A normal family of operator monotone functions

Mohammad Sal Moslehian, Hamed Najafi and Mitsuru Uchiyama

(Received November 28, 2011; Revised January 23, 2012)

Abstract

We show that the family of all operator monotone functions f on $(-1,1)$ such that $f(0)=0$ and $f^{\prime}(0)=1$ is a normal family and investigate some properties of odd operator monotone functions. We also characterize the odd operator monotone functions and even operator convex functions on $(-1,1)$. As a consequence, we show that if f is an odd operator monotone function on $(-1,1)$, then f is concave on $(-1,0)$ and convex on $(0,1)$.

Key words: Operator monotone function, operator convex function, normal family, integral representation.

1. Introduction

Throughout the paper all operators are considered to be in the algebra $\mathbb{B}(\mathscr{H})$ of all bounded linear operators acting on a complex Hilbert space \mathscr{H}.

A continuous real valued function f defined on an interval J is called operator monotone if $A \geq B$ implies $f(A) \geq f(B)$ for all self adjoint operators A, B with spectra in J. Some structure theorems on operator monotone functions can be found in [4], [9], [5], [8]. A continues function f is called operator convex on J if $f(\alpha A+(1-\alpha) B) \leq \alpha f(A)+(1-\alpha) f(B)$ for all $0 \leq \alpha \leq 1$ and all self adjoint operators A and B with spectra in J, see [1], [5], [8], [7] and references therein for several characterizations of the operator convexity. The Löwner theorem says that a function f is operator monotone on an interval J if and only if f has an analytic continuation (denoted by the same f) to the upper half plan Π_{+}such that f maps Π_{+}into itself. It is shown [10, Lemma 2.1] that a differentiable function f on an interval J is operator convex if and only if there exists a point $t_{0} \in J$ such that the function

$$
g(t)= \begin{cases}\frac{f(t)-f\left(t_{0}\right)}{t-t_{0}} & \text { if } t \neq t_{0} \tag{1.1}\\ f^{\prime}\left(t_{0}\right) & \text { if } t=t_{0}\end{cases}
$$

is operator monotone on J.
If $f(t)$ is an operator monotone function on (a, b), then clearly $f((2 t-$ $a-b) /(b-a))$ is operator monotone on $(-1,1)$, so in this paper we study the family of operator monotone functions on $(-1,1)$.

Let \mathcal{K} denote the family of all operator monotone functions on $(-1,1)$ such that $f(0)=0$ and $f^{\prime}(0)=1$. Hansen and Pedersen [6] showed that \mathcal{K} is a compact convex subset of the space of all functions on $(-1,1)$ with pointwise convergence topology and that the extreme points of \mathcal{K} are of the form $f_{\lambda}(t)=t /(1-\lambda t)$ with $|\lambda|<1$. They [6] also proved that every $f \in \mathcal{K}$ can be represented as

$$
\begin{equation*}
f(t)=\int_{-1}^{1} \frac{t}{1-\lambda t} d \mu(\lambda) \tag{1.2}
\end{equation*}
$$

where μ is a probability measure on $[-1,1]$, see also [2].
Let Ω be a open subset of \mathbb{C}. A set $\mathcal{F} \subseteq C(\Omega)$ is said to be bounded if for each compact subset $K \subseteq \Omega, \sup \left\{\|f\|_{K}: f \in \mathcal{F}\right\}<\infty$. The Montel theorem states that if \mathcal{F} is a bounded subset of the set $A(\Omega)$ of all analytic functions on Ω, then \mathcal{F} is a normal family, i.e, each sequence $\left\{f_{n}\right\}$ in \mathcal{F} has a subsequence $\left\{f_{n_{j}}\right\}$ converging uniformly on each compact subset of Ω.

In this note we show that the family of all operator monotone functions f on $(-1,1)$ such that $f(0)=0$ and $f^{\prime}(0)=1$ is a normal family and investigate some properties of odd operator monotone functions on the interval $(-1,1)$. We also present the odd operator monotone functions and even operator convex functions on $(-1,1)$ by suitable integrals.

2. The results

Throughout this section, let $\Omega=\Pi_{+} \bigcup \Pi_{-} \bigcup(-1,1)$, where Π_{-}is the lower half plan.

