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Integral identities for Bi-Laplacian problems

and their application to vibrating plates
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Abstract. In this paper we derive boundary integral identities for the bi-Laplacian

eigenvalue problems under Dirichlet, Navier and simply-supported boundary condi-

tions. By using these integral identities, we prove that the first eigenvalue of the

eigenvalue problem under the simply-supported boundary conditions strictly increases

with Poisson’s ratio. In addition, we establish the boundary integral expressions for

the strain energy calculation of the vibrating plates under the three types of boundary

conditions.
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1. Introduction

Resonance problems are a major concern in engineering analysis and
design. The natural frequencies of a solid structure are the dominant factor
which affects the structural dynamic behavior. When designing a structure
consisting of a thin plate or thin plate components, it is critical to avoid
having a driving frequency which is too close to a natural frequency of the
structure. In practice, it is common to assure that the system frequency is
much lower than the first natural frequency of the structure. Therefore, the
first resonance of a plate is often more important than other resonances.

The bi-Laplacian eigenvalue problems with Dirichlet, Navier and simply-
supported boundary conditions are classical problems in solid mechanics.
Mechanical behavior of vibrating thin plates with these boundary conditions
can be described by the three types of eigenvalue problems. In this paper
we first convert the traditional simply-supported boundary condition into a
simpler new expression, and then give the problem statements for the three
eigenvalue problems in Section 2.

F. Rellich introduced a new test function and applied it to the Laplace
operator in 1940 [1]. His idea has been used to establish the Rellich-type

2000 Mathematics Subject Classification : 35J40.



426 G.-T. Lei and G.-W. Pan

integral identities for polyharmonic equations in Rn [2], [3]. These integral
identities have been extended to study the acoustic and elastic Helmholtz
problems and the elliptic eigenvalue problem [4], [5], [6], [7], [8]. In addi-
tion, the integral identity was used to obtain boundary energy estimates for
electromagnetic problems [9]. Recently, a conjecture regarding the theory
of electromagnetic resonators has been resolved by means of the integral
identities for the Laplacian eigenvalue problems [10].

In Section II, we give three Bi-Laplace eigenvalue problems and show a
new form of the boundary condition for the third eigenvalue problem, which
greatly simplifies the associated problem. This new form is derived in the
appendix of the paper. Following Rellich’s idea, in Section 3, we first use
an elementary method to derive three boundary integral identities as a the-
orem for the Dirichlet, Navier and simply-supported bi-Laplacian problems.
We then apply the theorem and its corollaries to vibrating-plate problems
in Section 4. In the first part of this section we show the dependence of
the eigenvalue of the supported problem on Poisson’s ratio. In the second
part of this section we derive three boundary integral expressions for the
strain energies of the vibrating plates. Finally, we will finish this paper by
providing a brief conclusion and discussion.

2. Bi-Laplacian Eigenvalue Problems

2.1. Dirichlet and Navier Problems
Assume that Ω ⊂ Rn, n ≥ 2, is a bounded domain having a C4,β

boundary ∂Ω (0 < β < 1). Let Λ be an eigenvalue for which the Dirichlet
eigenvalue problem,

∆∆U = ΛU in Ω,

U = |∇U | = 0 on ∂Ω, (1)

has a nontrivial solution U , and let λ be an eigenvalue for which the Navier
eigenvalue problem,

∆∆V = λV in Ω,

V = ∆V = 0 on ∂Ω, (2)

has a nontrivial solution V , where ∆∆ = ∆2 denotes the n-dimensional
bi-Laplacian.
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2.2. Simply-supported Boundary Conditions
A plate (short for an elastic homogeneous and isotropic thin plate) is

a particular two-dimensional representation of a three-dimensional solid oc-
cupying a two-dimensional region Ω, which has a much smaller thickness
in comparison with the in-plane dimensions [11]. The supported boundary
conditions (short for simply-supported boundary conditions) are obtained
from their mechanical property and implementation. These conditions are
natural, based on physical grounds, and are used in bi-Laplacian eigenvalue
problems [11].

