i

√
2

ε
ϕ0

)
Ψ− ei(ω(t)/ε)W

(
− i

√
2

ε
ϕt

)
U2(t, 0)Ψ

∥∥∥∥
Γs(Z)

≤ 1
ε

∫ t

0

∥∥FWick
R(s) U2(s, 0)Ψ

∥∥
Γs(Z)

ds,

Now using the estimate (ii) of Lemma 4.9, with 0 < γ < α, we obtain

∥∥FWick
R(s) U2(s, 0)Ψ

∥∥
Γs(Z)

≤ C(s)ε3/2
∥∥eγλN/ε

R(s)
∥∥

Γs(Z)
,

such that C > 0 depending only on (α, λ) and

C(s) = C

[∥∥∥∥

√
gs

(
N

ε

)
Ψ

∥∥∥∥
2

+ g′s(0)
∣∣∣∣
∫ s

0

‖V2(r)‖dr

∣∣∣∣‖Ψ‖2
]1/2

,

where gt(r) =
∑∞

k=0 e−α0λk

e2
√

2λk
0

R t
0 ‖V2(s)‖ds(r + 1)k for 1 < λ0 < λ, 0 <

α0λ
2 < α and g′t(r) = (d/dr)gt(r).
A similar estimate as in the proof of Lemma 3.18 yields

∥∥eγλN/ε

R(s)
∥∥

Γs(Z)
≤
√

2e4‖ϕs‖2Z
∥∥√2

N/ε
eγλN/ε

V
∥∥

Γs(Z)

≤ c e4‖ϕs‖2Z
∥∥eαλN/ε

V
∥∥

Γs(Z)
.

Hence there exist a (ε, V )-independent constant c(t) > 0 such that
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∥∥∥∥e−i(t/ε)HW

(
− i

√
2

ε
ϕ0

)
Ψ− ei(ω(t)/ε)W

(
− i

√
2

ε
ϕt

)
U2(t, 0)Ψ

∥∥∥∥

≤ c(t)
√

ε
∥∥eαλN/ε

V
∥∥,

with C > 0 depending only on (α, λ) and

c(t) = C

∫ t

0

e4‖ϕs‖2Z
[∥∥∥∥

√
gs

(
N

ε

)
Ψ

∥∥∥∥
2

+ g′s(0)
∣∣∣∣
∫ s

0

‖V2(r)‖dr

∣∣∣∣‖Ψ‖2
]1/2

ds.

Since Ψ ∈ Df and ‖ϕt‖Z is bounded on compact intervals we see that the
r.h.s is finite. ¤
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