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A normal family of operator monotone functions
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Abstract. We show that the family of all operator monotone functions f on (−1, 1)

such that f(0) = 0 and f ′(0) = 1 is a normal family and investigate some properties

of odd operator monotone functions. We also characterize the odd operator monotone

functions and even operator convex functions on (−1, 1). As a consequence, we show

that if f is an odd operator monotone function on (−1, 1), then f is concave on (−1, 0)

and convex on (0, 1).
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1. Introduction

Throughout the paper all operators are considered to be in the algebra
B(H ) of all bounded linear operators acting on a complex Hilbert space
H .

A continuous real valued function f defined on an interval J is called
operator monotone if A ≥ B implies f(A) ≥ f(B) for all self adjoint opera-
tors A,B with spectra in J . Some structure theorems on operator monotone
functions can be found in [4], [9], [5], [8]. A continues function f is called
operator convex on J if f(αA + (1 − α)B) ≤ αf(A) + (1 − α)f(B) for all
0 ≤ α ≤ 1 and all self adjoint operators A and B with spectra in J , see [1],
[5], [8], [7] and references therein for several characterizations of the operator
convexity. The Löwner theorem says that a function f is operator monotone
on an interval J if and only if f has an analytic continuation (denoted by
the same f) to the upper half plan Π+ such that f maps Π+ into itself. It
is shown [10, Lemma 2.1] that a differentiable function f on an interval J

is operator convex if and only if there exists a point t0 ∈ J such that the
function

g(t) =





f(t)− f(t0)
t− t0

if t 6= t0

f ′(t0) if t = t0

(1.1)
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is operator monotone on J .
If f(t) is an operator monotone function on (a, b), then clearly f((2t−

a − b)/(b − a)) is operator monotone on (−1, 1), so in this paper we study
the family of operator monotone functions on (−1, 1).

Let K denote the family of all operator monotone functions on (−1, 1)
such that f(0) = 0 and f ′(0) = 1. Hansen and Pedersen [6] showed that
K is a compact convex subset of the space of all functions on (−1, 1) with
pointwise convergence topology and that the extreme points of K are of the
form fλ(t) = t/(1− λt) with |λ| < 1. They [6] also proved that every f ∈ K
can be represented as

f(t) =
∫ 1

−1

t

1− λt
dµ(λ), (1.2)

where µ is a probability measure on [−1, 1], see also [2].
Let Ω be a open subset of C. A set F ⊆ C(Ω) is said to be bounded

if for each compact subset K ⊆ Ω, sup{‖f‖K : f ∈ F} < ∞. The Montel
theorem states that if F is a bounded subset of the set A(Ω) of all analytic
functions on Ω, then F is a normal family, i.e, each sequence {fn} in F has
a subsequence {fnj

} converging uniformly on each compact subset of Ω.
In this note we show that the family of all operator monotone functions

f on (−1, 1) such that f(0) = 0 and f ′(0) = 1 is a normal family and inves-
tigate some properties of odd operator monotone functions on the interval
(−1, 1). We also present the odd operator monotone functions and even
operator convex functions on (−1, 1) by suitable integrals.

2. The results

Throughout this section, let Ω = Π+

⋃
Π−

⋃
(−1, 1), where Π− is the

lower half plan.

Theorem 2.1 The family K is bounded in A(Ω), so it is a normal family.

Proof. Let S be the convex hull of {fλ : |λ| < 1} where fλ(t) = t/(1−λt).
By Krein–Millman’s theorem, K is the closed convex hull of it’s extreme
points, so S = K. Fix K ⊆ Ω as a compact set. Then h(λ, z) = |1 − λz|
is continuous on [−1, 1] ×K and so it takes its minimum value. It should
be noticed that the minimum value m of h on [−1, 1] ×K is nonzero. Put
MK := sup{|z| : z ∈ K}. Then
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|fλ(z)| = |z|
|1− λz| ≤

MK

m

for (λ, z) ∈ [−1, 1]×K. If g =
∑n

i=1 cifλi ∈ S, then

|g(z)| =
∣∣∣∣

n∑

i=1

cifλi
(z)

∣∣∣∣ ≤
n∑

i=1

ci|fλi
(z)| ≤

n∑

i=1

ci
Mk

m
=

Mk

m
,

whence ‖g‖K ≤ MK/m. Now assume that g ∈ K is arbitrary. There exists
{fn} in S such that fn(t) → g(t) for each t ∈ (−1, 1). Since S is bounded, the
sequence {fn} is bounded. By Montel’s theorem there exists a subsequence
{fnj

} converging to a function h in uniform compact convergence topology
on Ω. Since g = h on (−1, 1), we have g(z) = h(z) for all z ∈ Ω. Hence

|g(z)| = |h(z)| = lim
nj→∞

|fnj (z)| ≤ MK

m
.

Therefore K is a normal family. ¤

Let G denote the family of all operator convex function on (−1, 1) that
f(0) = f ′(0) = 0 and f ′′(0) = 1. The next theorem shows that G is a normal
family.

Proposition 2.2 Let f ∈ K and f(−1, 1) ⊆ (−1, 1). Then f(t) = t for
each t ∈ (−1, 1).