We consider a plate under the supported boundary conditions

W |∂Ω = 0,

Mν |∂Ω = 0,

where W is the deflection of the plate in the vertical direction, ν is the
normal unit vector directed outward from Ω and Mν is the bending moment
about the ν direction. These boundary conditions in two dimensions are
expressed as (See [11, p. 94] and [4]),

Mν |∂Ω = µ∆W |∂Ω + (1− µ)
[

cos2 θ
∂2W

∂x2

+ 2 sin θ cos θ
∂2W

∂x∂y
+ sin2 θ

∂2W

∂y2

]∣∣∣∣
∂Ω

= 0,

where µ is Poisson’s ratio, (0 < µ < 1), and θ is the angle between the
normal ν and x-axis (cos θ = cos(x, ν) = νx). This traditional expression has
been used for decades. Payne reduced this supported condition to another
expression (See [12, p. 112]). It is shown in the appendix that the factor in
the brackets of the above equality is equal to ∂2W/∂ν2 on ∂Ω. That is

cos2 θ
∂2W

∂x2
+ 2 sin θ cos θ

∂2W

∂x∂y
+ sin2 θ

∂2W

∂y2
=

∂2W

∂ν2
on ∂Ω.

Thus, we obtain

Mν |∂Ω = µ∆W |∂Ω + (1− µ)
∂2W

∂ν2

∣∣∣∣
∂Ω

= 0.
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Using the above definition and the relation ∆W |∂Ω = (∂2W/∂ν2)|∂Ω +(n−
1)κ(∂W/∂ν)|∂Ω, which is derived in the appendix, and setting n = 2, we
obtain

∆W |∂Ω = (1− µ)κ
∂W

∂ν

∣∣∣∣
∂Ω

= c0
∂W

∂ν

∣∣∣∣
∂Ω

, (∗)

where κ is the curvature of ∂Ω and c0 = (1− µ)κ ≥ 0 for convex domains.

2.3. The Supported Problem and Classical Identities
We now define the supported bi-Laplacian eigenvalue problem, which

is called the Steklov eigenvalue problem [3]. Let Ω ⊂ R2 be a convex do-
main defined in Subsection 2.1 and let γ be an eigenvalue for which the
bi-Laplacian eigenvalue problem under the supported boundary conditions,

∆∆W = γW in Ω,

W = 0 on ∂Ω,

∆W = c0
∂W

∂ν
on ∂Ω, (3)

has a nontrivial solution W . Elliptic regularity theorems ensure that prob-
lems (1), (2) and (3) will have nontrivial solutions U , V and W ∈ C4(Ω̄),
respectively [13]. Assuming that α and u are the eigenvalue and the cor-
responding eigenfunction of problem (1) or (2) or (3), the Green’s identity
shows that

∫

Ω

(αu)udΩ =
∫

Ω

(∆∆u)udΩ

=
∫

∂Ω

∂∆u

∂ν
udS −

∫

Ω

∇∆u · ∇udΩ

=
∫

∂Ω

∂∆u

∂ν
udS −

∫

∂Ω

∂u

∂ν
∆udS +

∫

Ω

(∆u)2dΩ. (4)

The conditions, U |∂Ω = V |∂Ω = W |∂Ω = 0, imply that the tangential deriva-
tives of U , V and W vanish on ∂Ω. By breaking down the gradient into
the normal and tangential components, we get |∇U ||∂Ω = (∂U/∂ν)|∂Ω,
|∇V ||∂Ω = (∂V /∂ν)|∂Ω and |∇W ||∂Ω = (∂W/∂ν)|∂Ω. For problems (1)
and (2), both of the surface integrals of (4) vanish on ∂Ω. Therefore, the
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eigenvalues of the two problems can be expressed by the same formula

Λ or λ =

∫
Ω
(∆u)2dΩ∫
Ω

u2dΩ
, (5)

where u can be either U or V . For problem (3), (4) leads to

γ =

∫
Ω
(∆W )2dΩ− ∫

∂Ω
c0

(
∂W
∂ν

)2
dS∫

Ω
W 2dΩ

. (6)

The positiveness of the eigenvalues comes from the positivity of the energy
functionals and the variational theory of eigenvalues [4], [14].

3. Bi-Laplacian Boundary Integral Identities

Theorem 3.1 Let Ω be defined as in Section 2.1.

( i ) Let U be a nontrivial solution of problem (1). Then,

Λ =

∫
∂Ω

(x · ν)
(

∂2U
∂ν2

)2
dS

4
∫
Ω

U2dΩ
.

( ii ) Let V be a nontrivial solution of problem (2). Then,

λ =
− ∫

∂Ω
(x · ∇V )∂∆V

∂ν dS

2
∫
Ω

V 2dΩ
.