Theorem 2.1 The family \mathcal{K} is bounded in $A(\Omega)$, so it is a normal family.
Proof. Let S be the convex hull of $\left\{f_{\lambda}:|\lambda|<1\right\}$ where $f_{\lambda}(t)=t /(1-\lambda t)$. By Krein-Millman's theorem, \mathcal{K} is the closed convex hull of it's extreme points, so $\bar{S}=\mathcal{K}$. Fix $K \subseteq \Omega$ as a compact set. Then $h(\lambda, z)=|1-\lambda z|$ is continuous on $[-1,1] \times K$ and so it takes its minimum value. It should be noticed that the minimum value m of h on $[-1,1] \times K$ is nonzero. Put $M_{K}:=\sup \{|z|: z \in K\}$. Then

$$
\left|f_{\lambda}(z)\right|=\frac{|z|}{|1-\lambda z|} \leq \frac{M_{K}}{m}
$$

for $(\lambda, z) \in[-1,1] \times K$. If $g=\sum_{i=1}^{n} c_{i} f_{\lambda_{i}} \in \mathcal{S}$, then

$$
|g(z)|=\left|\sum_{i=1}^{n} c_{i} f_{\lambda_{i}}(z)\right| \leq \sum_{i=1}^{n} c_{i}\left|f_{\lambda_{i}}(z)\right| \leq \sum_{i=1}^{n} c_{i} \frac{M_{k}}{m}=\frac{M_{k}}{m},
$$

whence $\|g\|_{K} \leq M_{K} / m$. Now assume that $g \in \mathcal{K}$ is arbitrary. There exists $\left\{f_{n}\right\}$ in \mathcal{S} such that $f_{n}(t) \rightarrow g(t)$ for each $t \in(-1,1)$. Since S is bounded, the sequence $\left\{f_{n}\right\}$ is bounded. By Montel's theorem there exists a subsequence $\left\{f_{n_{j}}\right\}$ converging to a function h in uniform compact convergence topology on Ω. Since $g=h$ on $(-1,1)$, we have $g(z)=h(z)$ for all $z \in \Omega$. Hence

$$
|g(z)|=|h(z)|=\lim _{n_{j} \rightarrow \infty}\left|f_{n_{j}}(z)\right| \leq \frac{M_{K}}{m} .
$$

Therefore \mathcal{K} is a normal family.
Let \mathcal{G} denote the family of all operator convex function on $(-1,1)$ that $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=1$. The next theorem shows that \mathcal{G} is a normal family.

Proposition 2.2 Let $f \in \mathcal{K}$ and $f(-1,1) \subseteq(-1,1)$. Then $f(t)=t$ for each $t \in(-1,1)$.

Proof. Since $f(-1,1) \subseteq(-1,1)$, so $f^{n}=f \circ f \circ \cdots \circ f \in \mathcal{K}$. Hence by Theorem 2.1, f^{n} has a convergent subsequence that converges to a function $h \in \mathcal{K}$. Assume that $f\left(t_{0}\right)<t_{0}$ for some $t_{0} \in(-1,1)$. Hence $\left\{f^{n}\left(t_{0}\right)\right\}$ is a decreasing sequence converging to $h\left(t_{0}\right)$. Thus

$$
h\left(f\left(t_{0}\right)\right)=\lim _{n \rightarrow \infty} f^{n}\left(f\left(t_{0}\right)\right)=\lim _{n \rightarrow \infty} f^{n+1}\left(t_{0}\right)=h\left(t_{0}\right)
$$

Since h is one-one, we infer that $f\left(t_{0}\right)=t_{0}$, which is a contradiction. Therefore we have $f\left(t_{0}\right) \geq t_{0}$. We similarly get $f\left(t_{0}\right) \leq t_{0}$. Thus $f\left(t_{0}\right)=t_{0}$.

Remark 2.3

(i) In Proposition 2.2 the condition " f is operator monotone" is indispensable. Indeed, we have a counterexample: $f(t)=(2 / \pi) \sin ((\pi / 2) t)$
is real analytic and increasing on $(-1,1)$ with $f(0)=0, f^{\prime}(0)=$ $1,|f(t)|<1$, but $f(t) \neq t$.
(ii) We can prove Proposition 2.2 directly as follows. It follows from

$$
f(t)=\int_{-1}^{1} \frac{t}{1-\lambda t} d \mu(\lambda)
$$

that

$$
-1<\int_{-1}^{1} \frac{t}{1-\lambda t} d \mu(\lambda)<1 \quad(-1<t<1)
$$

Since for each λ the integrand $t /(1-\lambda t)$ is positive and increasing on $0<t<1$, by Lebesgue's monotone convergence theorem

$$
\int_{-1}^{1} \frac{1}{1-\lambda} d \mu(\lambda)=\lim _{t \rightarrow 1-0} \int_{-1}^{1} \frac{t}{1-\lambda t} \leq 1
$$