Proof. Since f(−1, 1) ⊆ (−1, 1), so fn = f ◦ f ◦ · · · ◦ f ∈ K. Hence by
Theorem 2.1, fn has a convergent subsequence that converges to a function
h ∈ K. Assume that f(t0) < t0 for some t0 ∈ (−1, 1). Hence {fn(t0)} is a
decreasing sequence converging to h(t0). Thus

h(f(t0)) = lim
n→∞

fn(f(t0)) = lim
n→∞

fn+1(t0) = h(t0)

Since h is one-one, we infer that f(t0) = t0, which is a contradiction. There-
fore we have f(t0) ≥ t0. We similarly get f(t0) ≤ t0. Thus f(t0) = t0. ¤

Remark 2.3

( i ) In Proposition 2.2 the condition “f is operator monotone” is indis-
pensable. Indeed, we have a counterexample: f(t) = (2/π) sin((π/2)t)
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is real analytic and increasing on (−1, 1) with f(0) = 0, f ′(0) =
1, |f(t)| < 1, but f(t) 6= t.

( ii ) We can prove Proposition 2.2 directly as follows. It follows from

f(t) =
∫ 1

−1

t

1− λt
dµ(λ)

that

−1 <

∫ 1

−1

t

1− λt
dµ(λ) < 1 (−1 < t < 1).

Since for each λ the integrand t/(1−λt) is positive and increasing on
0 < t < 1, by Lebesgue’s monotone convergence theorem

∫ 1

−1

1
1− λ

dµ(λ) = lim
t→1−0

∫ 1

−1

t

1− λt
≤ 1.

Similarly we have

∫ 1

−1

−1
1 + λ

dµ(λ) = lim
t→−1+0

∫ 1

−1

t

1− λt
≥ −1.

Thus we have
∫ 1

−1

1
1− λ2

dµ(λ) =
1
2

∫ 1

−1

(
1

1− λ
+

1
1 + λ

)
dµ(λ)

≤ 1 =
∫ 1

−1

1dµ(λ).

From this it follows that 1/(1 − λ2) = 1 almost everywhere with
respect to µ, Thus µ{0} = 1, which implies f(t) = t.

Corollary 2.4 If f is an odd operator monotone function on (−1, 1), then
f(|t|) ≥ f ′(0)|t|. Hence f(|A|) ≥ f ′(0)|A| for A with ‖A‖ < 1

Proof. If f(t0) < f ′(0)t0 for some t0 ∈ (0, 1), then f1(t) =
(1/(f ′(0)t0))f(t0t) ∈ K and f1(−1, 1) ⊆ (−1, 1), so, by Proposition 2.2,
we have f1(1) = 1, which is a contradiction. Hence f(|t|) ≥ f ′(0)|t|
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for all t ∈ (−1, 1). It now follows from the functional calculus that
f(|A|) ≥ f ′(0)|A| for A with ‖A‖ < 1. ¤

In the sequel we need the following lemma.

Lemma 2.5 ([2, Lemma 2.4]) If f is an operator monotone function on
an interval (a, b), then f (2p+1)(t) ≥ 0 for all p = 0, 1, 2, . . . and all a < t < b.

Theorem 2.6 Let f be an odd operator monotone function on (−1, 1).
Then f is concave on (−1, 0) and convex on (0, 1).

Proof. Without loss of generality we may assume that f ∈ K. We shall
show that f is convex on (0, 1). The proof of Lemma 4.1 of [6] shows that
f ′(t) ≥ f(t)2/t2. It follows from Corollary 2.4 that f ′(t) ≥ 1 for each
t ∈ (0, 1). Therefore

f ′′(0) = lim
t→0+

f ′(t)− f ′(0)
t

= lim
t→0+

f ′(t)− 1
t

≥ 0.

By Lemma 2.5, f (3)(t) ≥ 0 for all t ∈ (−1, 1), so f ′′(t) ≥ 0 for all t ∈ (0, 1)
since f ′′ is monotone. Hence f is a convex function on (0,1). Since f is an
odd function, f is concave on (−1, 0). ¤

Example 2.7 The function f(t) = tan t is well-known as an odd operator
monotone function on (−π/2, π/2). It is actually convex on (0, π/2) and
concave on (−π/2, 0). It follows from Theorem 2.6 that sin t is not operator
monotone on any open interval including t = 0, that is a new fact.

Theorem 2.8 An odd operator monotone function on (−1, 1) is of the
form

f(t) = f ′(0)
∫ 1

−1

t

1− (λt)2
dµ(λ), (2.1)

where µ is a probability measure on [−1, 1].

Proof. As before, we may assume that f ∈ K. The function f can be
represented as a power series f(t) =

∑∞
n=1 antn, which is convergent for

|t| < 1, cf. [2]. Since f is odd, a2n = 0 for all n. It follows from (1.2) that
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f(t) =
∫ 1

−1

t

1− λt
dµ(λ) =

∫ 1

−1

∞∑
n=0

t(λt)n dµ(λ) =
∞∑

n=0

tn+1

∫ 1

−1

λndµ(λ),

in which µ is a probability measure on [−1, 1]. Therefore a2n =∫ 1

−1
λ2n−1dµ(λ) = 0 and so

f(t) =
∫ 1

−1

∞∑
n=0

t(λt)2n dµ(λ) =
∫ 1

−1

t

1− (λt)2
dµ(λ).

If f is of the form (2.1), then it is trivially odd. In addition,

f(t) =
∫ 1

−1

t

1− (λt)2
dµ(λ) =

1
2

∫ 1

−1

t

1− λt
+

t

1 + λt
dµ(λ) =

1
2
(g(t)−g(−t)),

where g(t) =
∫ 1

−1
(t/(1 − λt))dµ(λ). Hence f is an odd operator monotone

function on (−1, 1). ¤

Corollary 2.9 Any even operator convex function f on (−1, 1) is of the
form

f(t) = f(0) +
f ′′(0)

2

∫ 1

−1

t2

1− (λt)2
dµ(λ),

where µ is a probability measure on [−1, 1].

Proof. By (1.1) the function g(t) = (f(t) − f(0))/t is an odd operator
monotone function. Now apply Theorem 2.8. ¤
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