(iii) Let Ω ⊂ R2 as defined and let W be a nontrivial solution of problem
(3). Then,

γ =
− ∫

∂Ω
(x · ν)

(
c0

∂W
∂ν

)2
dS + 2

∫
∂Ω

c0
∂W
∂ν

( ∑2
i,j xiνj

∂2W
∂xi∂xj

)
dS

4
∫
Ω

W 2dΩ

− 2
∫

∂Ω
(x · ∇W ) ∂

∂ν

(
c0

∂W
∂ν

)
ds

4
∫
Ω

W 2dΩ
.

Proof of Theorem 3.1. Following Rellich [1], we first multiply both sides
of the bi-Laplacian eigenequation of problem (1), (2) and (3) by the Rellich
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test function (x · ∇u), and integrate over Ω to obtain

∫

Ω

(∆∆u)(x · ∇u)dΩ =
∫

Ω

αu(x · ∇u)dΩ. (7)

Applying the Green’s identity to (7), the right-hand side of (7) becomes

∫

Ω

αu
n∑

k=1

xk
∂u

∂xk
dΩ =

α

2

∫

Ω

n∑

k=1

xk
∂u2

∂xk
dΩ

= −nα

2

∫

Ω

u2dΩ +
α

2

∫

∂Ω

(x · ν)u2dS, (8)

and the left-hand side of (7) becomes

∫

Ω

(∆∆u)(x ·∇u)dΩ = −
∫

Ω

∇∆u ·∇(x ·∇u)dΩ+
∫

∂Ω

∂∆u

∂ν
(x ·∇u)dS. (9)

The volume integral term of the right-hand side of (9) can be written as

−
∫

Ω

∇∆u · ∇(x · ∇u)dΩ = −
∫

Ω

n∑

j=1

∂∆u

∂xj

∂
( ∑n

i=1 xi
∂u
∂xi

)

∂xj
dΩ

= −
∫

Ω

n∑

j=1

∂∆u

∂xj

(
∂u

∂xj
+

n∑

i=1

xi
∂2u

∂xi∂xj

)
dΩ

=
∫

Ω

n∑

j=1

∆u
∂

∂xj

(
∂u

∂xj
+

n∑

i=1

xi
∂2u

∂xi∂xj

)
dΩ

−
∫

∂Ω

n∑

j=1

∆u

(
∂u

∂xj
+

n∑

i=1

xi
∂2u

∂xi∂xj

)
νjdS,

where νj = cos(xj , ν) and (xj , ν) is the angle between the xj-axis and the
normal ν. The volume integral term of the right-hand side of the above
equality can be further written as

∫

Ω

∆u

(
2

n∑

j=1

∂2u

∂x2
j

+
n∑

i,j=1

xi
∂3u

∂xi∂x2
j

)
dΩ
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=
∫

Ω

(
2(∆u)2 +

1
2

n∑

i=1

xi
∂(∆u)2

∂xi

)
dΩ

= 2
∫

Ω

(∆u)2dΩ− n

2

∫

Ω

(∆u)2dΩ +
1
2

∫

∂Ω

(∆u)2(x · ν)dS. (10)

From (4), we have

α

∫

Ω

u2dΩ =
∫

∂Ω

∂∆u

∂ν
udS −

∫

∂Ω

∂u

∂ν
∆udS +

∫

Ω

(∆u)2dΩ.

Expressing
∫
Ω
(∆u)2dΩ in terms of the above equality, (10) becomes

(
2− n

2

)(
α

∫

Ω

u2dΩ−
∫

∂Ω

∂∆u

∂ν
udS+

∫

∂Ω

∂u

∂ν
∆udS

)
+

1
2

∫

∂Ω

(∆u)2(x·ν)dS.

(11)

Substituting (11) into (9) and equating the result to (7), the following
identity results

(
2− n

2

)(
α

∫

Ω

u2dΩ−
∫

∂Ω

∂4u

∂ν
udS +

∫

∂Ω

∂u

∂ν
4udS

)

+
1
2

∫

∂Ω

(x · ν)(4u)2dS −
∫

∂Ω

4u

(
∂u

∂ν
+

n∑

i,j=1

xiνj
∂2u

∂xi∂xj

)
dS

+
∫

∂Ω

∂4u

∂ν
(x · ∇u)dS

= −nα

2

∫

Ω

u2dΩ +
α

2

∫

∂Ω

(x · ν)u2dS,

where the relation

∫

∂Ω

∆u
n∑

j=1

(
∂u

∂xj
+

n∑

i=1

xi
∂2u

∂xi∂xj

)
νjdS

=
∫

∂Ω

∆u

(
∂u

∂ν
+

n∑

i,j=1

xiνj
∂2u

∂xi∂xj

)
dS
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is used. After cancellation, the above identity can be written as