Similarly we have

$$
\int_{-1}^{1} \frac{-1}{1+\lambda} d \mu(\lambda)=\lim _{t \rightarrow-1+0} \int_{-1}^{1} \frac{t}{1-\lambda t} \geq-1
$$

Thus we have

$$
\begin{aligned}
\int_{-1}^{1} \frac{1}{1-\lambda^{2}} d \mu(\lambda) & =\frac{1}{2} \int_{-1}^{1}\left(\frac{1}{1-\lambda}+\frac{1}{1+\lambda}\right) d \mu(\lambda) \\
\leq 1 & =\int_{-1}^{1} 1 d \mu(\lambda)
\end{aligned}
$$

From this it follows that $1 /\left(1-\lambda^{2}\right)=1$ almost everywhere with respect to μ, Thus $\mu\{0\}=1$, which implies $f(t)=t$.

Corollary 2.4 If f is an odd operator monotone function on $(-1,1)$, then $f(|t|) \geq f^{\prime}(0)|t|$. Hence $f(|A|) \geq f^{\prime}(0)|A|$ for A with $\|A\|<1$

Proof. If $f\left(t_{0}\right)<f^{\prime}(0) t_{0}$ for some $t_{0} \in(0,1)$, then $f_{1}(t)=$ $\left(1 /\left(f^{\prime}(0) t_{0}\right)\right) f\left(t_{0} t\right) \in \mathcal{K}$ and $f_{1}(-1,1) \subseteq(-1,1)$, so, by Proposition 2.2, we have $f_{1}(1)=1$, which is a contradiction. Hence $f(|t|) \geq f^{\prime}(0)|t|$
for all $t \in(-1,1)$. It now follows from the functional calculus that $f(|A|) \geq f^{\prime}(0)|A|$ for A with $\|A\|<1$.

In the sequel we need the following lemma.
Lemma 2.5 ([2, Lemma 2.4]) If f is an operator monotone function on an interval (a, b), then $f^{(2 p+1)}(t) \geq 0$ for all $p=0,1,2, \ldots$ and all $a<t<b$.

Theorem 2.6 Let f be an odd operator monotone function on $(-1,1)$. Then f is concave on $(-1,0)$ and convex on $(0,1)$.

Proof. Without loss of generality we may assume that $f \in \mathcal{K}$. We shall show that f is convex on $(0,1)$. The proof of Lemma 4.1 of [6] shows that $f^{\prime}(t) \geq f(t)^{2} / t^{2}$. It follows from Corollary 2.4 that $f^{\prime}(t) \geq 1$ for each $t \in(0,1)$. Therefore

$$
f^{\prime \prime}(0)=\lim _{t \rightarrow 0^{+}} \frac{f^{\prime}(t)-f^{\prime}(0)}{t}=\lim _{t \rightarrow 0^{+}} \frac{f^{\prime}(t)-1}{t} \geq 0
$$

By Lemma 2.5, $f^{(3)}(t) \geq 0$ for all $t \in(-1,1)$, so $f^{\prime \prime}(t) \geq 0$ for all $t \in(0,1)$ since $f^{\prime \prime}$ is monotone. Hence f is a convex function on $(0,1)$. Since f is an odd function, f is concave on $(-1,0)$.

Example 2.7 The function $f(t)=\tan t$ is well-known as an odd operator monotone function on $(-\pi / 2, \pi / 2)$. It is actually convex on $(0, \pi / 2)$ and concave on $(-\pi / 2,0)$. It follows from Theorem 2.6 that $\sin t$ is not operator monotone on any open interval including $t=0$, that is a new fact.