2α

∫

Ω

u2dΩ = −1
2

∫

∂Ω

(x · ν)(∆u)2dS +
∫

∂Ω

∆u

(
∂u

∂ν
+

n∑

i,j=1

xiνj
∂2u

∂xi∂xj

)
dS

−
∫

∂Ω

∂∆u

∂ν
(x · ∇u)dS +

α

2

∫

∂Ω

(x · ν)u2dS

+
(

2− n

2

) ∫

∂Ω

(
∂∆u

∂ν
u−∆u

∂u

∂ν

)
dS, (12)

which is called Pohozaev’s or Rellich’s identity. Given this identity, we first
consider the Dirichlet boundary conditions of problem (1). Let u = U ,
α = Λ and U |∂Ω = |∇U ||∂Ω = 0, then (12) becomes

2Λ
∫

Ω

U2dΩ = −1
2

∫

∂Ω

(∆U)2(x · ν)dS +
∫

∂Ω

∆U

( n∑

i,j=1

xiνj
∂2U

∂xi∂xj

)
dS.

Solving for Λ using (∂2u/∂xi∂xj)|∂Ω = νiνj(∂2u/∂ν2)|∂Ω (See the appendix
for its derivation), then

Λ =
− ∫

∂Ω
(x · ν)(∆U)2dS + 2

∫
∂Ω

∆U
( ∑n

i,j=1 xiνj
∂2U

∂xi∂xj

)
dS

4
∫
Ω

U2dΩ

=
− ∫

∂Ω
(x · ν)

(
∂2U
∂ν2

)2
dS + 2

∫
∂Ω

∂2U
∂ν2

(
(x · ν)∂2U

∂ν2

)
dS

4
∫
Ω

U2dΩ

=

∫
∂Ω

(x · ν)
(

∂2U
∂ν2

)2
dS

4
∫
Ω

U2dΩ
.

Secondly, we impose the Navier boundary conditions of problem (2).
Let u = V , α = λ and V |∂Ω = ∆V |∂Ω = 0, then (12) becomes

2λ

∫

Ω

V 2dΩ = −
∫

∂Ω

∂∆V

∂ν
(x · ∇V )dS.

Solving for λ, we obtain
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λ =
− ∫

∂Ω
(x · ∇V )∂∆V

∂ν dS

2
∫
Ω

V 2dΩ
=
− ∫

∂Ω
(x · ν)∂V

∂ν
∂∆V
∂ν dS

2
∫
Ω

V 2dΩ
,

where ∇V = (∂V /∂ν) · ν on ∂Ω is used. Thirdly, we impose the supported
boundary conditions of problem (3). Letting u = W , α = γ, and inserting
W |∂Ω = 0 and ∆W |∂Ω = c0(∂W/∂ν)|∂Ω into (12), we obtain

2γ

∫

Ω

W 2dΩ = −1
2

∫

∂Ω

(x · ν)
(

c0
∂W

∂ν

)2

dS

+
∫

∂Ω

c0
∂W

∂ν

( 2∑

i,j=1

xiνj
∂2W

∂xi∂xj

)
dS

−
∫

∂Ω

∂

∂ν

(
c0

∂W

∂ν

)
(x · ∇W )dS.

Solving for γ, we obtain

γ =
− ∫

∂Ω
(x · ν)

(
c0

∂W
∂ν

)2
dS + 2

∫
∂Ω

c0
∂W
∂ν

( ∑2
i,j xiνj

∂2W
∂xi∂xj

)
dS

4
∫
Ω

W 2dΩ

− 2
∫

∂Ω
(x · ∇W ) ∂

∂ν

(
c0

∂W
∂ν

)
dS

4
∫
Ω

W 2dΩ
. ¤

Corollary 3.2

( i ) If U is a solution of problem (1) with Λ > 0 and if U , in addition,
satisfies (∂2U/∂ν2)|∂Ω = 0, then U ≡ 0. In other words, if U is a
nontrivial eigenfunction of problems (1) with Λ > 0, then ∂2U/∂ν2

cannot be identically zero on ∂Ω.
( ii ) If V is a solution of problem (2) with λ > 0 and if V , in addition,

satisfies (∂V /∂ν)|∂Ω = 0, then V ≡ 0. In other words, if V is a
nontrivial eigenfunction of problem (2) with λ > 0, then ∂∆V /∂ν or
∂V /∂ν cannot be identically zero on ∂Ω.

(iii) If W is a solution of problem (3) with γ > 0 and if W , in addition,
satisfies (∂W/∂ν)|∂Ω = 0, then W ≡ 0. In other words, if W is
a nontrivial eigenfunction of problems (3) with γ > 0, then ∂W/∂ν

cannot be identically zero on ∂Ω.
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It is seen that a nontrivial eigenfunction of problems (2) or (3) demands
(∂U/∂ν)|∂Ω 6= 0, but a nontrivial eigenfunction of problems (1) requires
(∂W/∂ν)|∂Ω = 0. Therefore, we obtain

Corollary 3.3 A nontrivial eigenfunction cannot simultaneously be an
eigenfunction of the Dirichlet and supported (or Navier) plate of the same
shape.

4. Application to Solid Mechanics

4.1. Effect of Poisson’s Ratio on the Eigenvalue
Theorem 4.1 Let Ω ⊂ R2 be a convex domain as defined and let
W (x, µ) ∈ C4,β

1 (Ω̄, (0, 1)), i.e., W (x, ·) ∈ C4,β(Ω̄) and W (·, µ) ∈ C1(0, 1), be
the first nontrivial eigenfunction of the supported eigenvalue problem with
the associated eigenvalue γ. Then,

∂γ

∂µ
> 0.

Proof of Theorem 4.1. Since W is the first nontrivial eigenfunction of
problem (3), ∂W/∂µ is continuously differentiable [15]. By using
∆∆W = γW and differentiating the identity with respect to µ, we obtain
(∂∆∆W )/∂µ = γ(∂W/∂µ) + W (∂γ/∂µ) and (∂∆∆W )/∂µ = ∆∆(∂W/∂µ)
= γ(∂W/∂µ) + W (∂γ/∂µ). Multiplying both sides of the second equality
by W and integrating in Ω we have

∫

Ω

W∆∆
∂W

∂µ
dΩ =

∫

Ω

(
γW

∂W

∂µ
+ W 2 ∂γ

∂µ

)
dΩ. (13)

Applying the Green’s identity, the left-hand side of the above identity be-
comes

∫

Ω

W∆∆
∂W

∂µ
dΩ

=
∫

∂Ω

W
∂

∂ν
∆

∂W

∂µ
dS −

∫

∂Ω

∂W

∂ν
∆

∂W

∂µ
dS +

∫

∂Ω

∂2W

∂µ∂ν
∆WdS

−
∫

∂Ω

∂∆W

∂ν

∂W

∂µ
dS +

∫

Ω

∆∆W
∂W

∂µ
dΩ.
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Using ∆∆W = γW and (13), and imposing the supported boundary con-
ditions W |∂Ω = 0 and ∆W |∂Ω = c0(∂W/∂ν)|∂Ω, where c0 = (1 − µ)κ, we
obtain

∫

Ω

W∆∆
∂W

∂µ
dΩ = −

∫

∂Ω

∂W

∂ν

(
− κ

∂W

∂ν
+ c0

∂2W

∂ν∂µ

)
dS

+
∫

∂Ω

c0
∂W

∂ν

∂2W

∂ν∂µ
dS +

∫

Ω

γW
∂W

∂µ
dΩ

=
∫

∂Ω

κ

∣∣∣∣
∂W

∂ν

∣∣∣∣
2

dS +
∫

Ω

γW
∂W

∂µ
dΩ.

By using (13), the above identity can be written as

∫

∂Ω

κ

∣∣∣∣
∂W

∂ν

∣∣∣∣
2

dS =
∫

Ω

W 2 ∂γ

∂µ
dΩ.

Hence,

∂γ

∂µ
=

∫
∂Ω

κ
∣∣∂W

∂ν

∣∣2dS∫
Ω

W 2dΩ
≥ 0, (14)

which shows that γ is a non-decreasing function of µ. Since κ > 0 on ∂Ω,
(14) implies that if ∂γ/∂µ = 0, then ∂W/∂ν = 0 on ∂Ω. But, Corollary
3.2 (iii) implies W ≡ 0 in Ω. This contradicts the assumption that W is a
nontrivial solution of problem (3). Hence, ∂γ/∂µ 6= 0. Therefore,

∂γ

∂µ
> 0. ¤

Corollary 4.2 The principal eigenvalue of problem (3) with κ > 0 is
strictly monotonic with respect to Poisson’s ratio µ.