Theorem 2.8 An odd operator monotone function on $(-1,1)$ is of the form

$$
\begin{equation*}
f(t)=f^{\prime}(0) \int_{-1}^{1} \frac{t}{1-(\lambda t)^{2}} d \mu(\lambda) \tag{2.1}
\end{equation*}
$$

where μ is a probability measure on $[-1,1]$.
Proof. As before, we may assume that $f \in \mathcal{K}$. The function f can be represented as a power series $f(t)=\sum_{n=1}^{\infty} a_{n} t^{n}$, which is convergent for $|t|<1$, cf. [2]. Since f is odd, $a_{2 n}=0$ for all n. It follows from (1.2) that

$$
f(t)=\int_{-1}^{1} \frac{t}{1-\lambda t} d \mu(\lambda)=\int_{-1}^{1} \sum_{n=0}^{\infty} t(\lambda t)^{n} d \mu(\lambda)=\sum_{n=0}^{\infty} t^{n+1} \int_{-1}^{1} \lambda^{n} d \mu(\lambda)
$$

in which μ is a probability measure on $[-1,1]$. Therefore $a_{2 n}=$ $\int_{-1}^{1} \lambda^{2 n-1} d \mu(\lambda)=0$ and so

$$
f(t)=\int_{-1}^{1} \sum_{n=0}^{\infty} t(\lambda t)^{2 n} d \mu(\lambda)=\int_{-1}^{1} \frac{t}{1-(\lambda t)^{2}} d \mu(\lambda)
$$

If f is of the form (2.1), then it is trivially odd. In addition,
$f(t)=\int_{-1}^{1} \frac{t}{1-(\lambda t)^{2}} d \mu(\lambda)=\frac{1}{2} \int_{-1}^{1} \frac{t}{1-\lambda t}+\frac{t}{1+\lambda t} d \mu(\lambda)=\frac{1}{2}(g(t)-g(-t))$,
where $g(t)=\int_{-1}^{1}(t /(1-\lambda t)) d \mu(\lambda)$. Hence f is an odd operator monotone function on $(-1,1)$.

Corollary 2.9 Any even operator convex function f on $(-1,1)$ is of the form

$$
f(t)=f(0)+\frac{f^{\prime \prime}(0)}{2} \int_{-1}^{1} \frac{t^{2}}{1-(\lambda t)^{2}} d \mu(\lambda)
$$

where μ is a probability measure on $[-1,1]$.
Proof. By (1.1) the function $g(t)=(f(t)-f(0)) / t$ is an odd operator monotone function. Now apply Theorem 2.8.

Acknowledgment The first author was supported by a grant from Ferdowsi University of Mashhad (No. MP90255MOS).

References

[1] Ando T., Topics on operator inequalities, Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sapporo, 1978.
[2] Bendat J. and Sherman S., Monotone and convex operator functions. Trans. Amer. Math. Soc. 79 (1955), 58-71. MR 18, 588.
[3] Bhatia R., Matrix Analysis, Springer, New York, 1997.
[4] Fujii J. I., Fujii M. and Seo Y., An extension of the Kubo-Ando theory: solidarities. Math. Japon. 35(2) (1990), 387-396.
[5] Furuta T., Mićić Hot J., Pečarić J. and Seo Y., Mond-Pečarić Method in Operator Inequalities, Element, Zagreb, 2005.
[6] Hansen F. and Pedersen G., Jensen's inequality for operators and Lowner's theorem. Math. Ann. 258(3) (1981/82), 229-241.
[7] Moslehian M. S. and Najafi H., Around operator monotone functions. Integral Equations Operator Theory 71(4) (2011), 575-582.
[8] Silvestrov S., Osaka H. and Tomiyama J., Operator convex functions over C^{*}-algebras. Proc. Est. Acad. Sci. 59(1) (2010), 48-52.
[9] Uchiyama M., Construction of operator monotone functions. Rend. Circ. Mat. Palermo (2) Suppl. No. 73 (2004), 137-141.
[10] Uchiyama M., Operator monotone functions, positive definite kernel and majorization. Proc. Amer. Math. Soc. 138(11) (2010), 3985-3996.

Mohammad Sal Moslehian
Department of Pure Mathematics
Center of Excellence in Analysis on Algebraic Structures (CEAAS)
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran

E-mail: moslehian@um.ac.ir moslehian@member.ams.org

Hamed Najafi
Department of Pure Mathematics
Center of Excellence in Analysis on Algebraic Structures (CEAAS)
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran

E-mail: hamednajafi20@gmail.com
Mitsuru Uchiyama
Department of Mathematics
Interdisciplinary Faculty of Science and Engineering
Shimane University
Matsue city, Shimane 690-8504, Japan
E-mail: uchiyama@riko.shimane-u.ac.jp