It is known that a natural frequency ω of a plate is given by ω =√
γ(D/m̄), where m̄ denotes the mass per unit area of the plate, D =

(1/12)(Eh3/(1− µ2)), E denotes the modulus of elasticity and h is the
thickness of the plate [11]. Therefore, we obtain

Corollary 4.3 The first natural frequency of a simply-supported plate with
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κ > 0 increases strictly with Poisson’s ratio.

4.2. Boundary Integral Expressions of the Strain Energies
Strain energies of mechanical structures provide a good measure for

exceeded stresses or strains in the structures. Their distributions are often
used, with certain failure criteria of materials, to evaluate if a structure
under certain loads is in a safe condition.

For the Dirichlet problem (1), applying Theorem 3.1 (i) and (5), we
have

∫

Ω

(∆U)2dΩ =
1
4

∫

∂Ω

(x · ν)
(

∂2U

∂ν2

)2

dS. (15)

For the Navier problem (2), applying Theorem 3.1 (ii) and (5), we have

∫

Ω

(∆V )2dΩ = −1
2

∫

∂Ω

(x · ∇V )
∂∆V

∂ν
dS. (16)

For the supported problem (3), applying Theorem 3.1 (iii) and (6), we have

∫

Ω

(∆W )2dΩ = −1
4

∫

∂Ω

(x · ν)
(

c0
∂W

∂ν

)2

dS +
1
2

∫

∂Ω

(x · ν)
∂c0

∂ν

(
∂W

∂ν

)2

dS

+
∫

∂Ω

c0

(
∂W

∂ν

)2

dS. (17)

The general expression for the strain energy of a bent thin plate is given
by (See [11, p. 95])

Es =
1
2
D

∫

Ω

{(
∂2u

∂x2
+

∂2u

∂y2

)2

−2(1−µ)
[
∂2u

∂x2

∂2u

∂y2
−

(
∂2u

∂x∂y

)2]}
dΩ, (18)

where u is the deflection of the plate in the vertical direction and the inte-
gration is over the entire surface of the plate. Here u can be the solutions of
problems (1) or (2) or (3). In the derivation of the strain energy expressions
the following identity is used (See [16, p. 87])

2
∫

Ω

[
∂2u

∂x2

∂2u

∂y2
−

(
∂2u

∂x∂y

)2]
dΩ =

∫

∂Ω

[
2
∂u

∂ν

∂2u

∂s2
+κ

(
∂u

∂ν

)2

+κ

(
∂u

∂s

)2]
dS.
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Under the Dirichlet boundary conditions this identity reduces to

∫

Ω

[
∂2u

∂x2

∂2u

∂y2
−

(
∂2u

∂x∂y

)2]
dΩ = 0. (19)

Under the Navier or supported boundary conditions this identity reduces to

∫

Ω

[
∂2u

∂x2

∂2u

∂y2
−

(
∂2u

∂x∂y

)2]
dΩ =

1
2

∫

∂Ω

κ

(
∂u

∂ν

)2

dS. (20)

For the Dirichlet problem, substituting (15) and (19) into (18) we obtain

ED
s =

1
8
D

∫

∂Ω

(x · ν)
(

∂2U

∂ν2

)2

dS,

where ED
s is the strain energy of the vibrating plate under the Dirichlet

boundary conditions. For the Navier problem substituting (16) and (20)
into (18) we obtain

EN
s = −D

2

∫

∂Ω

[
1
2
(x · ν)

∂V

∂ν

∂∆V

∂ν
+ (1− µ)κ

(
∂V

∂ν

)2]
dS,

where EN
s is the strain energy of the vibrating plate under the Navier bound-

ary conditions. For the supported problem, substituting (17) and (20) into
(18) we obtain

ES
s = −D

8

∫

∂Ω

(x · ν)
(

c0
∂W

∂ν

)2

dS − D

4

∫

∂Ω

(x · ν)
∂c0

∂ν

(
∂W

∂ν

)2

dS

+
D

2

∫

∂Ω

c0

(
∂W

∂ν

)2

dS − D

2
(1− µ)

∫

∂Ω

κ

(
∂W

∂ν

)2

dS,

where ES
s is the strain energy of the vibrating plate under the supported

boundary conditions. Notice that ED
s , EN

s and ES
s hold only when Ω ⊂ R2

Remark 4.4 It is straightforward to calculate the strain energies at res-
onance using the three formulas when boundary value data are available.
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5. Conclusion and Discussion

The Rellich test function used in this paper allows us to develop
boundary-integral representations for the eigenvalues of the three bi-
Laplacian operators. Based on these integral identities we have revealed
the property of the eigenfunctions of the bi-Laplacian operators, as stated
by Corollaries 3.2 or 3.3. Using Corollary 3.2 and the reduced expression (∗)
of the supported boundary condition, we have proven that the first natural
frequency of a simply-supported plate with κ > 0 increases strictly with
Poisson’s ratio. This result is of considerable significance in some practical
problems. We have also applied Theorem 3.1 to obtain the surface-integral
expressions of the strain energies of the vibrating plates. These expressions
provide simplified formulas for calculating the strain energies.

It is seen that problem (3) can be reduced to problem (2) if ∂Ω consists of
straight sides (with the Lipshitz corners). It will be of practical significance
to show how the principal eigenvalue of problem (3) is affected by changing
µ when ∂Ω is convex, but contains one or more Lipschitz corners.

Rayleigh’s conjecture of the clamped vibrating plate was posed more
than one hundred years ago and has been solved by Nadirashvili when n = 2
[17] and by Ashbaugh and Benguria when n = 3 [18]. Much of the efforts has
been devoted to prove this conjecture in Rn [19]. In a related vein, we pose
a conjecture for the simply-supported principal eigenvalue in terms of the
notation used in this paper: Rayleigh’s conjecture for the simply-supported
vibrating plate

γ(Ω) ≤ γ(Ω∗) for Ω ⊂ R2

where Ω∗ is a disk having the same area as that of the domain Ω. This
inequality holds strictly if and only if Ω is not a disk.

Acknowledgments The authors would like to thank Professor Hans F.
Weinberger of the University of Minnesota for his encouragement and many
helpful suggestions and the referees for their valuable comments.

6. Appendix

We shall prove that on ∂Ω under the condition (∂u/∂ν)|∂Ω = 0,
cos2 θ(∂2u/∂x2) + 2 sin θ cos θ(∂2u/∂x∂y) + sin2 θ(∂2u/∂y2) = ∂2u/∂ν2,
∆u = (∂2u/∂ν2) + (n − 1)κ(∂u/∂ν) and under the Dirichlet conditions,
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(∂2u/∂xi∂xj) = νiνj(∂2u/∂ν2).
Let (s1, . . . , sn−1) be a local coordinates on ∂Ω, i.e., ∂Ω is locally rep-

resented by

X̃ : Rn−1 → ∂Ω.

Let

ν(s1, . . . , sn−1)

be its unit outer normal of ∂Ω at X̃(s1, . . . , sn−1). We also define a local
coordinate system near ∂Ω by

X(s1, . . . , sn−1, t) = X̃(s1, . . . , sn−1)− tν(s1, . . . , sn−1).

For any u defined near ∂Ω, we have

∂

∂xi

∂u

∂xj
=

∂

∂xi

( n−1∑

k=1

∂u

∂sk

∂sk

∂xj
+

∂u

∂t

∂t

∂xj

)

=
( n−1∑

k,l=1

∂2u

∂sl∂sk

∂sl

∂xi
+

n−1∑

k=1

∂2u

∂t∂sk

∂t

∂xi

)
∂sk

∂xj
+

n−1∑

k=1

∂u

∂sk

∂2sk

∂xi∂xj

+
( n−1∑

l=1

∂2u

∂t∂sl

∂sl

∂xi
+

∂2u

∂t2
∂t

∂xi

)
∂t

∂xj
+

∂u

∂t

∂2t

∂xi∂xj
.

On ∂Ω, we have ∂u/∂sk = 0 and ∂2u/∂sl∂sk = 0. Hence,

∂2u

∂xi∂xj
=

n−1∑

k=1

∂2u

∂t∂sk

(
∂t

∂xi

∂sk

∂xj
+

∂t

∂xj

∂sk

∂xi

)

+
∂2u

∂t2
∂t

∂xi

∂t

∂xj
+

∂u

∂t

∂2t

∂xi∂xj
. (21)

We also have ∇t = −ν, ∇s · ∇t = 0, ∂2u/∂ν2 = ∂2u/∂t2, ∂u/∂ν = −∂u/∂t

on ∂Ω. Using (21), we obtain
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∆u =
n∑

i=j=1

∂2u

∂xi∂xj

=
n∑

i=1

n−1∑

k=1

∂2u

∂t∂sk

(
∂t

∂xi

∂sk

∂xi
+

∂t

∂xi

∂sk

∂xi

)

+
n∑

i=1

(
∂2u

∂t2
∂t

∂xi

∂t

∂xi
+

∂u

∂t

∂2t

∂xi∂xi

)

= 2
n−1∑

k=1

n∑

i=1

∂2u

∂t∂sk

∂t

∂xi

∂sk

∂xi
+

∂2u

∂t2

n∑

i=1

∂t

∂xi

∂t

∂xi
+

∂u

∂t

n∑

i=1

∂2t

∂xi∂xi

= 2
n−1∑

k=1

∂2u

∂t∂sk
∇t · ∇sk +

∂2u

∂t2
(−ν)2 +

∂u

∂t
∆t

=
∂2u

∂ν2
+ (n− 1)κ

∂u

∂ν
on ∂Ω,

where, from differential geometry, ∆t = −(n−1)κ is used. For the Dirichlet
conditions, since u|∂Ω = (∂u/∂ν)|∂Ω = 0 implies (∂2u/∂t∂sk)|∂Ω = 0, based
on (21),

∂2u

∂xi∂xj
=

n−1∑

k=1

∂2u

∂t∂sk

(
− νi

∂sk

∂xj
− νj

∂sk

∂xi

)
+ νiνj

∂2u

∂ν2
− ∂u

∂ν

∂2t

∂xi∂xj

= νiνj
∂2u

∂ν2
on ∂Ω.

In a two dimensional case, for any u defined near ∂Ω, we choose the
coordinate system (s, t), such that t is the distance from a point x in Ω
to ∂Ω and s is the arc-length parameter on ∂Ω in the counter-clockwise
direction. We write ν = (νx, νy) and have ∇s = (−νy, νx). Hence, based on
(21), on ∂Ω

∂2u

∂x2
=

∂2u

∂t∂s

(
∂t

∂x

∂s

∂x
+

∂t

∂x

∂s

∂x

)
+

∂2u

∂t2
∂t

∂x

∂t

∂x
+

∂u

∂t

∂2t

∂x2

= 2νxνy
∂2u

∂t∂s
+ ν2

x

∂2u

∂t2
+

∂2t

∂x2

∂u

∂t
,
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∂2u

∂y2
= −2νxνy

∂2u

∂t∂s
+ ν2

y

∂2u

∂t2
+

∂2t

∂y2

∂u

∂t
,

∂2u

∂x∂y
=

(− ν2
x + ν2

y

) ∂2u

∂t∂s
+ νxνy

∂2u

∂t2
+

∂2t

∂x∂y

∂u

∂t
. (22)

Let cos θ = cos(x, ν) = νx, sin θ = cos(y, ν) = νy and define

Gu =
∂2u

∂x2
cos2 θ + 2

∂2u

∂x∂y
cos θ sin θ +

∂2u

∂y2
sin2 θ

Substituting (22) into the above expression for G, then

Gu =
∂2u

∂t∂sk

(
2ν3

xνy − 2ν3
xνy + 2νxν3

y − 2νxν3
y

)

+
∂2u

∂t2
(
ν4

x + 2ν2
xν2

y + ν4
y

)
+

∂u

∂t

(
ν2

x

∂2t

∂x2
+ 2νxνy

∂2t

∂x∂y
+ ν2

y

∂2t

∂y2

)

=
∂2u

∂t2
+

∂u

∂t

(
ν2

x

∂2t

∂x2
+ 2νxνy

∂2t

∂x∂y
+ ν2

y

∂2t

∂y2

)

=
∂2u

∂t2
+

∂u

∂t
Gt =

∂2u

∂t2
=

∂2u

∂ν2
on ∂Ω,

where we have used the fact that

0 =
∂2t

∂t2
=

∂

∂t

(
∂t

∂x

∂x

∂t
+

∂t

∂y

∂y

∂t

)

=
∂2t

∂x2

(
∂x

∂t

)2

+ 2
∂2t

∂x∂y

∂x

∂t

∂y

∂t
+

∂2t

∂y2

(
∂y

∂t

)2

+
∂t

∂x

∂2x

∂t2
+

∂t

∂y

∂2y

∂t2

=
(

ν2
x

∂2t

∂x2
+ 2νxνy

∂2t

∂x∂y
+ ν2

y

∂2t

∂y2

)
= Gt on ∂Ω,

since (∂2x/∂t2)|∂Ω = (∂2y/∂t2)|∂Ω = 0. ¤
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